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Abstract 

Reliability analysis is a core element in engineering design and can be performed with physical 

models (limit-state functions). Reliability analysis becomes computationally expensive when the 

dimensionality of input random variables is high. This work develops a high dimensional 

reliability analysis method through a new dimension reduction strategy so that the contributions 

of unimportant input variables are also accommodated after dimension reduction. Dimension 

reduction is performed with the first iteration of the first order reliability method (FORM), which 

identifies important and unimportant input variables. Then a higher order reliability analysis is 

performed in the reduced space of only important input variables. The reliability obtained in the 

reduced space is then integrated with the contributions of unimportant input variables, resulting in 

the final reliability prediction that accounts for both types of input variables. Consequently, the 

new reliability method is more accurate than the traditional method which fixes unimportant input 

variables at their means. The accuracy is demonstrated by three examples.    
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1. Introduction 

In engineering design, physics-based reliability is commonly used to predict the probability of 

failure using physical models derived from physical principles. Such a model is called a limit-state 

function and is given by  

𝑌𝑌 = 𝑔𝑔(𝐗𝐗) (1) 

where 𝐗𝐗 is a vector to represent input random variables, and 𝑌𝑌 is a response that indicates the 

occurrence of a failure.  

Physics-based reliability methods can be divided into three categories: numerical methods [1-

5], surrogate methods [6-11], and simulation methods [12-15]. Typically, numerical methods 

simplify the limit-state function using the first or second order Taylor expansion. The reliability is 

approximated by the simplified function. The surrogate methods construct an easy-access model 

utilizing sensitivity analysis, Design of Experiments (DOE), active learning methods, etc., and the 

reliability obtained by calling the surrogate model instead of the original limit-state function. 

However, both numerical and surrogate methods suffer from the curse of dimensionality that 

makes reliability analysis computationally expensive for high-dimensional problems. Because 

reliability prediction repeatedly calls limit-state functions which are typically complex, resource-

intensive numerical models. The number of function calls grows drastically as the increase of 

dimensionality of the input variables. Although the efficiency of simulation methods, such as 

Monte Carlo Simulation (MCS) [16] and Importance Sampling (IS) method [17], is not affected 

by the dimensionality, they are still computationally expensive when the reliability is high and 

may not be practically used in engineering design.  
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High-dimensional reliability analysis is encountered in many engineering and science fields 

[18-23]. Current high-dimensional reliability analysis methods are roughly classified into three 

types. The first type [24-27] uses high-dimensional model representation (HDMR) to decompose 

a high dimensional limit-state function 𝑔𝑔(𝐗𝐗) into the sum of several lower-dimensional functions. 

The moments (means, variance, etc.) of the response can be approximated by several low 

dimensional numerical integrations. However, the accuracy of the reliability obtained by HDMR 

may not be accurate enough if the interaction terms are dominant. The low dimensional functions 

are usually approximated by Taylor expansion, which also could introduce errors. Although the 

accuracy of the reliability assessment can be improved by increasing the approximation order, the 

number of function evaluations may increase drastically. Several recent studies [28-30] combine 

adaptive metamodeling approaches (Polynomial Chaos Expansion, Kriging) and statistical model 

selection methods. Their goal is to find the optimal integration points or training points for 

metamodeling. The balance between the prediction accuracy and efficiency is still a challenge. 

The second type of method [31-34] combines dimension reduction with surrogate modeling 

and machine learning. Three steps are usually involved. Step 1 is the dimension reduction 

performed by the sliced inverse regression (SIR)  [34, 35], or other methods [24, 33] at specific 

training points , usually generated through DOE [36]. Important input variables are identified. In 

Step 2, a surrogate model is constructed with respect to important input variables in the reduced 

dimensional space. Many regression and machine learning methods could be used for this purpose, 

including  Polynomial Chaos Expansion (PCE) [37], Gaussian Process Regression (GPR) [38], 

Support Vector Machines (SVM) [39], and Neural Networks (NNs) [32]. Step 3 is the surrogate 

model validation. After the accuracy of the surrogate model is validated by MCS, it is used to 

estimate the reliability. Sufficient training points are needed to ensure good accuracy of the 
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surrogate model. The number of training points, thereby the number of function calls, increases 

greatly with the increase of dimensionality of input variables.  

The third most commonly used method is principal component analysis (PCA) [40, 41]. PCA 

reduces the dimension of the input variables by making use of the correlations between the input 

variables. Therefore, PCA works well for the elements of input variables that are strongly 

correlated. When the input variables are independent or only weakly correlated, PCA may not 

work well for dimension reduction. Besides, PCA does not use the information of the response 𝑌𝑌, 

and it is, therefore, an unsupervised dimension reduction technique. Although dimension reduction 

is optimal in the given data space, it may be suboptimal for the entire regression space. 

Overall, despite the progress, numerous challenges remain in the path toward routinely 

accommodating high dimensional problems in reliability analysis. In most of the successful 

applications, only dozens of random input variables can be practically handled except the special 

cases involving functional data [31, 37]. However, the dimension in input variables could easily 

add up to hundreds or thousands in system design. For example, the aircraft wing optimization 

design [42] involves structural mechanics and aerodynamics. The numbers of design variables, 

random variables, and constraints could be in hundreds or thousands. Moreover, when the 

reliability requirement is high, accurately predicting the reliability is extremely computational 

demanding.  

In real engineering applications, not all the elements of 𝐗𝐗  contribute significantly to the 

response 𝑌𝑌 . The majority elements of 𝐗𝐗  may have insignificant effects that are therefore 

unimportant variables. Their total effect, however, may not be negligible because the unimportant 

variables may count for most of 𝐗𝐗. Traditional dimension reduction methods usually neglect the 
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contribution of the unimportant variables because they are fixed at their means, which can lead to 

a error.   

In this study, we account for the total effect of unimportant variables by fixing them at their 

percentiles so that the dimension is reduced but the influence of unimportant variables is not 

neglected. The proposed method does not require random sampling for dimension reduction; 

instead, it bases on a numerical method, specifically the First Order Reliability Method (FORM). 

After dimension reduction, any reliability method with higher accuracy can be used to predict the 

reliability since the computational effort will be reduced significantly in the reduced space. Then 

the predicted reliability is integrated with the contribution of the unimportant variables to produce 

the final reliability prediction.  

The remainder of this paper is organized as follows. Section 2 reviews the methodologies that 

this study uses. Section 3 discusses the details of the proposed method, followed by three examples 

in Section 4. The conclusions are provided in Section 5.  

