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TPQCI: A Topology Potential-based Method to Quantify Functional 
Influence of Copy Number Variations 

Abstract 
Copy number variation (CNV) is a major type of chromosomal structural variation that play important 
roles in many diseases including cancers. Due to genome instability, a large number of CNV events can be 
detected in diseases such as cancer. Therefore, it is important to identify the functionally important CNVs 
in diseases, which currently still poses a challenge in genomics. One of the critical steps to solve the 
problem is to define the influence of CNV. In this paper, we provide a topology potential based method, 
TPQCI, to quantify this kind of influence by integrating statistics, gene regulatory associations, and 
biological function information. We used this metric to detect functionally enriched genes on genomic 
segments with CNV in breast cancer and multiple myeloma and discovered biological functions influenced 
by CNV. Our results demonstrate that, by using our proposed TPQCI metric, we can detect disease-specific 
genes that are influenced by CNVs. Source codes of TPQCI are provided in Github 
(https://github.com/usos/TPQCI). 

1 Introduction 
Copy number variation (CNV) is a type of chromosomal structural variation in which the number of copies 
of a particular genomic section varies from one individual to another [1]. Cancer is a heterogeneous 
disease with various genetic variations, with CNV as a major source. To date, many studies have been 
carried out to characterize the close relationship between CNVs and human cancers such as breast cancer 
[2-4], multiple myeloma [5, 6], gastric and colorectal cancers [7, 8] and many others [9-11]. Although 
remarkable achievements have been made to explore the relationships between CNV and human cancer, 
detecting how and what these variations affect still presents a difficult challenge [12-14]. Thus, it is of 
great interest to explore how CNVs promote cancer development in order to increase our understanding 
of the mechanism of cancer tumorigenesis and development.  

Currently, even though numerous studies have taken into account the contribution of CNVs to cancer, 
there are not many related tools. Lai et al. have developed an R package to investigate the relationship 
between gene expression and CNV [15]. Liu et al. have built a multi-omics database for cancer driver gene 
research and incorporated computational tools to define CNV and methylation drivers [16].  Peng et al. 
proposed the remMap method to model the dependence of RNA expression levels on DNA copy numbers 
through multivariate linear regressions to study the influence of DNA copy number alterations on RNA 
transcript levels [17]. Most of these current methods only considered the influence of CNV from the angle 
of gene expression regulation. Actually, functional relationships at the protein level is also an important 
factor to be considered but have been long ignored when defining CNV influence. Therefore, the 
understanding of CNV contributions in human cancers are still incomplete and more comparative studies 
are still necessary.  

The biological system is complex, with genes often working together to perform a certain biological 
function. Protein-protein interaction (PPI) network is an important tool that helps to identify a group of 
proteins contributing to a particular function. Therefore, identifying cancer related genes based on PPI 
networks not only considers the interaction of different genes at the protein level but also helps to explain 
the particular biological functions that contribute to cancer development [18-20].  

https://github.com/usos/TPQCI
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To achieve the goal of defining the influence of CNV in cancers, various factors should be considered. 
Genes with different patterns of CNV occurrence (e.g. common recurrent events, low-frequency recurrent 
events, and rare events) across individuals may imply distinctive relationships among cancers [21]. In 
other words, the frequency distribution of CNVs in different cancer types is an important factor to 
characterize this kind of genetic variation [22]. Moreover, given CNVs play roles by affecting gene 
expression and then inducing the dysregulation of biological functions, investigating the regulatory 
relationships between CNVs and gene expression levels helps to reveal the potential roles of CNV in cancer. 
Specifically, traditional statistics such as pairwise correlations are common choices to construct the 
regulatory maps between CNVs and gene expression [23]. In addition, even though there may not always 
be direct relationships between CNVs and interaction of different genes at the protein level, interactions 
between proteins can also help to explain particular biological functions that contribute to cancer 
development. Thus, to systematically assess the influence of CNV on cancers, all the factors mentioned 
above should be considered. Since many current studies focus only on the relational estimation between 
CNVs and gene expression, in order to better assess the influence of CNVs in cancers, new methods taking 
account of frequency distribution across individuals, impacts of gene expression, and functional 
relationships between proteins should be developed.  

To quantify the influence of CNVs as our goal, we need to analyze relationships across different omics 
levels and integrate multiple types of data. The tools of network analysis are best suited to solve this 
problem. Based on these considerations, topology potential is an ideal choice for gauging the downstream 
influence of CNVs over gene networks. Topology potential is a metric used to determine the essentiality 
of a node in network, which was first presented by Gan et al. [24]. Utilizing multiple characteristics of the 
nodes, the topology potential metric can integrate information and knowledge beyond topology 
properties in network analysis. It has been widely used to identify modules in complex networks [25-27]. 
In bioinformatics, researchers have applied it to find essential proteins in protein-protein interaction (PPI) 
networks by using this metric [28]. Our previous work also used it to detect gene co-expression modules 
[29]. 

In this paper, we proposed a novel metric TPQCI, Topology Potential-based Quantification of CNV 
Influence, to systematically measure the impact of CNVs on cancers through the integration of both 
molecular data including CNV and gene expression with PPI network data. The effectiveness of this 
measurement was confirmed by fold enrichment of disease related genes. We separately applied TPQCI 
to breast cancer and multiple myeloma data to investigate the CNV influence in each cancer type. Two 
modules containing highly CNV-influenced genes in PPI network were identified for each cancer. Cytoband 
enrichment and Gene Ontology (GO) enrichment analyses were performed for each module to identify 
strongly associated cytobands and biological processes which play critical roles in cancer. Moreover, a 
comprehensive analysis revealed that distinctive CNVs for breast cancer and multiple myeloma were 
observed and these cytogenetic aberrations were known recurrent genetic aberrations in each cancer. In 
summary, our method, TPQCI, was able to detect cancer-specific genes influenced by CNV that promote 
oncogenesis and development of cancer. TPQCI can be further applied to other cancers and diseases. The 
source codes of calculating TPQCI and detecting functional influenced CNV modules can be obtained from 
Github (https://github.com/usos/TPQCI). 

https://github.com/usos/TPQCI
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2 Methods 
In this work, we performed PPI network analysis on both breast cancer and multiple myeloma datasets, 
to establish relationships between CNVs and gene expressions in these diseases. To achieve this goal, we 
first designed a metric, TPQCI, by using topology potential to quantify the influence of CNVs in each 
disease. Then, a gene module detection process was performed in PPI network to identify genes strongly 
influenced by CNVs in both diseases. Enrichment analyses were then carried out to reveal the biological 
implications of the detected modules.  

