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MULTIPLEXED HIGH-RESOLUTION IMAGING APPROACH TO DECIPHER THE 

CELLULAR HETEROGENEITY OF THE KIDNEY AND ITS ALTERATION IN 

KIDNEY DISEASE AND NEPHROLITHIASIS 

 

Kidney disease and nephrolithiasis both present a major burden on the health care 

system in the US and worldwide. The cellular and molecular events governing the 

pathogenesis of these diseases are not fully understood. We propose that defining the 

cellular heterogeneity and niches in human and mouse kidney tissue specimens from 

controls and various models of renal disease could provide unique insights into the 

molecular pathogenesis. For that purpose, a multiplexed fluorescence imaging approach 

using co-detection by Indexing (CODEX) was used, using a panel of 33 and 38 markers 

for mouse and human kidney tissues, respectively. A customized computational 

analytical pipeline was developed and applied to the imaging data using unsupervised 

and/or semi-supervised machine learning and statistical approaches. The goal was to 

identify various cell populations present within the tissues, as well as identify unique 

cellular niches that may be altered with disease and/or injury. In mice, we examined 

disease models of acute kidney injury (AKI) and in human tissues we analyzed 

specimens from patients with AKI, IgA nephropathy, chronic kidney disease, systemic 

lupus erythematosus, and nephrolithiasis. In both mice and humans, the disease and 

reference samples show similar broad cell populations for the main segments of the 

nephron, endothelium, as well as similar groups of immune cells, such as resident 

macrophages and neutrophils. When comparing between health and disease, however, a 
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change in the distribution of few sub-populations occurred. For example, in human 

kidney tissues, the abundance and distribution of a subpopulation of proximal tubules 

positive for THY1 (a marker of differentiation and repair), was markedly reduced with 

disease. Changes observed in mouse tissues included shifts in the immune cell population 

types and niches with disease. We propose that our analytical workflow and the observed 

changes in situ will play an important role in deciphering the pathogenesis of kidney 

disease. 
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Introduction and Background 

The renal space is complex, with numerous different cell types that each have 

important roles that allow the kidney to function properly. For epithelial cells alone, at 

least 16 distinct cell types have been identified, and the number of endothelial, interstitial, 

and immune cells likely outnumber the epithelial population (Balzer 2022). Being able to 

identify and distinguish these cells accurately is an important aspect of renal research, 

therefore we need a robust methodology for cell identification. Identifying these cell 

types is only the tip of the renal iceberg, however. There are many technologies that 

allow for the identification of all cell types in the kidney, but a majority of these 

technologies lack an important feature: the spatial localization of the cell types. Without 

knowing the location of the cells that are present within a kidney, it is impossible to 

determine cell-to-cell interactions/associations. Imaging technologies allow for the 

identification of cell types, as well as provides the spatial information many other 

technologies are missing. With imaging, areas of damage or infiltration are often seen, 

and can help provide insight as to what is happening in a kidney when it is damaged or 

diseased (Ferkowicz 2021).  

Standard confocal microscopy allows for the imaging of tissue that is up to 100 

microns thick, providing a three-dimensional look at the renal space. While this provides 

copious amounts of spatial information, the ability to accurately identify all of the cells 

present in the kidney is lacking. With standard confocal microscopy, four probes is the 

maximum number that can be used, unless spectral deconvolution is utilized, which raises 

the maximum to eight probes. Even the upper limit of eight is still not enough to identify 

all cells present within the kidney. With the ability to obtain large-scale, high-resolution 
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images, comes the limitation in the number of cells that can be identified within one 

tissue specimen.  

Dissociative cell-based assays such as single cell transcriptomics, flow cytometry, 

etc., are beneficial in that they can provide information on the transcriptome of whatever 

tissue or collection of cells that were analyzed. The only way to achieve spatial 

information with these methodologies is to analyze regions of the kidney separately, i.e., 

separating the cortex, medulla, and papilla from one another. This, however, would 

provide only a rough estimate of spatial information, and scale is limited to the region of 

the kidney, rather than a cell-based resolution like imaging can provide.     