2. Review 

In this section, we briefly review the basic knowledge that is related to the proposed method, 

including FORM, the Second Order Reliability Method (SORM), and the Second Order 

Saddlepoint Approximation (SOSPA). The rules of symbols in this paper are: 1) a capitalized letter 

in bold denotes a vector of random variables (e.g. 𝐗𝐗 or 𝐔𝐔), 2) a italicized lower-case letter in bold 

denotes a vector of deterministic variables (e.g. 𝒙𝒙 or 𝒖𝒖), 3) an italicized capital letter denotes a 

random variable (e.g. 𝑋𝑋 or 𝑈𝑈), and 4) an italicized lowercase letter of denotes a deterministic 

variable (e.g. 𝑥𝑥 or 𝑢𝑢).  
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2.1 FORM and SORM 

The reliability is defined by the following probability: 

𝑅𝑅 = Pr{𝑔𝑔(𝐗𝐗) ≥ 0} (2) 

The probability of failure 𝑝𝑝𝑓𝑓 is then given by  

𝑝𝑝𝑓𝑓 = 1 − 𝑅𝑅 = Pr{𝑔𝑔(𝐗𝐗) < 0} = � 𝑓𝑓𝑿𝑿(𝒙𝒙)
𝑔𝑔(𝐗𝐗)<0

< 0 𝑑𝑑𝒙𝒙 (3) 

where 𝑓𝑓𝑿𝑿(𝒙𝒙) is the joint probability density function (PDF) of 𝐗𝐗. The limit-state function 𝑔𝑔(𝐗𝐗) is 

usually a nonlinear function. In this study, we assume all the elements in 𝐗𝐗 are independent. 

Directly integrating the PDF in the failure region ( 𝑔𝑔(𝐗𝐗) < 0 ) is often impractical and 

computationally expensive. It is the reason that many approximation methods have been developed, 

including FORM [1] and SORM [3], where three steps are involved. 

1) Transform 𝐗𝐗 to be the standard normal variables 𝐔𝐔 by 

 𝐹𝐹𝑋𝑋𝑖𝑖(𝑋𝑋𝑖𝑖) = Φ(𝑈𝑈𝑖𝑖) (4) 

where 𝐹𝐹𝑋𝑋𝑖𝑖(∙)  and Φ(∙)  represent the cumulative density function (CDF) of 𝑋𝑋𝑖𝑖  and 𝑈𝑈𝑖𝑖 , 

respectively. Denote the transformation by 𝐗𝐗 = 𝑇𝑇(𝐔𝐔), and Eq. (3) is rewritten as 

Pr{𝑔𝑔(𝐗𝐗) < 0} = � 𝑓𝑓𝑼𝑼(𝑇𝑇(𝒖𝒖))
𝑔𝑔(𝑇𝑇(𝐔𝐔))<0

< 0 𝑑𝑑𝒖𝒖 (5) 

where 𝑓𝑓𝑼𝑼(∙) is the joint PDF of 𝐔𝐔. 

2) Find the most probable point (MPP) which is a point with the highest PDF on the surface 

of 𝑔𝑔(𝐔𝐔) = 0. Geometrically, MPP has the shortest distance from the surface to the origin 

in U-space, and then MPP (𝐮𝐮∗) is found by 
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�
min
𝐮𝐮

  𝛽𝛽 = ‖𝐮𝐮‖

subject to 𝑔𝑔(𝐔𝐔) = 0
(6) 

where ‖∙‖ stands for the length of a vector. 𝛽𝛽 = ‖𝐮𝐮∗‖ is the reliability index because it is 

related to the probability of failure as will be shown in Eq. (9).  

3) Approximate the limit-state function linearly (FORM) or quadratically (SORM) at 𝐮𝐮∗. The 

use of 𝐮𝐮∗ can minimize the error of the approximation.  The two approximations are given 

by  

𝑔𝑔(𝐔𝐔) ≈ 𝑔𝑔(𝐮𝐮∗) + ∇𝑔𝑔(𝐮𝐮∗)T(𝐔𝐔 − 𝐮𝐮∗) (7) 

𝑔𝑔(𝐔𝐔) ≈ 𝑔𝑔(𝐮𝐮∗) + ∇𝑔𝑔(𝐮𝐮∗)T(𝐔𝐔 − 𝐮𝐮∗) +
1
2

(𝐔𝐔 − 𝐮𝐮∗)T𝐻𝐻(𝐮𝐮∗)(𝐔𝐔 − 𝐮𝐮∗) (8) 

where ∇𝑔𝑔(𝐮𝐮∗) and 𝐻𝐻(𝐮𝐮∗) are the gradient and the Hessian matrix of 𝑔𝑔(𝑇𝑇(𝐔𝐔)) with respect 

to 𝐮𝐮∗, respectively.  

After the three steps, the probability of failure calculated by FORM is given by 

𝑝𝑝𝑓𝑓 = Φ(−𝛽𝛽) (9) 

As mentioned previously, 𝛽𝛽 is called the reliability index. When FORM is used, 𝛽𝛽 also is the 

magnitude of the MPP as indicated in Eq. (6). Therefore, we call 𝛽𝛽 from FORM the FORM-

reliability index throughout the paper. The solution from SORM is more accurate in general and 

is obtained by multiplying Eq. (9) with a correction term [3].   

2.2 SOSPA 

SOSPA [43] is a second-order approximation method based on SORM and saddlepoint 

approximation (SPA) [44, 45]. SOSPA uses the cumulant generating function (CGF) 𝐾𝐾𝑌𝑌(𝑡𝑡), which 
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can be derived analytically from the approximated response in Eq. (8). Once 𝐾𝐾𝑌𝑌(𝑡𝑡) is available, 

the saddlepoint 𝑡𝑡𝑠𝑠 is obtained by solving 

𝐾𝐾𝑌𝑌′(𝑡𝑡) = 0 (10) 

where 𝐾𝐾𝑔𝑔′(𝑡𝑡) is the first order derivative of the CGF. Then, 𝑝𝑝𝑓𝑓 is computed by [46] 

𝑝𝑝𝑓𝑓 = Φ(𝜔𝜔) + 𝜙𝜙(𝜔𝜔) �
1
𝜔𝜔
−

1
𝜈𝜈�

(11) 

where 𝜙𝜙(∙) represents the PDF of the standard normal distribution.  