2.1 Data sources 
We used a multiple myeloma and a breast cancer dataset dataset in our analysis. The multiple myeloma 
data was obtained from the CoMMpass study by the Multiple Myeloma Research Foundation (MMRF) 
(https://themmrf.org) and the breast cancer dataset was obtained from The Cancer Genome Atlas (TCGA) 
project distributed by UCSC XENA (https://xenabrowser.net/datapages/) [30]. We extracted RNA-seq data 
and CNV ratio data from both datasets. Genes related to specific disease were acquired from the 
DisGeNET database (https://www.disgenet.org/) [31]. The human PPI network which we used was 
obtained from PINA 2.0 (https://omics.bjcancer.org/pina/) [32].  

2.1.1 PPI network 
PPI network from PINA 2.0 contained approximately 16,000 nodes and 170,000 interactions. Data from 
PINA comes from six different databases: IntAct, MINT, BioGRID, DIP, HPRD, and MIPS MPact [32]. In our 
experiment, we removed self-loops, multiple edges, and isolated nodes inside the network. Genes that 
were not present in the CNV or RNA-seq datasets were also removed. 

2.1.2 Multiple myeloma dataset 
The multiple myeloma dataset was obtained from the IA11 version of the MMRF CoMMpass study. These 
data were generated as part of the Multiple Myeloma Research Foundation Personalized Medicine 
Initiatives (https://research.themmrf.org and www.themmrf.org). From the README file provided by the 
MMRF, RNA-seq expression estimates data were extracted from Fastq files using SALMON 0.5.1 based on 
cDNA fasta file for Ensemble v74 transcript models by the CoMMpass study. The read estimates were 
normalized by transcripts-per-million (TPM). Copy number estimates were established from the long-
insert sequencing results using existing TGen developed tools. CNVs were identified by an analysis of 
differential clone coverage. 

In this research, we used data from the newly diagnosed patients, and there were 657 patients’ samples 
with matched CNV and RNA-seq data. We conducted pre-processing on the RNA-seq data by removing 
genes whose TPM reads were zero in more than half of the samples. Genes with the lowest 20% of mean 
values and lowest 10% variance were also be removed. Finally, we logarithmically transformed the RNA-
seq expression so that the data closely follow Gaussian distributions. After pre-processing, there were 
13,248 protein coding genes contained in the RNA-seq and CNV data, which were used in the following 
analysis. 

We obtained multiple myeloma related genes from the DisGeNET dataset (disease id C0026764). There 
were 1,311 genes inside this dataset, and 1,017 of them were detected in our processed data. We 
identified CNV-related genes as genes whose median copy number or interquartile range (IQR) was 
greater than 0.3. From the 1,017 genes, we identified that 438 genes related to myeloma and CNV. A list 
of these genes is provided in Supplementary File 1.  

https://xenabrowser.net/datapages/
https://www.disgenet.org/
https://omics.bjcancer.org/pina/
https://research.themmrf.org/
http://www.themmrf.org/
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2.1.3 Breast Cancer dataset 
Breast cancer data was extracted from TCGA dataset. There were 1,098 samples of breast cancer in TCGA, 
and we chose to use the primary tumor data, resulting in 1,078 samples. CNV ratio data was estimated by 
GISTIC2. RNA-seq data was normalized by TPM and pre-processed in the same manner as the multiple 
myeloma data as described above. After pre-processing, 13,247 protein coding genes were used in the 
following analysis. 

We chose the gene set named Breast Carcinoma (Disease id C0678222) in the DisGeNET dataset as disease 
related genes of breast cancer, which contains 4,962 genes and 1,864 were present in our processed data. 
We identified 1,275 genes that satisfied the criterion of disease related CNV genes. A list of these genes 
is provided in Supplementary File 1. 

2.2 Quantify the Influence of CNV 
As we described in the introduction, to quantify the influence of CNV, we need to quantify three factors: 

(1) Frequency of occurring CNVs,  
(2) Relationships between CNV and RNA expression, and  
(3) Functional relationships among proteins002E 

Among these three factors, frequency of occurring CNVs can be easily quantified by statistical analysis, 
relationships between CNV and RNA expression can be calculated by correlation between gene level CNV 
log ratio with RNA expression, and functional relationships among proteins can be represented by PPI 
networks. Since these factors representing the influence of CNV at different levels, it is possible to 
construct a network to reveal the influence entirely. We call this double weighted (i.e. both edges and 
nodes weighted) network as CNV Influence Network (CIN). For CINs, network framework is PPI network, 
weight of edges is correlation between gene level CNV log ratio with RNA expression and weight of nodes 
is frequency of CNV events occurrence. In network analysis field, the centrality of a node measures the 
importance of a node in the network [33, 34]. Therefore, centrality of nodes in CIN can be treat as the 
quantification of overall influence of CNV. In this piece of work, to make a better tradeoff between the 
three factors, we employed topology potential as the metric of centrality in CIN and we call this metric as 
Topology Potential based quantification of CNV Influence (TPQCI). The workflow of calculating TPQCI is 
shown in Figure 1. The source codes of calculating TPQCI are provided in Github 
(https://github.com/usos/TPQCI). 

RNA-seq DataGene Level CNV 
Data

TPQCI

Regulating Relationships 
between CNV and RNA 

Expression

Frequency of CNV 
occurrence 

among patients

PPI network

Calculate Correlation

Integrated by Topology Potential

Functional 
Relationships 

between Proteins

EdgesStatistic 
Analysis

 
Figure 1. The workflow for calculating TPQCI. 

https://github.com/usos/TPQCI
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2.2.1 Calculating TPQCI 
For each CNV log ratio, if the ratio of a gene is greater than 0.3 or less than -0.3, we consider CNV to have 
occurred as an amplification or deletion, respectively. Based on this criterion, we can calculate the 
frequency of a CNV occurrence. Correlation between CNV ratio and gene expression was calculated by 
the Pearson correlation coefficient (PCC). Since the PPI network defined functional associations between 
genes, we selected the first-order neighborhood of a CNV gene as its scope of influence. 

Since we use correlation between CNV ratio and gene expression to depict regulatory associations, the 
edges between genes is directed. We used out-degree topology potential to integrate the three factors. 
Topology potential is a metric of centralization, which is used to describe the interaction and association 
among network nodes. For directed weighted networks 𝐺𝐺(𝑉𝑉,𝐸𝐸,𝑀𝑀,𝑊𝑊), where 𝑉𝑉 is the node set, 𝐸𝐸 is the 
set of directed edges, 𝑀𝑀 is the set of nodes' properties, and 𝑊𝑊 is the set of weights of the directed edges. 
Let the size of node set be 𝑁𝑁 = |𝑉𝑉|. Out-degree topology potential 𝜑𝜑𝑜𝑜𝑜𝑜𝑜𝑜  of any node 𝑣𝑣𝑖𝑖 ∈ 𝑉𝑉  can be 
determined by the formula below [35]:  

𝜑𝜑𝑜𝑜𝑜𝑜𝑜𝑜(𝑣𝑣𝑖𝑖) = �𝑚𝑚𝑖𝑖

𝑁𝑁

𝑗𝑗=1

exp�−�
𝑑𝑑𝑤𝑤𝑖𝑖→𝑗𝑗

𝜎𝜎 �
2

� . (1) 