With spatial transcriptomics, imaging and whole-transcriptome mRNA expression 

analysis are combined. The results of the transcriptomic analysis are overlaid onto a 

histology image of the same tissue section that was analyzed, so the spots can be 

visualized on the tissue itself. While this method does give researchers a more complete 

look at the location each of the transcripts come from, that location is still approximate, 

as the spots analyzed are not at a cellular resolution.  

Another caveat to technologies such as spatial transcriptomics and dissociative 

cell-based assays is that since the entire transcriptome is being analyzed, the results may 

not always correspond to proteins that are active in the cells. While knowing the whole 

transcriptome is beneficial and provides an extraordinary glimpse into the innerworkings 

of the renal space, knowing which of those transcripts corresponds to active proteins 

provides the best look at what is happening in the kidney when diseased or injured.  

In order to have a “limitless” number of targets available for analysis, as well as 

obtain cellular resolution based spatial information, cyclic imaging needs to be utilized. 
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CO-Detection by indEXing (CODEX), a multiplex imaging platform created by Gary 

Nolan and distributed by Akoya Biosciences, allows for an almost unlimited number of 

probes to be imaged on one tissue section by creating a cyclic imaging system, where 

antibodies with unique barcodes are matched to reporters with complimentary barcodes. 

Each cycle consists of applying three reporters, imaging said reporters, and then 

removing the reporters so the next set can be added. This is repeated as many times as 

necessary, with DAPI (a nuclear stain) included in each cycle for tissue alignment once 

imaging is completed. This not only gives us the capability of identifying numerous cell 

types at one time, but also reduces the amount of tissue that is needed from each 

specimen, which is an especially important aspect when working with human tissue 

specimens.  

This CODEX multiplexed imaging combined with unsupervised clustering and 

analysis will allow for identification of cell types present and the niches that those cells 

make up when they interact with one another. Due to the complex nature of the kidney, 

there are many renal diseases that could benefit from an in-depth cellular resolution-

based analysis. By uncovering the cellular neighborhoods present and how they interact 

with one another, new insights into how a disease begins and/or progresses can be found. 

Three renal diseases of interest will be analyzed in this work, including stone disease, 

acute kidney injury, and chronic kidney disease. 

Stone Disease 

 Nephrolithiasis (kidney stone disease) is one of the oldest diseases known to man, 

with reports in medical texts as early as 3200 BCE (Modlin 1980, Shah 2002). In the 

United States alone, one-in-eleven individuals will be affected by stone disease, and 50% 
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of those people will have a stone recurrence within ten years of their first incident (Scales 

2012). Despite the prevalence of nephrolithiasis, there are still numerous questions 

surrounding the development of kidney stones, and how to best prevent them. 

 The most common type of kidney stone is calcium oxalate (CaOx), which 

accounts for more than two-thirds of all kidney stones (Bouderlique 2019). A common 

feature of CaOx stones is that they tend to form on Randall’s plaque (RP), a deposit of 

calcium phosphate that begins forming in the tip of the renal papilla. This plaque deposit 

starts forming in the interstitium surrounding the thin ascending limbs of the Loop of 

Henle and vasa recta in that area. In some individuals, the papillary epithelium covering 

the plaque loses its integrity and the interstitial plaque is exposed to the urine in the renal 

calyx. If this happens, the plaque can then act as a nidus for a stone to begin forming. As 

the stone begins to form, the plaque acts as an anchor, holding the stone in place. Even 

less is understood about RP than with kidney stones themselves, leaving another large 

gap in the literature surrounding nephrolithiasis. Questions surrounding RP that many 

researchers are attempting to answer include how this plaque begins to form, what 

changes are happening at the cellular level to allow for this plaque development, and why 

individuals with RP do not always form stones.  

 There have been studies that suggest a role of the immune system during stone 

formation on RP in humans, primarily from macrophages and T cells (Okada 2009, 

Taguchi 2018). These studies focus on the stone formation rather than the formation of 

plaque itself, however, still leaving the mystery of plaque formation unanswered. 