𝜔𝜔 = sgn(𝑡𝑡𝑠𝑠){2[−𝐾𝐾𝑌𝑌(𝑡𝑡𝑠𝑠)]}
1
2 (12) 

𝜈𝜈 = 𝑡𝑡𝑠𝑠[𝐾𝐾𝑌𝑌′′(𝑡𝑡𝑠𝑠)]
1
2 (13) 

where sgn(∙) is the signum function, which equals to 1, −1, or 0 when 𝑡𝑡𝑠𝑠 is positive, negative or 

zero;  𝐾𝐾𝑔𝑔′′(𝑡𝑡𝑠𝑠) is the second order derivative of the CGF with respect to 𝑡𝑡.  

3. Methodology 

The distinctive strategy of the proposed method is to use an accurate reliability method in the 

reduced space and accounts for the contributions of both important and unimportant input variables 

to the reliability. 

3.1 Overview 

The purpose of dimension reduction is to identify important and unimportant variables in 𝐗𝐗. 

We will use FORM to perform dimension reduction since the MPP from FORM can directly 

measure the importance of input variables for two reasons. First, the reliability is determined by 

the FORM-reliability index or the magnitude of the MPP since 𝛽𝛽 = ‖𝐮𝐮∗‖ = �∑ (𝑢𝑢𝑖𝑖∗)2𝑛𝑛
𝑖𝑖=1 ; second, 
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the components of the MPP 𝐮𝐮∗ = (𝑢𝑢𝑖𝑖∗)𝑖𝑖=1,𝑛𝑛 determine the importance of the elements of 𝐗𝐗 or their 

contributions to the reliability. As shown in Fig. 1, a farther distance from the mean (or median) 

means a larger value of the MPP component and therefore a higher contribution. Hence, we can 

use the MPP components to identify both important and unimportant input variables. Since the 

MPP components of the unimportant input variables do not change significantly during the MPP 

search, we propose to use the MPP obtained from the first iteration of the MPP search. This can 

greatly reduce the computational effort.  

 

Fig. 1 Percentile of a random variable 

Once the MPP is obtained from the first iteration, important and unimportant input variables 

are identified by their MPP components. Then, the subsequent analysis will be conducted with 

only important variables. A reliability method with higher accuracy can be used with the 

unimportant input variables fixed at their MPP components. Using a high accurate reliability 

method is affordable because the number of function calls can be reduced in the reduced space. 

Then the final reliability is obtained by integrating the reliability obtained in the reduced space and 

the FORM-reliability index of unimportant input variables. 
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The proposed method involves three steps: 1) dimension reduction, 2) reliability analysis in 

the reduced space, and 3) reliability analysis in the original space. 

3.2 Dimension Reduction 

The purpose of the first step is to identify important and unimportant input variables. This step 

involves the first iteration of the MPP search that starts from the origin of the U-space. By Setting 

the initial point at the origin 𝐮𝐮0 = (0,0, … ,0)T, we obtain the gradient ∇𝑔𝑔(𝐮𝐮0) and approximate 

the limit-state function by 

𝑔𝑔(𝐔𝐔) ≈ 𝑔𝑔(𝐮𝐮0) + ∇𝑔𝑔(𝐮𝐮0)T𝐔𝐔 (14) 

The unit vector 𝛂𝛂 of  ∇𝑔𝑔(𝐔𝐔) at 𝐮𝐮0 is given by 

𝛂𝛂 =
𝛻𝛻𝛻𝛻(𝐮𝐮0)
‖𝛻𝛻𝛻𝛻(𝐮𝐮0)‖

(15) 

Then the FORM-reliability index of one-step MPP is obtained by  

𝛽𝛽1 = 𝛽𝛽0 +
𝑔𝑔(𝐮𝐮0)

‖𝛻𝛻𝛻𝛻(𝐮𝐮0)‖ =
𝑔𝑔(𝐮𝐮0)

‖𝛻𝛻𝛻𝛻(𝐮𝐮0)‖
(16) 

Using the fact that the MPP vector is in the opposite direction of the gradient [47], we have the 

first iteration of the MPP 𝐮𝐮1.  

𝐮𝐮1 = −𝛽𝛽1𝛂𝛂 = −
𝑔𝑔(𝐮𝐮0)𝛻𝛻𝛻𝛻(𝐮𝐮0)
‖𝛻𝛻𝛻𝛻(𝐮𝐮0)‖2

(17) 

And it can be proved that 𝛽𝛽1 = ‖𝐮𝐮1‖ holds for Eqs. (16) and (17).  

We now discuss how to distinguish important input variables from unimportant ones by using 

the first-iteration MPP. The probability of failure is approximated by 𝑝𝑝𝑓𝑓 = Φ(−𝛽𝛽1) =

Φ�−�𝑢𝑢112 + 𝑢𝑢122 + ⋯𝑢𝑢1𝑛𝑛2 � , where 𝑢𝑢1𝑖𝑖  is the i-th component of 𝐮𝐮1 . The magnitudes of the 
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components of 𝐮𝐮1  therefore indicate their importance to the probability of failure. More 

specifically, we examine the sensitivity of 𝑝𝑝𝑓𝑓 with respect to the components of 𝐮𝐮1. The sensitivity 

is defined by 

𝑠𝑠𝑖𝑖 =
𝜕𝜕𝑝𝑝𝑓𝑓
𝜕𝜕𝑢𝑢𝑖𝑖

= −𝜑𝜑(−𝛽𝛽1)
𝑢𝑢1𝑖𝑖
𝛽𝛽1

(18) 

Since 𝜑𝜑(−𝛽𝛽1) is a constant in Eq. (18), 𝑢𝑢1𝑖𝑖
𝛽𝛽1

 indicates the relative importance of each component. 

We can therefore use the following indicator to identify unimportant input random variables: 

𝑐𝑐𝑖𝑖 =
|𝑢𝑢1𝑖𝑖|
𝛽𝛽1

(19) 

If 𝑐𝑐𝑖𝑖 is less than a threshold 𝑐𝑐𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟, 𝑋𝑋𝑖𝑖 is considered unimportant. The higher is the threshold, 

the more input random variables will be classified as unimportant ones, and the higher dimensions 

will be reduced. Using different thresholds, a user can know how many important variables will 

be included for the subsequent accurate reliability analysis. The user will then be able to determine 

an appropriate threshold given his or her computational budget. Based on our experience with from 

the test problems, we recommend that the user could start from 𝑐𝑐𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟=3% or 5% when searching 

for a suitable threshold. 