In the Eq. (1), 𝑚𝑚𝑖𝑖,𝑚𝑚𝑗𝑗 ∈ 𝑀𝑀  are both greater than 0 and 𝑑𝑑𝑤𝑤𝑖𝑖→𝑗𝑗  is the distance of node 𝑖𝑖  to 𝑗𝑗 under the 
influence of the weight of edge. 𝜎𝜎  is a parameter to control influence range of each node. The 
multiplication of the node’s properties (e.g., CNV frequency) with the exponential term related to the 
edge weight (contained in 𝑑𝑑𝑤𝑤𝑖𝑖→𝑗𝑗 ) effectively integrates the two types of information without a direct 

trade-off. According the property of Gaussian function, if  𝑑𝑑𝑤𝑤𝑖𝑖→𝑗𝑗  is greater than 3𝜎𝜎
√2 

, 𝜑𝜑𝑜𝑜𝑜𝑜𝑜𝑜 will quickly decay 

to 0 [36]. This property of topology potential in essence amplifies the influence of strong relationships and 
suppress the weak ones, which makes our proposed TPQCI metric reflect the functional influence more 
accurately. 

For the application of this work, we can simplify and specific the definition of  𝜑𝜑𝑜𝑜𝑜𝑜𝑜𝑜. Since we only consider 
the first-order neighborhood of CNV genes, we only calculate the topology potential component of the 
CNV gene itself and its first-order neighbors. In addition, we use PCC (i.e., 𝜌𝜌(𝑐𝑐𝑖𝑖 , 𝑟𝑟𝑗𝑗)) between copy number 
ratio of the CNV gene 𝑣𝑣𝑖𝑖(𝑐𝑐𝑖𝑖) and expression of its neighbor 𝑣𝑣𝑗𝑗(𝑟𝑟𝑗𝑗) as the edge weights in order to define 
𝑑𝑑𝑤𝑤𝑖𝑖→𝑗𝑗: 

𝑑𝑑𝑤𝑤𝑖𝑖→𝑗𝑗 =
1

�𝜌𝜌�𝑐𝑐𝑖𝑖 , 𝑟𝑟𝑗𝑗��
− 1 (2) 

Furthermore, for two variables, we consider them have linear relationship if the absolute value of PCC is 
greater than a specific threshold. In biological analysis, the empirical value of the threshold is often set 
around 0.3. Therefore, according to the property of 𝜎𝜎 we mentioned previously and Eq. (2), we can set 
the parameter 𝜎𝜎 to 1.10. Let 𝑟𝑟𝑐𝑐𝑖𝑖 represent the frequency of CNV occurring on gene 𝑖𝑖, and 𝐺𝐺(𝑉𝑉,𝐸𝐸) be PPI 
network, TPQCI of gene 𝑖𝑖 can be calculated by: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑖𝑖) = �𝑟𝑟𝑐𝑐𝑖𝑖 exp�−�
1 �𝜌𝜌�𝑐𝑐𝑖𝑖, 𝑟𝑟𝑗𝑗�� − 1⁄

1.10 �
2

� ⋅ 𝛿𝛿(𝑖𝑖, 𝑗𝑗)
𝑗𝑗∈𝑉𝑉

(3) 
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In Eq. (3), 𝛿𝛿(𝑖𝑖, 𝑗𝑗) is an indicator function. Let 𝑈𝑈1(𝑖𝑖) ⊂ 𝑉𝑉 be the first order neighborhood of gene 𝑖𝑖 in the 
PPI network 𝐺𝐺,  𝛿𝛿(𝑖𝑖, 𝑗𝑗) can be expressed as: 

𝛿𝛿(𝑖𝑖, 𝑗𝑗) = �1    𝑗𝑗 ∈ 𝑈𝑈1(𝑖𝑖),
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒.

(4) 

2.2.2 Verification of TPQCI 
Since different diseases may be affected by different CNVs, we want to ensure that our results are disease 
specific. Specifically, when all the genes are sorted by the TPQCI metric, we expect to see known disease 
related genes ranked higher in each experiment. Therefore, we performed functional verification of TPQCI 
based on the two assumptions below: 

(1) Correlation of the TPQCI metric between the breast cancer and multiple myeloma datasets were 
employed to test if TPQCI is disease specific. For samples from different disease, if their TPQCI is 
correlated, it will suggest that the type of disease is not the main factor affecting TPQCI. We use PCC 
to test the correlation between TPQCI from multiple myeloma and breast cancer.  

(2) We used fold enrichment to verify that our proposed TPQCI metric can cover more disease related 
genes than just using the degree of the PPI network. Fold enrichment is a statistical concept 
describing how many folds more did something happen than we would expect by random chance 
[37]. Let 𝐺𝐺 be the set of all nodes inside a network, 𝐺𝐺𝑛𝑛 ⊂ 𝐺𝐺 is the set of top 𝑛𝑛 nodes sorted by some 
metric, 𝑉𝑉 ⊂ 𝐺𝐺 is the set of verified reference nodes and 𝑉𝑉𝑛𝑛 = 𝑉𝑉 ∩ 𝐺𝐺𝑛𝑛. Fold enrichment 𝑓𝑓𝑛𝑛 of top 𝑛𝑛 
genes is defined below according to [38]: 

𝑓𝑓𝑛𝑛 =
|𝑉𝑉𝑛𝑛| |𝑉𝑉|⁄
|𝐺𝐺𝑛𝑛| |𝐺𝐺|⁄  (5) 

In the equation above, the notation | ⋅ | denotes the number of elements inside a set. it is easy to find 
that 𝑓𝑓𝑛𝑛  will convergence to 1 while 𝑛𝑛 is increasing to |𝐺𝐺|. For two different ranking metrics, since we 
prefer the metric that rank disease related genes to be on the top, the greater 𝑓𝑓𝑛𝑛 when 𝑛𝑛 is small 
generally implies better performance on a verified reference set. In our work, 𝐺𝐺 is the PPI network 
and 𝑉𝑉 is the set of disease related CNV genes. 

2.3 Detect Modules Influenced in PPI Networks 
Once we defined the metric of CNV influence (TPQCI), we can use it to identify gene modules that are 
heavily affected by CNVs in a PPI network. Our module search method is based on the concept of 
attraction in topology potential. For any node 𝑣𝑣 ∈ 𝑉𝑉, if there is a path leading to a representative node 
𝑣𝑣∗ ∈ 𝑉𝑉  and the topology potential of every node on the path increases in turn, then 𝑣𝑣  is said to be 
attracted by 𝑣𝑣∗. Such a path is named as an attraction chain [36]. 

It is natural that genes with weak influence will be attracted by stronger ones. So, if they are attracted in 
a direct path, this pathway may contribute to some biological process. We proposed a module detection 
method based on this assumption. Pseudocode of our module detection method is displayed in Algorithm 
1. 