Studying how plaque forms, however, is complicated. Individuals do not usually know 

they have plaque forming until they have a stone event, therefore the chances of catching 
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plaque formation early are slim. Until recently, there were no rodent models available 

that accurately depicted RP.  

 In recent years, a mouse model for pseudoxanthoma elasticum has been found to 

be an accurate model of RP, where plaque can begin forming as early as six months 

(Bouderlique 2019). This mouse model is the only model of RP that has been found to 

date, and studies that have been conducted thus far show that these mice have the same 

formation pattern as that of human RP (Bouderlique 2019, Letavernier 2019, Letavernier 

2018). In this mouse, the ABCC6 (ATP binding cassette subfamily C member 6) gene is 

knocked out. While ABCC6 is primarily expressed in the liver, there is also a significant 

level of expression in the renal tubules (Letavernier 2018). When functioning normally, 

ABCC6 is involved in transporting ATP from cells, which is then converted into AMP 

and inorganic pyrophosphate (PPi), the latter of which is an inhibitor of ectopic 

calcification. When ABBC6 is knocked out, that PPi generation is reduced, therefore 

allowing ectopic calcification to occur, which in the renal space presents as RP (Jansen 

2014, Letavernier 2018).  

 In order to fully understand the mechanism behind the development of RP and 

CaOx stones, analyzing the renal space at the cellular level is critical. Currently, the level 

of damage that the papillary space encounters during the development of plaque is 

incompletely understood. Characterizing the cellular make-up of the papilla in both stone 

formers and control samples can provide information on what is occurring before plaque 

begins to form, during the plaque formation, and even what occurs to cause the loss of 

papillary epithelium in individuals that get stone formation on plaque. The cortex of stone 
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formers will be analyzed as well, in order to evaluate what changes may occur further 

away from the stone/plaque event.  

Kidney Disease – Chronic and Acute 

 Chronic kidney disease (CKD) is defined as the gradual loss of kidney function, 

mainly caused by hypertension, diabetes mellitus, or glomerular inflammatory conditions. 

Acute kidney injury (AKI), however, is defined as the sudden failure of the kidneys due 

to injury, medications, or illness. While these conditions were classically thought of as 

two separate entities, their relationship has recently been reevaluated. CKD has now been 

recognized as a major risk factor for the development of AKI, and patients with CKD are 

less likely to fully recover from incidents of AKI. Similarly, patients who have had AKI 

are more likely to develop progressive CKD later in life.  

 In the case of AKI, the endothelium is affected first and immune cells such as 

inflammatory neutrophils and monocytes are recruited. During the reparative process 

after injury has occurred, M2 (pro-repair) macrophages become the dominant immune 

cell present rather than neutrophils. Complete repair can take several days and is 

characterized by normalized creatinine levels and no proteins present in the urine. With 

CKD, injury can begin in the vasculature, the tubulointerstitium or the glomerulus. No 

matter where the injury occurs, the microvasculature is lost, and fibrosis increases, 

causing hypoxia. Tubular cells are lost as well, and are replaced with fibrosis, further 

increasing the loss of renal function.  

 Understanding the cellular changes that occur in AKI and CKD could help 

provide important insight into the development and progression of both diseases. By 

characterizing the cellular changes that occur with each disease, researchers could find 



   

7 

therapeutic targets in order to slow the progression or potentially help reverse certain 

types of damage. To study AKI, mouse samples that have undergone ischemia 

reperfusion injury will be utilized, as well as human tissue specimens that were obtained 

from diagnostic biopsies. Tam-Horsfall Protein (THP, also known as Uromodulin) 

knockout mice will be utilized to study AKI, as THP has been shown to have a protective 

role in AKI, and mice lacking THP are more sensitive to injury caused by AKI. CKD will 

also be analyzed via human tissue specimens, but no mouse models will be analyzed. 
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Chapter 1 - Label-free imaging of non-deparaffinized sections of the human kidney to 

determine tissue quality and signatures of disease 

The following manuscript is used with permission of the publisher (Sabo 2021). 