We group the important variables into a vector 𝐔𝐔� and group the unimportant variables into a 

vector 𝐔𝐔 with the dimensions of 𝑛𝑛� and 𝑛𝑛, respectively. Then the input variables are partitioned into 

two parts. 

𝐔𝐔 = �𝐔𝐔�;  𝐔𝐔� (18) 

Accordingly, the first-iteration MPP is also partitioned into two parts.  

𝐮𝐮1 = �𝐮𝐮�1;  𝐮𝐮1� (19) 
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where 𝐮𝐮�1 and 𝐮𝐮1 are the important and unimportant elements of 𝐮𝐮1, respectively. Therefore, we 

have 

𝛽𝛽1 = ‖𝐮𝐮1‖ = �𝐮𝐮�1;  𝐮𝐮1� = �‖𝐮𝐮�1‖2 + �𝐮𝐮1�
2 (20) 

We let 𝛽𝛽1 and 𝛽𝛽1 to be the FORM-reliability index of the important and unimportant portion 

of 𝐮𝐮1, respectively, which are denoted by 

𝛽𝛽1 = ‖𝐮𝐮�1‖ (21) 

𝛽𝛽1 = �𝐮𝐮1� (22) 

The overall FORM-reliability index is obtained by  

𝛽𝛽1 = �𝛽𝛽1
2

+ 𝛽𝛽12 (23) 

The final MPP elements of the unimportant variables will be different from 𝐮𝐮1 , but the 

difference will be insignificant because the contributions of the unimportant variables are 

relatively small. For this reason, we fix the unimportant variables 𝐔𝐔 at 𝐮𝐮1, but we will still consider 

their contributions indicated by their FORM-reliability index 𝛽𝛽1 in the final stage of the reliability 

analysis. Then the limit-state function becomes a function of 𝐔𝐔� with reduced dimension. The new 

function is given by 

𝑌𝑌 = 𝐺𝐺(𝐔𝐔�) = 𝑔𝑔�𝐔𝐔�;𝐮𝐮1� (24) 

For brevity, we denote the limit-state function as 𝐺𝐺(𝐔𝐔�). 
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3.3 Reliability Analysis in the Reduced Space 

We next perform reliability analysis in the reduced dimensional space (𝐔𝐔� space). Once the 

dimension is reduced, the reliability can be solved either by numerical methods (FORM, SORM, 

SOSPA, etc.) or surrogate methods (Kriging, PCE, Machine Learning, etc.).   

In this study, we use SOSPA for demonstration. SOSPA is a second order numerical method 

and is used to obtain the probability of failure of 𝐺𝐺(𝐔𝐔�). The first step of SOSPA is to find the MPP 

of 𝐺𝐺(𝐔𝐔�) which is 𝐮𝐮G
∗  by Eq. (6). The magnitude of 𝐮𝐮G

∗  or the FORM-reliability index is  

𝛽𝛽𝐺𝐺 = �𝐮𝐮G
∗ � (25) 

Once 𝐮𝐮G
∗  is available, we approximate 𝐺𝐺(𝐔𝐔�) at 𝐮𝐮G

∗  by the second order Taylor expansion using 

Eq. (8) and have 

𝐺𝐺(𝐔𝐔�) ≈ 𝐺𝐺�𝐮𝐮G
∗ � + ∇𝐺𝐺�𝐮𝐮G

∗ �
T
�𝐔𝐔� − 𝐮𝐮G

∗ � +
1
2
�𝐔𝐔� − 𝐮𝐮G

∗ �
T
𝐻𝐻(𝐮𝐮G

∗ )�𝐔𝐔� − 𝐮𝐮G
∗ � (26) 

Then the CGF 𝐾𝐾𝐺𝐺(𝑡𝑡) of 𝐺𝐺(𝐔𝐔�) is derived analytically by Eq. (26). The detail derivations can be 

found in [43]. The Saddlepoint 𝑡𝑡𝑆𝑆 is obtained by solving 𝐾𝐾𝐺𝐺′ (𝑡𝑡) = 0. The probability of failure of 

𝐺𝐺(𝐔𝐔�) is calculated by Eq. (11), whose solution is denoted by 𝑝𝑝𝑓𝑓. The reliability index from SOSPA 

then is given by  

𝛽𝛽𝐺𝐺,𝑆𝑆𝑆𝑆𝑆𝑆 =  �Φ−1 �𝑝𝑝𝑓𝑓�� (27) 

If all the derivatives are evaluated by the finite difference method, the number of function 

evaluations with respect to the dimension of 𝐔𝐔� is 𝑘𝑘(𝑛𝑛� + 1) + 1
2
𝑛𝑛�(𝑛𝑛� + 1), where 𝑘𝑘 is the number 

of iterations of the MPP search. 
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3.4 Final Reliability Analysis 

The final step is to integrate the reliability results from Steps 1 and 2 so that the contributions 

of both important and unimportant variables are accommodated. Next, we derive the equation for 

the integration. We first look at the case where we do not do any dimension reduction. Let the 

MPP obtained without any dimension reduction be 𝐮𝐮∗, it is partitioned into  

𝐮𝐮∗ = �𝐮𝐮�∗;  𝐮𝐮∗� (28) 

where 𝐮𝐮�∗ and 𝐮𝐮∗ are the important and unimportant elements of the MPP 𝐮𝐮∗. According to Eqs. 

(21), (22), and (23), we have 𝛽𝛽 = ‖𝐮𝐮�∗‖, 𝛽𝛽 = �𝐮𝐮∗�, and therefore 

𝛽𝛽 = �‖𝐮𝐮�∗‖2 + �𝐮𝐮∗�2 = �𝛽𝛽
2

+ 𝛽𝛽2 (29) 

We now look at the case with dimension reduction. As discussed in Step 1, we assume the 

MPP of unimportant variables to be the MPP from the first iteration, namely, 𝐮𝐮∗ = 𝐮𝐮1. Then we 

have 

𝛽𝛽 ≈ �𝐮𝐮1� (30) 

In Step 2, we also perform the MPP search in the reduced space with unimportant variables 

fixed at 𝐮𝐮1. This produces the MPP 𝐮𝐮G
∗  and FORM-reliability index 𝛽𝛽𝐺𝐺 = �𝐮𝐮G

∗ �. Next, we prove 

that 𝐮𝐮G
∗ = 𝐮𝐮�∗, and therefore 𝛽𝛽 = 𝛽𝛽𝐺𝐺. Then we can use Eq. (29) to integrate the results in Steps 1 

and 2. 