We first identify genes with local maximal TPQCI values in the whole network. To identify the local 
maximal nodes, we first randomly select node in the network as a seed and find all its neighbors. The seed 
node and its neighbors will be marked as visited. If the seed node has the maximum topology potential 
among its neighborhood, we consider this seed node a local maximal node. Otherwise, the node with the 
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maximum topology potential will become new seed and we repeat the above operations until we find a 
local maximal node. After identifying a local maximal node, we will select an unvisited node as a new seed 
and seek other local maximal nodes until all nodes are visited. Let 𝑁𝑁 be the number of nodes of the PPI 
network and 𝑛𝑛 be average neighborhood size of each node. The average time complexity of the local 
maximal nodes search process should be 𝑂𝑂(𝑁𝑁𝑛𝑛).  Since PPI network is a scale-free network, we have 𝑛𝑛 ≪
𝑁𝑁 and the average time complexity can be expressed as 𝑂𝑂(𝑁𝑁) approximately [39]. Line 1-14 of Algorithm 
1 describe this process. Then, we find attraction chains started by all the local maximal nodes and generate 
modules. Breadth-first search (BFS) method is used to finish this work. BFS is a commonly used approach 
for traversing or searching tree or graph data structures. For graphs, it starts at some arbitrary node and 
explores all of the neighbor nodes at the present depth prior to moving on to the nodes at the next depth 
level [40]. Line 15-21 of Algorithm 1 describe our proposed module detection process.    

Algorithm 1 Detecting CNV influenced gene modules in PPI network 

Input: Node weighted PPI network 𝐺𝐺(𝑉𝑉,𝐸𝐸,𝑀𝑀), in which 𝑉𝑉  is the set of gene, 𝐸𝐸  is the set of edges 
between genes in PPI network, and 𝑀𝑀 is TPQCI for each gene in PPI network; 
Global TPQCI threshold 𝜏𝜏𝑔𝑔; 
Local TPQCI threshold 𝜏𝜏𝑙𝑙; 
Maximum overlap between modules 𝛽𝛽; 
Minimum module size 𝜇𝜇 
Output: Merged Detected Modules 𝑈𝑈 
Algorithm: 
#Find local maximum nodes 𝒍𝒍𝒍𝒍 
1:   Sort all nodes 𝑉𝑉 by 𝑀𝑀 in decreasing order 
2:   let 𝑛𝑛 = |𝑉𝑉| 
3:   initialize a length 𝑛𝑛 all zero vector 𝑓𝑓1, 𝑙𝑙𝑚𝑚 = ∅ 
4:   while (𝑒𝑒𝑠𝑠𝑚𝑚 (𝑓𝑓1) ≠ 𝑛𝑛) 
5:       select a node 𝑣𝑣 randomly 
6:       while (𝑓𝑓1[𝑣𝑣] == 1) 
7:           select another node 𝑣𝑣 randomly 
8:       end while 
9:       find neighborhood 𝑛𝑛𝑒𝑒𝑣𝑣 of node 𝑣𝑣  
10:     find node 𝑣𝑣𝑜𝑜𝑜𝑜𝑡𝑡 in 𝑛𝑛𝑒𝑒𝑣𝑣 with the max TPQCI 
11:     while (𝑣𝑣𝑜𝑜𝑜𝑜𝑡𝑡 ≠ 𝑣𝑣) 
12:         𝑓𝑓1[𝑣𝑣] = 1 
13:         𝑣𝑣 = 𝑣𝑣𝑜𝑜𝑜𝑜𝑡𝑡 
14:         find neighborhood 𝑛𝑛𝑒𝑒𝑣𝑣 of node 𝑣𝑣  
15:         find node 𝑣𝑣𝑜𝑜𝑜𝑜𝑡𝑡 in 𝑛𝑛𝑒𝑒𝑣𝑣 with the max TPQCI 
11:     end while 
12:     𝑙𝑙𝑚𝑚 = 𝑙𝑙𝑚𝑚 ∪ {𝑣𝑣} 
13:     𝑓𝑓1[𝑛𝑛𝑒𝑒𝑣𝑣] = 1 
14:  end while 
# Generate modules 𝑼𝑼 
15:  get maximum TPQCI 𝑜𝑜𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 in 𝑙𝑙𝑚𝑚    
16:  𝑙𝑙𝑚𝑚 = {𝑣𝑣 | 𝑣𝑣 ∈ 𝑙𝑙𝑚𝑚 and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 >  𝑜𝑜𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 ∗ 𝜏𝜏𝑔𝑔} 
17:  initialize a length |𝑙𝑙𝑚𝑚| vector 𝑈𝑈 = ∅ 
18:  foreach (𝑣𝑣 ∈ 𝑙𝑙𝑚𝑚) 
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19:     𝑚𝑚𝑣𝑣 = {BFS search nodes satisfy attract chain and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 >  𝑣𝑣 ∗ 𝜏𝜏𝑙𝑙}  
20:     𝑈𝑈 = 𝑈𝑈 ∪ {𝑚𝑚𝑣𝑣} 
21:  end foreach 
# Merge modules 
22:  𝑈𝑈 = {𝑚𝑚 |𝑚𝑚 ∈ 𝑈𝑈 and 𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒 > 𝜇𝜇 } 
23:  Merge modules with highly overlap in 𝑈𝑈 respect to 𝛽𝛽 
24:  Output 𝑈𝑈 
 

 

To limit the number and size of detected modules, we set two parameters, global TPQCI threshold 𝜏𝜏𝑔𝑔 and 
local TPQCI threshold 𝜏𝜏𝑙𝑙, to limit small TPQCI values of local maximum nodes and nodes inside modules. 
Both 𝜏𝜏𝑔𝑔 and 𝜏𝜏𝑙𝑙  are ratio thresholds, which range between 0-1. 𝜏𝜏𝑔𝑔 limits the TPQCI of local maximum nodes 
for initialization of new modules, to keep TPQCI of local maximum nodes used to generate modules 
greater than 𝜏𝜏𝑔𝑔 times of global maximum TPQCI. This parameter limits the number of modules detected 
directly. The other parameter,  𝜏𝜏𝑙𝑙 , limits module size directly. 𝜏𝜏𝑙𝑙  ensures that the TPQCI of each node 
inside a module should be greater than the 𝜏𝜏𝑔𝑔 times of maximum TPQCI of that module. Unless otherwise 
specified, we set 𝜏𝜏𝑔𝑔 = 0.05, 𝜏𝜏𝑙𝑙 = 0.2 for multiple myeloma dataset and 𝜏𝜏𝑔𝑔 = 0.15, 𝜏𝜏𝑙𝑙 = 0.3 for breast 
cancer dataset. In addition, modules that overlap more than a parameter 𝛽𝛽 will be merged to enhance 
the independence between modules. For two sets 𝑀𝑀1 and 𝑀𝑀2, Overlap between them can be calculated 
by: 

𝑂𝑂𝑣𝑣𝑒𝑒𝑟𝑟𝑙𝑙𝑂𝑂𝑝𝑝(𝑀𝑀1,𝑀𝑀2) =
|𝑀𝑀1 ∩𝑀𝑀2|

min(|𝑀𝑀1|, |𝑀𝑀2|)
(6) 

For the convenience of downstream analyses, we can also limit the minimum size of modules by 
parameter 𝜇𝜇. For both diseases, we let 𝛽𝛽 = 0.5 and 𝜇𝜇 = 20 in this paper. The source codes for detecting 
functional influenced modules are provided in Github (https://github.com/usos/TPQCI). We will discuss 
the influence of these parameters in detail in the Discussion section.  