Introduction 

The global prevalence of kidney disease exceeds 9% and is associated with 

significant morbidity, mortality, and economic burden (Carney, 2020). Our understanding 

of the pathogenesis of human kidney disease continues to evolve, in part due to advances 

in the molecular interrogation and imaging of human kidney biopsy specimens 

(Barwinska 2021, El-Achkar 2021, Ferkowicz 2021). Frequently, the specimens obtained 

after a diagnostic kidney biopsy may be too small or of limited quality and require a 

significant effort by nephropathologists to perform an appropriate diagnostic evaluation. 

Furthermore, based on recommendations from the College of American Pathologists, and 

to assure compliance with Clinical Laboratory Improvement Amendments (CLIA) laws 

and regulations, pathologists must retain paraffin blocks for a period of 10 years (Khoury 

2008). Therefore, the availability of kidney biopsy specimens for research purposes is 

limited. Endeavors such as the Kidney Precision Medicine Project are underway to study 

prospectively collected kidney biopsies with detailed clinical phenotypes (de Boer 2021). 

These samples are acquired from altruistic donors and the available kidney tissue is both 

precious and scarce. Thus, an effective means to extract additional information from 

human biopsy specimens while conserving tissue is highly desirable and could benefit not 

only researchers but also patients who may be able to circumvent repeat biopsy 

procedures when the tissue obtained is limited. 
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In conventional diagnostic preparations, patient-sourced biopsy specimens are 

fixed in 10% neutral buffered formalin (NBF), processed into paraffin blocks, and 

sectioned into delicate ribbons of tissue that are mounted on glass slides and subsequently 

deparaffinized for downstream histochemical and/or immunohistochemical techniques. 

On average, a diagnostic biopsy specimen from an 18G needle provides cylindrical tissue 

cores with a diameter of ~1 mm (Roth 2013). From a specimen of this size, one can 

expect to obtain a limited number of histological sections of 2–5 micron thickness from 

the middle portion of the tissue, assuming the long axis of the tissue core is aligned 

parallel to the face of the paraffin block. Such specimens are typically prioritized for 

diagnostic use, thereby limiting the amount of tissue that can be released for 

institutionally approved research studies. To overcome this limitation, we believe there is 

value in developing tissue-sparing techniques that both qualify and quantify 

histopathology. Such an approach would maximize the amount of information that could 

be obtained from a single specimen, which is especially important for tissue samples of 

limited or insufficient volume. 

Label-free fluorescence imaging describes the process of exciting and acquiring a 

fluorescence signal from tissue sections without the addition of any fluorescent probes. 

This process takes advantage of the endogenous fluorescence of several metabolites or 

proteins within the tissue (Hato 2017). Furthermore, molecules with non-

centrosymmetric molecular structure such as fibrillar collagen (e.g., types I and II) and 

actomyosin produce a nonlinear optical effect known as second harmonic light when 

excited with an intense laser source (Chen 2012, Strupler 2007). Second harmonic 

generation (SHG) imaging has become more established for tissue-based microscopy, 
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and we have recently shown that combining label-free and SHG imaging with subsequent 

multi-fluorescence confocal microscopy in a single kidney section can be very valuable 

in evaluating the pathobiology of kidney disease (Ferkowicz 2021). The use of label-free 

imaging in conventional tissue processing and diagnostic preparations is not established 

(Bonsib 1990). In particular, the application and utility of label-free imaging in non-

deparaffinized human kidney sections have not been previously reported. 

In this project, we sought to determine the feasibility and usefulness of label-free 

imaging of formalin-fixed paraffin-embedded kidney sections without deparaffinization. 

We established a broadly applicable methodology that allows for pre-qualification of the 

tissues to ensure that specimens of sufficient quality were selected for further analysis. 

Our results show that both structural and morphological information can be obtained 

from paraffin sections before deparaffinization. Furthermore, using additional specialized 

microscopy, we explored whether biologically relevant information, such as collagen 

content assessed by SHG imaging and changes in endogenous fluorescence, could be 

useful in defining a signature for disease, even before histological assessment occurs. 