Because, in the original space, 𝐮𝐮∗ is found at the limit state 𝑔𝑔(𝑇𝑇(𝐔𝐔)) = 0,  which means  

𝑔𝑔(𝑇𝑇(𝐮𝐮∗)) = 𝑔𝑔�𝑇𝑇(𝐮𝐮�∗;𝐮𝐮∗)� = 0 (31) 
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In the reduced space, for the same reason we have 

𝐺𝐺�𝐮𝐮G
∗ � = 0 (32) 

Assume that the MPPs of 𝑔𝑔�𝑇𝑇(𝐔𝐔�;  𝐔𝐔)� and 𝐺𝐺(𝐔𝐔�) are unique, in other words, 𝐮𝐮∗ = (𝐮𝐮�∗;  𝐮𝐮∗) 

and 𝐮𝐮G
∗  are unique.  

By substituting the MPP 𝐮𝐮∗ into Eqs. (15) and (17), we have  

𝐮𝐮∗ = −𝛽𝛽𝛂𝛂 = −𝛽𝛽
�𝜕𝜕𝜕𝜕(𝑇𝑇(𝐮𝐮∗))

𝜕𝜕𝑢𝑢𝑖𝑖∗
�
1,2,…,𝑛𝑛

‖𝛻𝛻𝛻𝛻(𝑇𝑇(𝐮𝐮∗))‖
(33) 

Therefore, the important elements of the MPP can be expressed as 

𝐮𝐮�∗ = −𝛽𝛽𝛂𝛂 = −𝛽𝛽

� 𝜕𝜕𝜕𝜕
𝜕𝜕𝑈𝑈𝑖𝑖

�
1,𝑛𝑛
�
𝐮𝐮∗

‖∇𝑔𝑔(𝑇𝑇(𝐮𝐮∗))‖ = −𝛽𝛽′ �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑈𝑈𝑖𝑖

�
1,𝑛𝑛

�
𝐮𝐮∗

(34)
 

𝛽𝛽′ =
𝛽𝛽

‖∇𝑔𝑔(𝑇𝑇(𝐮𝐮∗))‖
(35) 

Now we relate � 𝜕𝜕𝜕𝜕
𝜕𝜕𝑈𝑈𝑖𝑖
�
1,𝑛𝑛
�
𝐮𝐮∗

 with the reduced space. 

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝑈𝑈𝑖𝑖

�
1,𝑛𝑛

�
𝐮𝐮∗

= �
𝜕𝜕𝜕𝜕�𝑇𝑇(𝐔𝐔�;𝐮𝐮∗)�

𝜕𝜕𝑈𝑈𝑖𝑖
�
1,𝑛𝑛

�
𝐮𝐮�∗

= �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑈𝑈𝑖𝑖

�
1,𝑛𝑛

�
𝐮𝐮�∗

= ∇𝐺𝐺(𝐮𝐮�∗) (36) 

where ∇𝐺𝐺(𝐮𝐮�∗) is the gradient of 𝐺𝐺(𝐔𝐔�) at 𝐮𝐮�∗.  

Then 𝐮𝐮�∗ is rewritten as  

𝐮𝐮�∗ = −𝛽𝛽′∇𝐺𝐺(𝐮𝐮�∗) (37)  
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which indicates that 𝐮𝐮�∗  is perpendicular to 𝐺𝐺(𝐔𝐔�) = 0. Since 𝑔𝑔(𝐮𝐮∗) = 𝑔𝑔(𝐮𝐮�∗;𝐮𝐮∗) = 0, we have 

𝐺𝐺(𝐮𝐮�∗) = 0, which means that 𝐮𝐮�∗ is on the surface of 𝐺𝐺(𝐔𝐔�) = 0 and is in the opposite direction of 

the gradient ∇𝐺𝐺(𝐮𝐮�∗). Therefore, 𝐮𝐮�∗ is the shortest distance point from the original to the limit state 

surface 𝐺𝐺(𝐮𝐮�∗) = 0 in the space of 𝐔𝐔� and is the MPP of 𝐺𝐺(𝐔𝐔�), namely  

𝐮𝐮�∗ = 𝐮𝐮G
∗ (38) 

Since 𝛽𝛽 = ‖𝐮𝐮�∗‖ and 𝛽𝛽𝐺𝐺 = �𝐮𝐮G
∗ �, we have 

𝛽𝛽𝐺𝐺 = 𝛽𝛽 (39) 

Then Eq. (29) can be rewritten as 

𝛽𝛽 = �𝛽𝛽𝐺𝐺
2

+ 𝛽𝛽2 (40) 

Because 𝐮𝐮1 ≤ 𝑐𝑐 , 𝛽𝛽 = �𝐮𝐮1�  is far less than 𝛽𝛽𝐺𝐺 , namely, 𝛽𝛽 ≪ 𝛽𝛽𝐺𝐺 , which means that 𝛽𝛽𝐺𝐺 

dominates the accuracy of 𝛽𝛽 . We now replace the FORM-reliability index 𝛽𝛽𝐺𝐺  with the more 

accurate reliability index  𝛽𝛽𝐺𝐺,𝑆𝑆𝑆𝑆𝑆𝑆 in Eq. (27), and then we obtain the final reliability index  

𝛽𝛽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = �𝛽𝛽𝐺𝐺,𝑆𝑆𝑆𝑆𝑆𝑆
2

+ 𝛽𝛽2 (41) 

Then the final probability of failure is obtained by 

𝑝𝑝𝑓𝑓,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = Φ(−𝛽𝛽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) (42) 

3.5 Numerical Procedure 

The numerical procedure of the proposed high dimensional reliability analysis method is 

summarized below. 
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1) Dimension reduction: Perform one-iteration FORM to obtain one-step MPP 𝐮𝐮1; identify 

the important and unimportant random variables by 𝑢𝑢1𝑖𝑖 ≤ 𝑐𝑐 and partition input variables 

the corresponding MPP as 𝐔𝐔 = �𝐔𝐔�;  𝐔𝐔�  and 𝐮𝐮1 = (𝐮𝐮�1;  𝐮𝐮1) ; then calculate FORM-

reliability index 𝛽𝛽 = �𝐮𝐮1�; by fixing the unimportant variables 𝐔𝐔 at 𝐮𝐮1, a new limit-state 

function 𝐺𝐺(𝐔𝐔�) = 𝑔𝑔�𝑇𝑇(𝐔𝐔�;𝐮𝐮1)� is obtained with reduced dimension.  