2.4 Biological Analysis of Influenced Modules 
To explore the biological basis of various modules, we performed cytoband enrichment analysis and 
functional Gene Ontology (GO) enrichment analysis for module genes of each cancer type using ToppGene 
(https://toppgene.cchmc.org) [41]. The Fisher’s exact test was used to calculate p-values for gene set 
enrichment and the Benjamini-Hochberg false discovery rate (BH FDR) was used to calculate q-values for 
multiple test compensation. Only cytobands and GO terms with q-values less than 0.05 were considered 
significantly enriched. 

3 Results 
3.1 Performance of TPQCI 
We calculated TPQCI on our multiple myeloma and breast cancer datasets. All samples that meet the 
criteria of data preprocessing were used to evaluate TPQCI metric. In the multiple myeloma dataset, 33 
genes having a TPQCI greater than 1 including well known multiple myeloma related genes ICAM1 (aka 
CD54) and CSNK1A1 (aka CK1a) [42]. In the breast cancer dataset, 48 genes having a TPQCI greater than 
1 including major cancer drivers such as MYC and TP53 while the top gene COPS5 are also known to be 
associated with breast cancer development [43]. We list the TPQCI and CNV frequency of top 10 genes in 

https://github.com/usos/TPQCI
https://toppgene.cchmc.org/
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each disease in Table 1 and all genes in Supplementary File 2. The cumulative distribution of TPQCI in 
multiple myeloma and breast cancer is displayed in Table 2. The PCC between TPQCI in multiple myeloma 
and breast cancer was 0.123 (𝑝𝑝 < 0.001), indicating that there was no linear correlation between TPQCI 
in multiple myeloma and breast cancer. 

Table 1 TPQCI and frequency of CNV happening of top 10 genes in multiple myeloma and breast cancer 

 Multiple Myeloma Breast Cancer 
Gene Name CNV Freq. TPQCI Gene Name CNV Freq. TPQCI 

1 RPL4 0.520 2.325 COPS5 0.487 3.080 
2 RPS3 0.402 1.979 YWHAZ 0.557 2.543 
3 RPS25 0.419 1.964 ZC3H18 0.607 2.243 
4 ICAM1 0.589 1.874 UBC 0.235 2.232 
5 RIOK2 0.444 1.758 RPL7 0.494 2.207 
6 RPL7A 0.558 1.694 TERF2 0.586 2.109 
7 RPS28 0.579 1.656 PABPC1 0.555 2.080 
8 ADRBK1 0.361 1.650 MYC 0.574 1.941 
9 CSNK1A1 0.453 1.641 TP53 0.505 1.870 
10 RPL18A 0.572 1.627 IKBKE 0.665 1.812 

 

Table 2 Cumulative distribution of TPQCI in multiple myeloma and breast cancer. 

Value of 
TPQCI 

Number of Genes 
Multiple myeloma Breast cancer 

≥ 1 33 48 
≥ 0.1 396 3628 
≥ 0.01 2313 6419 
≥ 0.001 4150 7488 

Total 13248 13247 
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Figure 2 Comparison of fold enrichment of genes ranked by TPQCI and PPI network degree for (a)breast cancer and (b)multiple 
myeloma. 

Fold enrichment was employed to test TPQCI’s ability of cover disease related CNV genes. We used our 
proposed TPQCI and degree of PPI networks as a metric to rank all the genes and compared their fold 
enrichment in disease related CNV genes. The result is displayed in Figure 2. In both datasets, if rank is 
higher than 2,500, TPQCI revealed better coverage on disease related CNV genes than degree of PPI 
networks. 210 (47.9%) of multiple myeloma related and 485 (38.0%) of breast cancer related CNV genes 
were identified by the queue sorted by TPQCI. These observations confirm that TPQCI has a better 
performance in ranking disease-related genes to the top of the list.   

3.2 Tuning 𝜏𝜏𝑔𝑔 and 𝜏𝜏𝑙𝑙 in Module Detect 
There are four parameters in our proposed module detection method. Among of them, 𝜏𝜏𝑔𝑔 and 𝜏𝜏𝑙𝑙  are the 
ones that have a large effect on the result, and we tried to tune them in our datasets. 

𝜏𝜏𝑔𝑔 limits TPQCI of local maximum nodes which affects the number of modules detected directly. Figure 3 
shows how 𝜏𝜏𝑔𝑔 affects the number of modules detected before merging modules. When 𝜏𝜏𝑔𝑔 = 0 (i.e. no 
limit on TPQCI for local maximum nodes), the number of modules detected is equal to the number of 
nodes with local maximum TPQCI in PPI network. As the parameters increase, the number of modules 
detected decreases rapidly and finally turns into 1. Compared with the breast cancer dataset, the number 
of modules detected in the multiple myeloma dataset decreased faster, meaning 𝜏𝜏𝑔𝑔 should be smaller for 
detecting modules in the multiple myeloma dataset. Therefore, we choose 𝜏𝜏𝑔𝑔 as 0.05 for the multiple 
myeloma dataset and 0.15 for the breast cancer dataset.  

 

Figure 3 Number of modules detected (before module merge) on both breast cancer and multiple myeloma datasets while setting 
different 𝜏𝜏𝑔𝑔. In this figure, BRCA denotes breast cancer and MM denotes multiple myeloma. Since the number of modules detected 
barely change when 𝜏𝜏𝑔𝑔 is greater than 0.4, we only display results for 𝜏𝜏𝑔𝑔 ranging from [0, 0.4].   

Compared with 𝜏𝜏𝑔𝑔, 𝜏𝜏𝑙𝑙  limits the size of modules detected before merging modules by limiting the TPQCI 
value of nodes inside a module. Figure 4 demonstrates the influence of 𝜏𝜏𝑙𝑙  on the sizes of detected 
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modules. While 𝜏𝜏𝑙𝑙 = 0 (i.e. no limit on TPQCI of nodes inside modules), the size of all modules detected 
was nearly the whole PPI network. However, sizes of modules plummet with a small increase in 𝜏𝜏𝑙𝑙. While 
the parameter increased further, size of modules decreased smoothly and finally became 1 when 𝜏𝜏𝑙𝑙 = 1. 
Ignoring the circumstance of 𝜏𝜏𝑙𝑙 = 0, modules detected in the breast cancer dataset was generally larger 
than the ones detected in the multiple myeloma dataset, which is similar to the situation of 𝜏𝜏𝑔𝑔. Thus 𝜏𝜏𝑙𝑙  
should also be set smaller while detecting modules in the multiple myeloma dataset. 𝜏𝜏𝑙𝑙  was set to 0.2 for 
multiple myeloma and 0.3 for breast cancer for our analysis. 