This has been conducted previously in sections that have already undergone 

deparaffinization (Bhuiyan 2021, Ranjit 2015, Ranjit 2016) but not in sections that are 

still embedded in paraffin. We propose that the knowledge from label-free imaging of 

non-deparaffinized sections could guide downstream processing in a conventional 

histologic workflow. Our findings also have implications for tissue economy in 

multimodal molecular and imaging interrogation of human kidney biopsy specimens. 
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Results 

Workflow for data extraction from fresh frozen paraffin embedded (FFPE) sections 

without deparaffinization 

Eighteen kidney biopsy specimens were used in this study and are described in 

Table 1.1. Specimens from the kidney cortex were either from kidney stone-forming 

patients with normal kidney function obtained during percutaneous nephrolithotomy or 

from clinically indicated kidney biopsies of patients with an eventual primary pathology 

diagnosis of diabetic kidney disease (DKD) or focal segmental glomerulosclerosis 

(FSGS). After fixation, the specimens underwent standard processing for paraffin 

embedding and sectioning. The sections were imaged first using widefield 

epifluorescence microscopy to quickly assess the quality of the tissue section, followed 

by second harmonic generation imaging and endogenous fluorescence signature 

determination (Figure 1.1). Finally, for the purpose of adjudication, sections were 

deparaffinized and stained with Lillie’s allochrome. 

Rapid tissue qualification using widefield epifluorescence microscopy  

Widefield epifluorescence imaging was conducted on non-deparaffinized tissue 

sections in order to provide a quick assessment of tissue quality without damaging the 

tissue or relying on time-intense analyses. In most cases, the total duration of this step did 

not exceed 10 minutes per tissue. To “pass” qualification, a section must have visible 

glomeruli (at least one must be clearly visible, but most times multiple glomeruli were 

observed), the tubules had to be morphologically distinguishable, and the tissue had to be 

of sufficient dimensions (qualitatively assessed as enough area to distinguish 

periglomerular space from other cortical areas) to provide an adequate area for analysis. 
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In Figure 1.2, an example of a tissue that met all three requirements is shown (Figure 

1.2A), as well as a specimen that did not successfully pass this step (Figure 1.2B). In 

total, eleven samples were chosen for further study: five specimens from stone-forming 

patients (one of whom had also a history of diabetes), two with DKD and four with FSGS 

(Table 1.1).    

Quantifying fibrosis and endogenous fluorescence with label-free imaging  

To test if interstitial fibrosis could be imaged while a section was still embedded 

in paraffin, samples underwent SHG imaging. Such imaging was conducted by exciting 

the samples at 910 nm and collecting between 440 and 460 nm to select for fibrillar 

collagen. Endogenous fluorescence was captured concurrently using confocal 

microscopy. Figure 1.3 shows the SHG and autofluorescence images obtained from the 

nephrolithiasis kidney specimens. The amount of fibrosis present in the sample was 

measured by an unsupervised thresholding algorithm (Otsu 1979) and was normalized to 

the total area of the tissue as reported in Figure 1.3D.  

Histological adjudication of label-free imaging 

Label-free images collected from sections before deparaffinization were 

compared to images collected after deparaffinization and staining with Lillie’s 

allochrome. Because this comparison is performed on the same sections without altering 

the orientation, the label free and stained images were spatially registered. (Figure 1.4). 

Areas of high signal in the SHG channel showed a correlation with the blue collagen 

staining in the Lille’s allochrome images, indicating areas of interstitial fibrosis. 

Furthermore, glomeruli and distal tubular segments had a unique dim autofluorescence 

signature compared to proximal convoluted tubules.  
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To quantify how well the SHG signal correlated with the Lillie’s allochrome 

staining, regions were selected at random across four samples and scored. SHG images 

were “scored” using Otsu autothresholding, as described above, and Lillie’s allochrome 

images were scored by a nephropathologist. The correlation between the two sets of 

scores is shown in Figure 1.5C, along with representative images from the samples 

analyzed (Figure 1.5A and 1.5B).  