2) Reliability analysis in 𝐔𝐔� space: Use an accurate reliability method such as SOSPA to find 

the probability of failure 𝑝𝑝𝑓𝑓  based on 𝐺𝐺(𝐔𝐔�) and calculate the corresponding reliability 

index, which is  𝛽𝛽𝐺𝐺,𝑆𝑆𝑆𝑆𝑆𝑆 if SOSPA is used.  

3) Final reliability analysis: Calculate the final reliability index by 𝛽𝛽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = �𝛽𝛽𝐺𝐺,𝑆𝑆𝑆𝑆𝑆𝑆
2

+ 𝛽𝛽2 

and the final probability of failure by 𝑝𝑝𝑓𝑓,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = Φ(−𝛽𝛽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜).  

4. Examples 

In this section, we use three examples to demonstrate the proposed method. Example 1 is a 

mathematical problem with all the input variables normally distributed. It is presented step by step 

to show all the details of the proposed method so that an interested reader can easily repeat the 

process and reproduce the result.  Example 2 involves a cantilever beam with over 200 random 

variables, some of which follow non-normal distributions. Example 3 shows a truss system with 

52 bars and 110 random variables, some of which follow extreme value distributions, and the limit-

state function is a black-box function. For all the examples, we use the same threshold value 

𝑐𝑐𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟 = 3% to divide the input variables into important and unimportant variables.  

For comparison, we use MCS, FORM, SOSPA, HDMR-SOSPA (specifically univariate 

dimension reduction), and DR-SOSPA for all examples. MCS, FORM, and SOSPA are performed 
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without dimension reduction. For HDMR-SOSPA, we first decompose the original limit-state 

function into 𝑛𝑛 univariate functions and then create surrogate models for all univariate functions 

with three and five points; after this the reliability is calculated by SOSPA based on the surrogate 

models. The two HDMR methods denoted by HDMR-3-SOSPA and HDMR-5-SOSPA. DR-

SOSPA is the proposed method that employs SOSPA in the reduced dimensional space and 

accounts for the effects of eliminated variables. To evaluate the advantage of accounting for the 

effects of eliminated variables, we also compare DR-SOSPA with the method that employs 

SOSPA in the reduced dimensional space, but the eliminated variables are fixed at their means. 

We denoted the latter method DR-SOSPA-M. The result of MCS is served as a reference for 

accuracy comparison, and the relative error of a non-MCS method with respect to MCS is defined 

by   

𝜀𝜀 = �
𝑝𝑝𝑓𝑓 − 𝑝𝑝𝑓𝑓,MCS

𝑝𝑝𝑓𝑓,MCS
� × 100% (43) 

where 𝑝𝑝𝑓𝑓 and 𝑝𝑝𝑓𝑓,MCS are the probabilities of failure obtained by non-MCS and MCS, respectively. 

The number of function calls (FC) and the coefficient of efficiency (CoE) are used to measure the 

efficiency. The latter is defined by 

CoE =
The number of function calls

The dimension of original limit state function
(44) 

4.1 A Mathematical Problem 

The mathematical problem is a parabolic function given by  

𝑔𝑔(𝐔𝐔) = 20 − 3�𝑈𝑈𝑖𝑖(1 + 0.1𝑈𝑈𝑖𝑖)
5

𝑖𝑖=1

−�𝑘𝑘𝑖𝑖𝑈𝑈𝑖𝑖

100

𝑖𝑖=6

(45) 
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where 𝑈𝑈𝑖𝑖 , 𝑖𝑖 = 1,2, … ,100  are all independent standard normal random variables, namely 

𝑈𝑈𝑖𝑖~𝑁𝑁(0,12), 𝑘𝑘𝑖𝑖 is the coefficient of a linear term, 𝑘𝑘𝑖𝑖 = 0.08 for 𝑖𝑖 = 6,7, … ,100.   

Following the procedure in Sec. 3.5, we first perform one-iteration FORM to obtain the one-

iteration MPP 𝐮𝐮1 . By setting the threshold 𝑐𝑐𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟 = 3%  and using |𝑢𝑢1𝑖𝑖|
𝛽𝛽

> 𝑐𝑐𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟  to identify 

important variables, we find that five variables are important that are 𝐔𝐔� = (𝑈𝑈1,𝑈𝑈2,𝑈𝑈3,𝑈𝑈4,𝑈𝑈5)T. 

The unimportant variables are 𝐔𝐔 = (𝑈𝑈6,𝑈𝑈7, … ,𝑈𝑈100)T . Then 𝐮𝐮1  is partitioned into (𝐮𝐮�1;  𝐮𝐮1) , 

accordingly. The reliability index of unimportant variables is given by  𝛽𝛽 = �𝐮𝐮1� = 0.3419. It 

represents the contribution of the unimportant variables to the reliability. Then, we fix 𝐔𝐔 at 𝐮𝐮1 and 

have 

𝑔𝑔(𝐔𝐔) ≈ 𝐺𝐺(𝐔𝐔�) = 20 − 3�𝑈𝑈𝑖𝑖(1 + 0.1𝑈𝑈𝑖𝑖)
5

𝑖𝑖=1

−�𝑘𝑘𝑗𝑗𝑢𝑢1𝑗𝑗

100

𝑗𝑗=6

(46) 

Thus, the dimension is reduced to 5 from 100.  

Next, we conduct reliability analysis in the 𝐔𝐔� space. We first perform the MPP search for 𝐺𝐺(𝐔𝐔�), 

which results in the MPP 𝐮𝐮𝐺𝐺
∗ = (1.1770, 1.1770, 1.1770,1.1770, 1.1770)T. We then calculate the 

Hessian matrix of 𝐺𝐺(𝐔𝐔�) at 𝐮𝐮𝐺𝐺
∗ . Using SOSPA, we have the probability of failure that is 𝑝𝑝𝑓𝑓 =

6.7352 × 10−3. Then the reliability index of the important variables is obtained that is 𝛽𝛽𝐺𝐺,𝑆𝑆𝑆𝑆𝑆𝑆 =

2.4711. The total reliability index, which accommodates both important and unimportant variables, 

is calculated by 𝛽𝛽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = �𝛽𝛽𝐺𝐺,𝑆𝑆𝑆𝑆𝑆𝑆
2