 

Figure 4 Boxplot of module sizes detected (before module merge) in both (a)-(b) breast cancer and (c)-(d) multiple myeloma 
datasets while setting different 𝜏𝜏𝑙𝑙. Subfigure (b) and (d) are enlargements of (a) and (c) while 𝜏𝜏𝑙𝑙 was set to 0.1 to 1. In this analysis, 
𝜏𝜏𝑔𝑔 was set to 0.15 for breast cancer dataset and 0.05 for multiple myeloma dataset. 

For the convenience of downstream analysis, our module detection method also includes two other 
parameters, 𝛽𝛽  and 𝜇𝜇 . Parameter 𝛽𝛽  limits the maximum overlap between modules. Any two modules 
whose overlap ratio is greater than 𝛽𝛽 will be merged. 𝜇𝜇 limits the minimum size of a module. Any module 
whose size is less than 𝜇𝜇 will be bypassed from subsequent analysis. These two parameters do not affect 
the module detection process directly, but they are necessary for downstream analysis. We set 𝛽𝛽 = 0.5 
and 𝜇𝜇 = 20 in this paper. After merging modules, we obtained two modules for each dataset. Details of 
the modules are provided in Supplementary File 3. 

3.3 Biological Analysis of the Module Detection Results 
We calculated TPQCI for multiple myeloma and breast cancer datasets separately to estimate how CNVs 
contribute to cancers. Two copy number influence modules were identified for each cancer type. To 
explore the biological basis of these modules, cytoband enrichment analysis and Gene Ontology (GO) 
enrichment analysis were performed based on the genes of each module. 
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In module 1 of multiple myeloma, cytobands such as 9q34, 11p, 11q, 15q22-25, 19p13 and 19q13 were 
significantly enriched (Table 3). Metabolic related biological processes for protein synthesis, protein 
localization, and immune related biological processes were highly enriched (Table 4). In module 2, 
chromosome such as 1q, 5q, 9q, 11p, 11q, 15q15, 19p13, and 19q12-13 were significantly enriched (Table 
3). Moreover, metabolic, cell cycle, and cell death related biological processes were highly enriched (Table 
4). Taken together, we observed that chromosome 9q34, 11q13-14, 19p13 and 19q13 were significantly 
enriched in both module 1 and module 2, although the genes enriched in those locations were different 
(Supplementary File 3). Furthermore, enriched cytobands specific to each module were also identified. 
This suggests that our method was able to identify CNV-influenced genes that contribute to different 
biological functions in myeloma development. 

 Table 3 Significantly enriched cytobands in multiple myeloma modules 

Module (Size) Location #Genes enriched p-Value FDR B&H 

Module 1 (57) 

5q31-q33 4 7.51E-03 2.15E-02 
9q34 3 1.62E-03 1.39E-02 
11p12 2 3.48E-03 1.41E-02 
11p15 3 4.31E-04 9.26E-03 
11q13-q22 6 1.01E-03 1.39E-02 
15q22-q25 4 3.23E-03 1.41E-02 
19p13 5 2.30E-04 9.26E-03 
19q13 5 3.60E-03 1.41E-02 

Module 2 (667) 

1q21 14 3.30E-09 5.46E-07 
1q31 5 2.49E-05 1.22E-03 
5q12-q13 2 2.19E-03 3.40E-02 
5q21-q22 2 2.19E-03 3.40E-02 
9q31 4 2.71E-04 8.00E-03 
9q34 10 7.69E-08 4.54E-06 
11p11-p12 2 3.60E-03 4.62E-02 
11p14-p15 17 2.72E-08 2.01E-06 
11q12-q14 45 1.11E-08 1.09E-06 
11q22 2 1.11E-03 2.18E-02 
13q34 6 1.06E-03 2.18E-02 
15q15 5 3.02E-03 4.24E-02 
19p13 35 3.70E-09 5.46E-07 
19q12-q13 7 6.41E-04 1.72E-02 
Xq28 13 1.15E-04 3.76E-03 

 

Table 4 Top 10 Significantly enriched biological processes in multiple myeloma modules 

Module 
(Size) ID Name #Genes 

enriched p-Value FDR 
B&H 

Module 1 
(57) 

 

GO:0006614 SRP-dependent co-translational protein 
targeting to membrane 23 1.08E-38 2.95E-35 

GO:0006613 Co-translational protein targeting to 
membrane 23 2.81E-38 3.84E-35 
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GO:0000184 nuclear-transcribed mRNA catabolic 
process, nonsense-mediated decay 23 3.22E-37 2.20E-34 

GO:0045047 protein targeting to ER 23 3.22E-37 2.20E-34 

GO:0072599 establishment of protein localization to 
endoplasmic reticulum 23 7.35E-37 4.02E-34 

GO:0006413 translational initiation 25 1.03E-35 4.69E-33 

GO:0070972 protein localization to endoplasmic 
reticulum 23 7.09E-35 2.77E-32 

GO:0016032 viral process 35 6.29E-34 2.15E-31 
GO:0019083 viral transcription 24 7.86E-34 2.39E-31 
GO:0019080 viral gene expression 24 4.42E-33 1.21E-30 

Module 2 
(667) 

GO:0051130 positive regulation of cellular 
component organization 109 2.65E-18 1.04E-14 

GO:0051726 regulation of cell cycle 106 3.00E-18 1.04E-14 
GO:0007049 cell cycle 137 2.32E-17 5.38E-14 

GO:0034622 cellular protein-containing complex 
assembly 99 1.58E-15 2.74E-12 

GO:0016071 mRNA metabolic process 78 7.48E-15 1.04E-11 
GO:0051276 chromosome organization 97 1.96E-14 2.26E-11 
GO:0042981 regulation of apoptotic process 120 3.11E-14 3.08E-11 
GO:0051338 regulation of transferase activity 86 5.45E-14 4.73E-11 
GO:0043067 regulation of programmed cell death 120 1.09E-13 8.42E-11 
GO:0010941 regulation of cell death 126 2.84E-13 1.97E-10 

 

Similar to multiple myeloma, two copy number influence modules for breast cancer were identified. In 
module 1, cytobands for 1q21-25, 8q21-24 and 16q (Table 5) were significantly enriched. Metabolic 
related biological processes were significantly enriched (Table 6). In module 2, cytobands such as 16p13, 
16q, 17p13, 17q and 22q (Table 5) were significant enriched. Again, metabolic related biological processes 
were significantly enriched (Table 6). These observations suggest that in module 1 and module 2, different 
CNV-influenced genes may affect the same biological processes to drive breast cancer development. 