Assessing changes in autofluorescence signature in disease  

The average autofluorescence signal from the tubulo-interstitium was analyzed 

from images of the entire specimens obtained from widefield epifluorescence 

microscopy. An example image from each disease group is displayed in Figure 1.6. The 

tubulo-interstitium from stone-forming healthy patients had higher average endogenous 

fluorescence intensity compared to patients with diabetes or with FSGS (Figure 1.6D; p= 

0.02 and < 0.01, respectively). Similar findings were obtained from high resolution 

images of the glomeruli using two-photon /SHG imaging (Figure 1.6E-H). Note that a 

stone-forming patient who had diabetes was included in the diabetic group (Figure 1.6G 

and 1.6H).  

Visualization of nuclei and measuring cell density in sections without deparaffinization 

The ability to visualize nuclei in kidney tissue sections without deparaffinization 

was tested by applying DAPI to the paraffin embedded sections. Imaging for this 

experiment was conducted with confocal microscopy, the results of which are shown in 

Figure 1.7. Our results show that we could successfully label all the nuclei in a non-

deparaffinized tissue section. Such an approach allows the performance of tissue 

cytometry analysis on the tissue using the volumetric tissue exploration and analysis 
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(VTEA) software (Winfree 2017). There are numerous analyses that can be explored with 

the ability to label nuclei on non-deparaffinized samples, ranging in complexity from cell 

count/cell density analysis to machine learning techniques to determine cell types based 

on the nuclear morphology, as we have previously shown with fresh frozen as well as 4% 

paraformaldehyde (PFA) fixed kidney specimens (Woloshuk 2021). By segmenting all 

the nuclei in the imaging data, the total number of cells present in the tissue section 

shown in Figure 1.7A was measured and found to be 11,863 nuclei. Considering the 

autofluorescence signal of a specific structure, the cellular density in a specific region of 

interest (such as the glomeruli) can then be calculated (Figure 1.7). An example of this 

analysis is shown in Figure 1.7E-G, where we focus on a glomerulus. The results from 

the segmentation using VTEA are shown in Figure 1.7G, where we identified 141 cells in 

that particular glomerular cross-section. 

Discussion 

Our study demonstrates that a sizable amount of actionable information can be 

obtained from tissue sections while they are non-deparaffinized. This data can be used for 

multiple applications such as qualification of the tissue for content and quality, 

quantitation of fibrosis, determination of disease signature or even nuclear staining 

without deparaffinization and tissue cytometry analysis. Since paraffin embedding of 

tissues is a standard and common practice, maximizing the amount of information that 

can be obtained before committing the tissue to downstream analysis could have potential 

advantages for workflow efficiency and increasing tissue utility and extending usability. 

Furthermore, in the case of scarce tissue, the proposed approach has direct implication on 

tissue conservation. 
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Extracting information that could guide downstream use does not need to occur in 

highly specialized settings, because visualization of tissue content and quality could be 

done with widefield epifluorescence microscope, an instrument that is widely available in 

most pathology labs. This commonly available technology can inform on the size of the 

tissue, glomerular content, and general tubule condition, without the need for staining or 

time-intensive analysis. A pipeline for screening paraffin-embedded tissue sections using 

widefield fluorescence could improve the efficiency of downstream processing. For 

example, an optimal diagnostic sample for glomerular diseases would include 15 or more 

glomeruli, and sometimes more than 20 glomeruli for diseases such as FSGS (Pritzker 

2019, Roth 2013). By screening sections before staining, the optimal diagnostic sample 

could be identified a priori. Furthermore, a survey of the quality and content of all 

paraffin embedded sections could be very valuable for subsequent assignment to various 

assays and enhanced techniques (Messias 2015).      

Specialized high content data can also be obtained from paraffinized tissue 

sections, such as the measurement of interstitial fibrosis with SHG imaging or applying 

nuclear staining to perform tissue cytometry and measure cellularity in various structures. 