+ 𝛽𝛽2 = 2.4946. The final probability of failure is given by 

𝑝𝑝𝑓𝑓,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = Φ(−𝛽𝛽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) = 6.3044 × 10−3. The results of all the methods are summarized in 

Table 1.  
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Table 1 Results of different methods for Example 1 

Methods 𝑝𝑝𝑓𝑓 Error (%) FC CoE 
MCS 6.3416 × 10−3 - 1e7 105 

FORM 3.9966 × 10−3 36.98 404 4.04 
SOSPA 6.3515 × 10−3 0.16 5,555 55.55 

DR-SOSPA-M 6.1501 × 10−3 3.02 146 1.46 
HDMR-3-SOSPA 1.792 × 10−3 71.7 201 2.01 
HDMR-5-SOSPA 1 - 401 4.01 

DR-SOSPA 6.3044 × 10−3 0.59 146 1.46 

As shown in Table 1, SOSPA, DR-SOSPA, and DR-SOSPA-M accurately predict the 

probability of failure. Compared with the results of SOSPA with 5,555 function calls and an error 

of 0.16%, the proposed method needs 146 function calls and CoE = 1.46, only increasing the error 

to 0.59%. Although DR-SOSPA-M maintains the same efficiency as the proposed method, the 

accuracy of DR-SOSPA-M is worse than DR-SOSPA because it ignores the joint influence of the 

unimportant variables. FORM does not produce an accurate result. The two HDMR methods 

cannot produce accurate results for this example either. To find the cause of inaccuracy, we 

perform MCS directly using the surrogate models from HDMR instead of SOSPA and obtain 

almost the same results as those of HDMR-SOSPA. This indicates that the surrogate models from 

HDMR are not accurate. The Hessian matrixes of the surrogate models are significantly different 

from those of the original limit-state function.   

4.2 A Cantilever Beam 

A cantilever is shown in Fig. 2. It is subjected to 106 random forces on the top surface, in 

which six of them (𝐹𝐹𝑖𝑖 , 𝑖𝑖 = 1,2, … ,6) are lognormally distributed and the rest (𝐹𝐹𝑖𝑖 , 𝑖𝑖 = 7,8, … ,106) 

follow normal distributions. The locations of the forces are random variables that are normally 

distributed, which are denoted by 𝑙𝑙𝐹𝐹𝑖𝑖 , 𝑖𝑖 = 1,2, … ,106. The width 𝑤𝑤, height ℎ, and yield strength 
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𝑆𝑆𝑦𝑦 are normally distributed. All the random variables are independent. The distributions are shown 

in Table 2.  

 

Fig. 2 A cantilever beam 

Table 2 Distributions of random variables in Example 2 

Random variables Distribution  Mean  Standard deviation 
𝑆𝑆𝑦𝑦 (MPa) Normal 720 60 
𝑤𝑤 (m) Normal 0.2 0.001 
ℎ (m) Normal 0.4 0.001 

𝐹𝐹𝑖𝑖 , 𝑖𝑖 = 1,2, … ,6 (kN) Lognormal 30 + 5𝑖𝑖 2.4 + 0.4𝑖𝑖 
𝑙𝑙𝐹𝐹𝑖𝑖 , 𝑖𝑖 = 1,2, … ,6 (m) Normal 4.3 + 0.1𝑖𝑖 0.01 

𝐹𝐹𝑖𝑖 , 𝑖𝑖 = 7,8, … ,106 (kN) Normal 10 1 
𝑙𝑙𝐹𝐹𝑖𝑖 , 𝑖𝑖 = 7,8, … ,106 (m) Normal 0.02𝑖𝑖 0.01 
 

The serviceability state depends on the stress in the beam. The maximal stress should not 

exceed the yield strength, and then the limit-state function is given by  

𝑔𝑔(𝐗𝐗) = 𝑆𝑆𝑦𝑦 −
6∑ 𝐹𝐹𝑖𝑖𝑙𝑙𝐹𝐹𝑖𝑖

106
𝑖𝑖=1

𝑤𝑤ℎ2
(47) 

We first perform the one-iteration FORM to obtain the first-step MPP 𝐮𝐮𝟏𝟏. Using 𝑐𝑐𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟 = 3%, 

we obtain nine important variables 𝐔𝐔� = (𝑆𝑆𝑦𝑦,𝑤𝑤, ℎ,𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹6)T  and the reliability index of 

unimportant variables 𝛽𝛽 = 0.1666. By performing reliability analysis in 𝐔𝐔� space using SOSPA, 
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we have 𝑝𝑝𝑓𝑓 = 1.9481 × 10−6 and the corresponding reliability index is 𝛽𝛽𝐺𝐺,𝑆𝑆𝑆𝑆𝑆𝑆 = 4.6168. The 

total reliability index, which accommodates both important and unimportant variables, is 

calculated by 𝛽𝛽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = �𝛽𝛽𝐺𝐺,𝑆𝑆𝑆𝑆𝑆𝑆
2

+ 𝛽𝛽2 = 4.6199. The probability of failure for the original limit 

state function is given by 𝑝𝑝𝑓𝑓,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = Φ(−𝛽𝛽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) = 1.9201 × 10−6 . The results are 

summarized in Table 3. 

Table 3 Results of different methods for Example 2 

Methods 𝑝𝑝𝑓𝑓 Error (%) FC CoE 
MCS 1.9106 × 10−6 - 1.6 × 109 7.4 × 106 

FORM 1.7964 × 10−6 6.0 648 3.0 
SOSPA 1.9200 × 10−6 0.5 24,084 112.0 

DR-SOSPA-M 1.8926 × 10−6 1.0 301 1.4 
HDMR-3-SOSPA 1.8158 × 10−6 5.0 431 2.0 
HDMR-5-SOSPA 3.4526 × 10−6 80.7 861 4.0 

DR-SOSPA 1.9201 × 10−6 0.5 301 1.4 

As the results indicate, FORM is the least accurate although it is efficient. SOSPA has an error 

of 0.5%, but its efficiency is the worst with 24,084 function calls and CoE = 112. DR-SOSPA 

outperforms other methods with the same accuracy (0.5%) as SOSPA and the highest efficiency 

(FC = 301 and CoE = 1.4).  