Table 5 Significantly enriched cytobands in breast cancer modules 

Module (Size) Location #Genes enriched p-Value FDR B&H 

Module 1 (130) 

1q21 10 8.56E-05 1.39E-03 
1q23 2 8.09E-03 2.73E-02 
1q25 3 6.05E-03 2.58E-02 
1q31-q42 1 7.49E-03 2.64E-02 
6q25-q27 1 3.77E-03 1.79E-02 
8q11-q13 3 3.07E-03 1.79E-02 
8q21-q24 32 2.91E-08 2.35E-06 
16q13-q21 1 1.49E-02 4.32E-02 
16q22-24 8 2.62E-07 7.06E-06 
17p13 2 8.53E-03 2.76E-02 
17q12 3 7.32E-03 2.64E-02 
22q12-q13 1 1.49E-02 4.32E-02 
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Module 2 (2160) 

1p36 9 5.11E-04 2.05E-02 
1q21 19 3.54E-06 5.13E-04 
1q42 6 5.43E-04 2.07E-02 
3p21 11 1.03E-03 2.85E-02 
5q31 10 4.65E-05 3.74E-03 
6p21 17 9.27E-06 9.57E-04 
6q21 21 1.15E-06 2.08E-04 
8p11 6 1.09E-04 6.06E-03 
8p21 14 1.02E-03 2.85E-02 
8q11 3 2.16E-03 4.96E-02 
8q24 19 3.09E-04 1.49E-02 
11q23 13 1.71E-03 4.27E-02 
13q14 6 2.26E-03 4.96E-02 
16p13 43 2.34E-09 1.69E-06 
16q22 19 7.20E-05 4.73E-03 
16q24 10 2.10E-03 4.96E-02 
17p13 26 5.73E-04 2.07E-02 
17q11 19 7.20E-05 4.73E-03 
17q21-q23 54 1.78E-07 4.29E-05 
17q25 51 2.28E-08 8.25E-06 
20p13 17 1.69E-04 8.74E-03 
20q13 7 1.61E-03 4.16E-02 
22q12-q13 37 3.67E-04 1.56E-02 

 

Table 6 Top 10 Significantly enriched biological processes in breast cancer modules 

Module 
(Size) ID Name #Genes 

enriched p-Value FDR 
B&H 

Module 1 
(130) 

 

GO:0044265 cellular macromolecule catabolic 
process 39 1.15E-17 4.22E-14 

GO:0009057 macromolecule catabolic process 41 1.88E-16 3.45E-13 
GO:0016032 viral process 30 1.78E-14 2.18E-11 

GO:0070647 protein modification by small protein 
conjugation or removal 34 2.64E-14 2.42E-11 

GO:0044403 symbiotic process 30 9.90E-14 7.27E-11 

GO:0072594 establishment of protein localization to 
organelle 25 1.39E-13 8.51E-11 

GO:0006511 ubiquitin-dependent protein catabolic 
process 25 3.39E-13 1.70E-10 

GO:0044419 interspecies interaction between 
organisms 30 3.82E-13 1.70E-10 

GO:0019941 modification-dependent protein 
catabolic process 25 4.17E-13 1.70E-10 

GO:0016071 mRNA metabolic process 29 4.88E-13 1.79E-10 
Module 2 

(2160) GO:0070647 protein modification by small protein 
conjugation or removal 334 1.91E-73 1.76E-69 
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GO:0016071 mRNA metabolic process 276 1.63E-64 7.53E-61 

GO:0032446 protein modification by small protein 
conjugation 279 1.61E-62 4.95E-59 

GO:0044265 cellular macromolecule catabolic 
process 321 8.79E-60 2.03E-56 

GO:0016567 protein ubiquitination 256 7.46E-58 1.38E-54 
GO:0009057 macromolecule catabolic process 355 6.55E-56 1.01E-52 

GO:0043632 modification-dependent 
macromolecule catabolic process 194 1.24E-42 1.63E-39 

GO:0006511 ubiquitin-dependent protein catabolic 
process 190 3.08E-42 3.32E-39 

GO:0007049 cell cycle 402 3.24E-42 3.32E-39 
GO:0009894 regulation of catabolic process 259 1.26E-41 1.14E-38 

4 Discussion 
4.1 TPQCI is an Effective Metric to Quantify CNV Influence 
TPQCI is a metric to quantify CNV influence that integrates frequency of CNV occurrence, relationships 
between CNV and gene expression, and protein-protein interactions. The fold enrichment analysis 
showed that our TPQCI metric was disease specific. The results suggest that, by integrating information 
from various levels of biological relationships, TPQCI may be able to detect potential driver CNVs in 
diseases. Fold enrichment analysis reflects the ability of a metric to represent known disease-related 
genes. From Figure 2(a), we found that more breast cancer related CNV genes were ranked higher by our 
TPQCI metric. In Figure 2(b), though not as good as in breast cancer, we observed a similar result in 
multiple myeloma. This indicates that, compared with PPI degree, the TPQCI metric can identify more 
disease related genes that are influence by CNVs. Based on the cumulative distributions of TPQCI in both 
cancers (Table 2), we also found that there were only a few genes with high TPQCI in both diseases. This 
is also consistent with the fact that different cancers are driven by different genetic factors. 

In addition, in both the breast cancer and multiple myeloma datasets, the top 2,500 TPQCI ranked genes 
cannot cover most of our selected disease related CNV genes. A potential reason is that even though these 
genes are disease related CNV genes, they are not drivers and therefore do not have a high TPQCI. Another 
possible reason is the way we define the CNV event. In this paper, we applied a simple hard threshold on 
log ratio (±0.3) to select amplification or deletion event to demonstrate the process without loss of 
generality. However, such simplified designation of CNV events may result in a tradeoff between 
sensitivity and precision [44]. At present, more sophisticated methods such as iCopyDAV [45], CNV_IFTV 
[46], and CONDEL [47] have been developed to tackle such drawbacks. It can be anticipated that 
incorporation of these methods instead of using the log ratio threshold have potential to improve the 
coverage over disease related CNV genes. Nevertheless, TPQCI is an effective framework for integrating 
CNV influence in the network analysis. 

From the result in Table 2, we observed that the TPQCI values for most of genes in both diseases studied 
were less than 1 (99.64% in breast cancer and 99.75% in multiple myeloma). But there were a few genes 
with TPQCI values greater than 1. Some of these genes with greater TPQCI were reported to be disease 
related (such as TP53 in breast cancer and ICAM1 in multiple myeloma) and have high abnormal CNV ratio. 
Therefore, we perceive that TPQCI being greater than 1 is a reasonable indicator that the CNV has great 
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functional influence on the datasets we used. However, for different datasets and diseases, there may 
have different criteria to determine significant relationship between CNVs and functions. In general, a 
greater TPQCI implies a stronger functional influence of a CNV.  