4.3 A Truss System 

This example is modified from [48]. The dome truss system consists of 52 bars with 21 nodes, 

as shown in Fig. 3. The truss structure is similar to the roof of a stadium. To distinguish the 

difference between nodes and bars, the numbers with a dot mean nodes and the numbers without 

dot denote bars. All the nodes lie on the imaginary hemisphere with a radius of 240 in. The young’s 

moduli and the cross-sectional areas of bars follow normal distributions. The structure is subjected 

to six random forces at nodes 1-13, where 𝐹𝐹1 is applied to node 1, 𝐹𝐹2 is applied to nodes 2 and 4, 
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𝐹𝐹3 is applied to nodes 3 and 5, 𝐹𝐹4 is applied to nodes 6 and 10, 𝐹𝐹5 is applied to nodes 8 and 12, and 

𝐹𝐹6 is applied to nodes 7, 9, 11, and 13. The directions of all the forces point to the center of the 

imaginary hemisphere. All the random variables are independent and their distributions are shown 

in Table 4.  

 

Fig. 3 A 52-bars truss system 

Table 4 Distributions of random variables in Example 3 

Random variables Distribution  Mean  Standard deviation 
𝐸𝐸𝑖𝑖 , 𝑖𝑖 = 1~50 (ksi) Normal 2.5 × 104  1000  

𝐴𝐴𝑖𝑖 , 𝑖𝑖 = 1~8, and 29~36 (in2) Normal 2  0.001 
𝐴𝐴𝑖𝑖 , 𝑖𝑖 = 9~16 (in2) Normal 1.2 0.0006 

𝐴𝐴𝑖𝑖 , 𝑖𝑖 = 17~28, and 37~52 (in2) Normal 0.6 0.0003 
𝐹𝐹1 (kip) Normal 45 3.6 
𝐹𝐹2 (kip) Extreme 40 6.0 
𝐹𝐹3 (kip) Extreme 35 5.25 
𝐹𝐹4 (kip) Normal 30 4.5 
𝐹𝐹5 (kip) Normal 25 3.75 
𝐹𝐹6 (kip) Normal 20 3 
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 The limit-state function is given in Eq. (48) and is solved by the finite element method (FEM). 

𝑌𝑌 = 𝛿𝛿0 − 𝑔𝑔(𝐄𝐄;𝐀𝐀;𝐅𝐅) (48) 

where, 𝛿𝛿0 the threshold displacement of node 1. A failure occurs when the displacement of node 

1 exceeds 𝛿𝛿0 = 0.7 in. 𝐄𝐄 = [𝐸𝐸1,𝐸𝐸2, … ,𝐸𝐸52]T and 𝐀𝐀 = [𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴52]T are vectors of the young’s 

moduli and cross-sectional areas, respectively. 𝐅𝐅 = [𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹6]T is the vector of the loads.  

Following the procedure in Section 3.5, we obtain the one-iteration MPP. Nine variables are 

identified as important variables by setting 𝑐𝑐𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟 = 3%, which are [𝐹𝐹1, … ,𝐹𝐹5,𝐸𝐸1, … ,𝐸𝐸4]T. Then, 

the probability of failure is obtained by integrating the influence of important and unimportant 

variables. The results are summarized in Table 5. FORM produces a large error. SOSPA produces 

the most accurate result, but its efficiency is poor as it needs 6,660 function calls with CoE =

60.54. The error of DR-SOSPA is 2.29%, which is smaller than the error of DR-SOSPA-M and is 

larger than SOSPA, and its computational burden is relieved significantly with only 206 function 

calls and CoE = 1.87. The proposed method DR-SOSPA is better than HDMR-SOSPA both in 

accuracy and efficiency.  

Table 5 Results of different methods for Example 3 

Methods 𝑝𝑝𝑓𝑓 Error (%) FCs CoE 
MCS 5.10 × 10−3 - 107 9.09 × 104 

FORM 5.7678 × 10−3 13.09 444 4.03 
SOSPA 5.0481 × 10−3 1.02 6,660 60.54 

DR-SOSPA-M 4.8532 × 10−3 4.84 179 1.63 
HDMR-3-SOSPA 4.3053 × 10−3 15.6 221 2.01 
HDMR-5-SOSPA 4.6776 × 10−3 8.3 441 4.01 

DR-SOSPA 4.9833 × 10−3 2.29 206 1.87 
 

We also modify this example to examine a case with a large probability of failure by reducing 

the threshold value 𝛿𝛿0  in Eq. (48) to 0.5 in. The threshold is still 3% and nine variables are 
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important. The results show that the proposed method is effective for a large probability of failure 

problems as well. 

Table 6 Results of large probability of failure for Example 3 

Methods 𝑝𝑝𝑓𝑓 Error (%) FCs CoE 
MCS 0.2781 - 105 909 

FORM 0.2978 7.10 333 3.03 
SOSPA 0.2763 0.65 6549 59.54 

DR-SOSPA-M 0.2756 0.90 196 1.78 
HDMR-3-SOSPA 0.2669 4.02 221 2.01 
HDMR-5-SOSPA 0.4730 70.1 441 4.01 

DR-SOSPA 0.2758 0.84 196 1.78 
 

 The main computer code of the truss example can be found in Supplementary Material A. 

Interested readers can test the proposed method or other methods based on the code using the truss 

example.   

5. Conclusions 

The proposed method partitions the input random variables into two parts, important and 

unimportant variables, which is achieved by using the information from the first iteration of FORM. 

With the unimportant random variables fixed at their percentile values obtained from one-iteration 

FORM, the dimension is reduced to the dimension of important input random variables. Then the 

probability of failure is found by an accurate reliability method in the reduced space. The final 

probability of failure is obtained by integrating the probability of failure in the reduced space and 

the contributions of unimportant variables. Hence, the dimension is reduced, and the contributions 

of all input variables are also accommodated, resulting in high accuracy and efficiency of high-

dimensional reliability analysis.  

   The proposed method works better if fewer important input variables are important. It cannot 

effectively reduce the dimension, however, when all input variables are important.  If dimension 
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is not reduced, the proposed dimension reduction strategy will not affect the performance of the 

method used in the second step (the high accurate reliability method in the reduced space in Sec. 

3.5). In this case, one may use other dimension reduction methods that can reduce the dimension 

of the linear combinations of the original input variables. Another limitation is that the proposed 

method may not be accurate for highly nonlinear problems since the one-iteration MPP may not 

be accurate to identify the real importance of random variables. More iterations of the MPP search 

may be helpful in finding the real importance of the variables, but the efficiency will deteriorate. 

Our future work will improve the proposed method when most of the input variables are 

important. We will also study the possibility of applying the proposed method to reliability-based 

design optimization.   
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