4.2 Effects of Parameters in Module Detection 
While detecting modules using our proposed TPQCI metric, we introduced four parameters, 𝜏𝜏𝑔𝑔, 𝜏𝜏𝑙𝑙 ,𝛽𝛽 and 
𝜇𝜇. From Figure 3 and Figure 4, we can deduce that our module detection method is sensitive to 𝜏𝜏𝑔𝑔 and 𝜏𝜏𝑙𝑙. 
When the two parameters increase from zero, the number and size of modules drastically change. This 
phenomenon is mainly caused by the distribution of TPQCI. Table 2 illustrated that a great number of 
genes only have a small TPQCI, but they can still become genes inside modules and even local maximum 
genes. Therefore, when we impose a threshold on TPQCI, these types of genes will not be able to generate 
or join a module, leading to the drastic change. In addition, genes with lower TPQCI values are unlikely to 
be functional CNV related genes based on our previous analysis, thus it is important to set a threshold to 
filter out the genes with low TPQCI values.  

In Figure 4, we found that when 𝜏𝜏𝑙𝑙 = 0, the size of almost all modules increases to cover nearly the entire 
PPI network. Since PPI network is a scale-free network, there are some hub genes (e.g., UBC) that have 
extremely high degree, and leads to a high possibility that these kinds of genes are located in the attraction 
chain of most local maximum genes. If there is no limitation (i.e. 𝜏𝜏𝑙𝑙 = 0), the huge amount of genes 
connected to hub genes will also be included, and result in modules nearly covering the entire PPI network. 
When a 𝜏𝜏𝑙𝑙  threshold is imposed, the modules we detect are subsets of modules detected with no 
limitation. In general, for the same dataset, modules detected by greater 𝜏𝜏𝑙𝑙  are also subsets of ones 
detected by smaller 𝜏𝜏𝑙𝑙.  In addition, due to the existence of hub genes, modules whose local maximum 
genes have similar TPQCI may have high overlap as they may both connect to the hub genes. For 
downstream analysis, high level overlap suggests similar functions. Therefore, it is necessary to merge the 
highly overlapped modules. 

Since we constrained TPQCI while detecting modules by 𝜏𝜏𝑔𝑔  and 𝜏𝜏𝑙𝑙 , we can find that there were some 
modules whose size is very small. These modules are difficult for further downstream analysis due to the 
lack of consensus information. Thus, we removed this kind of modules by introducing parameter 𝜇𝜇.  

4.3 Biological Analysis 
Based on our TPQCI method, two modules were identified for multiple myeloma and breast cancer, 
respectively. Significantly enriched cytobands and biological processes for each module were identified. 
Distinctive CNVs for different cancer types were observed and most of these CNVs are known to be 
associated with their respective disease.  

In breast cancer, multiple cytobands such as chromosomes 1q, 6p21, 6q21, 8p, 8q, 11q23, 16p13, 16q, 
17p13, 17q and 22q were enriched. The CNVs in most of these chromosome locations are closely 
associated with breast cancer [48-53]. CNVs on chromosomes 1q, 8p, 8q, 16q and 17q are prominent 
features in breast cancer [48, 49]. Chen et al. have reported that karyotypic changes at 1q are very 
frequent in breast cancer and 1q21 could contribute to the initiation of the disease [50]. Many studies 
have also indicated that amplification of chromosomal region 8q21-q24 is associated with advanced 
tumors and poor prognosis in breast cancer [51, 52]. The loss of chromosome 16q has been addressed as 
a key influencing factor of breast carcinogenesis [53]. Interestingly, we observed that most of these CNVs 
affected the same biological process category (metabolic related biological processes) which play a crucial 
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role during tumorigenesis. Based on these observations, we infer that CNVs of different chromosome 
locations may function similarly by affecting metabolic related biological processes to drive breast cancer 
development. 

In multiple myeloma, chromosomes 1q, 5q, 9q31, 11p, 11q, 15q ,19p13 and 19q13 were found to be highly 
enriched. Numerous studies have indicated that cytogenetic aberrations in these chromosomes are 
recurrent events that contribute to the disease and patient risk stratification [54, 55]. Specifically, the gain 
of odd numbered chromosomes such 5, 7, 9, 11, 15 and 19 is a major class of recurrent genetic 
abnormality in multiple myeloma and associated with favorable prognosis  Our method was able to 
recapitulate the finding of cytoband 5q31, which was found to also confer a more favorable prognosis 
[55]. Conversely, genomic abnormalities of 1q is a high incidence event associated with very poor 
prognosis [56]. Though there was some overlap in cytobands between modules 1 and 2, the results from 
GO enrichment analyses were different (protein localization and viral response vs cell cycle and apoptosis), 
suggesting the CNV-influenced genes in each module contribute to a few key biological functions related 
to the disease. 

In summary, by applying the TPQCI method, we were able to identify modules specific to each cancer type. 
Our proposed method was able to detect genes whose chromosomal locations were previously identified 
to be associated with their corresponding disease. Through our analyses, we identified CNV-influenced 
gene modules that behave in two ways: (1) gene modules enriched in different cytobands demonstrated 
similar biological functions and (2) gene modules enriched in similar cytobands demonstrated different 
biological functions. These observations suggest that modules detected by our proposed TPQCI metric 
can identify disease specific functionally enriched genes influenced by CNVs.  

4.4 Possibility of module dividing 
By performing enrichment analysis on modules, we can easily determine the biological significances of 
unsupervised detected modules. However, if the detected gene module is too large, it will become a 
challenge for the downstream analysis and interpretation since the giant module may include too much 
information. Therefore, it is necessary to further divide the large module into sub-modules in this case. In 
our proposed module detection algorithm, there are two parameters, 𝜏𝜏𝑔𝑔 and 𝜏𝜏𝑙𝑙, which can be tuned to 
adjust the module size, giving us the possibility to further dividing the modules. Thus, when large modules 
appear, we can rerun the module detection algorithm on them with a smaller 𝜏𝜏𝑔𝑔 and greater 𝜏𝜏𝑙𝑙  to obtain 
sub-modules. 

5 Conclusion 
In this paper, we proposed a new metric called TPQCI to quantify the influence of CNVs on a single gene 
based on the functional genomics data of diseases. This metric uses topology potential to integrate CNV 
frequency, correlation between CNV and gene expression, and interactions provided by PPI network. We 
demonstrate that TPQCI can effectively measure CNV influence. By using TPQCI to detect functionally 
enriched genes influenced by CNVs in multiple myeloma and breast cancer, we found most of the 
significantly enriched cytobands were confirmed in their corresponding cancer. This reflects that our 
proposed TPQCI metric can effectively assess the impact that CNVs in different cancers.   
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Supplementary File 2 TPQCI and frequency of CNV happening of each gene in multiple myeloma and breast cancer 

Supplementary File 3 Modules detected by our proposed method in multiple myeloma and breast cancer 
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