Such data could be used in conjunction with other downstream imaging and molecular 

assays to maximize the use of limited tissue, such as in the case of a kidney biopsy 

specimen. The specificity of endogenous fluorescence to the type of tubules and 

structures could be leveraged for use in future machine learning applications to delineate 

the content of a tissue section at high resolution (Liu 2020, Rivenson 2019). Furthermore, 

our preliminary data suggest that endogenous fluorescence itself may be altered by 
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disease and could be potentially used for disease screening (Croce 2010). This needs to 

be validated in a larger dataset.   

This study has limitations predominantly related to the sample size, which 

precludes us from making generalizable conclusions without validation in a larger study. 

Although the samples from surgeries and needle biopsies were processed in a similar 

standard protocol, they were performed in different laboratories. While there could be 

variations in practices that contribute to the differences seen between reference and 

disease samples, both laboratories have an established track record of expertise and 

collaboration in tissue processing (Evan 2014, Evan 2015), which makes this possibility 

less likely. The goal of our study was to show the feasibility of the approach and its 

application, and our preliminary findings warrant additional investigations in a larger 

study. A second limitation to this study is the decision to limit the samples used to those 

that contained cortical tissue. The fibrotic content could vary from the cortex to the 

medulla, which could require different imaging and/or analysis techniques to be utilized.  

In conclusion, our results show that label-free imaging of paraffin-embedded sections 

without deparaffinization is easily implemented on common microscopes and provides 

useful information about tissue quality as well as quantifiable features that could 

potentially inform on the biology of health and disease. Additional high content data 

could be obtained with more specialized imaging, with possible implications on tissue 

economy in multimodal molecular and imaging interrogation of sparse human kidney 

biopsy specimens. 
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Methods 

Sample Collection 

Tissue samples from patients with stone disease were obtained via percutaneous 

nephrolithotomy (Evan 2003). Patients were randomly selected from an ongoing study in 

which all patients were consented for study (Indiana University Institutional Review 

Board protocol #1010002261). After biopsies were performed, samples were fixed with 

4% PFA and then embedded in paraffin. All samples selected for this paper were from 

calcium oxalate stone formers with normal kidney function. 

DKD and FSGS needle biopsy specimens were obtained from the Biopsy Biobank 

Cohort of Indiana (Indiana University Institutional Review Board protocol #1601431846; 

Eadon 2020). These are diagnostic biopsies performed for clinical indication. After 

biopsy specimens were obtained, they were fixed with 10% formalin and then embedded 

in paraffin. The pathological diagnosis of DKD or FSGS was performed by a 

nephropathologist (C.P).  

Widefield epifluorescence microscopy  

Non-deparaffinized kidney tissue sections were imaged using a Keyence BX810 

slide scanner and three different filter cubes, including DAPI, GFP, and TRITC. Images 

were collected using a Nikon PanFlour 10x/0.3 Ph1 air objective.  

Second Harmonic Generation and Two-photon Imaging  

Non-deparaffinized kidney tissue sections were also imaged with 2-photon 

microscopy using a 25x 0.95 NA Leica dipping objective with excitation provided by a 

MaiTai DeepSee tunable titanium-sapphire laser (Spectra Physics, Santa Clara, CA) 

adjusted to 910 nm. The descanned pathway was configured for multiphoton imaging by 
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fully opening the confocal pinhole and adjusting photomultiplier detectors to collect 

emissions from 440 to 460nm (for SHG) and from 493 to 776 nm (for autofluorescence). 

Single photon confocal imaging  

Confocal imaging was conducted using a 25x 0.95 NA Leica dipping objective. 

Autofluorescence was collected in four different channels, ranging from 400 to 776 nm.  

Staining sections with DAPI 

Non-deparaffinized kidney tissue sections were stained with DAPI to facilitate the 

calculation of the number of cells in the specimens. These sections were incubated with a 

1:100 dilution of DAPI for 5 minutes, washed in PBS, and imaged as described above  

Histological Staining  

Deparaffinized tissue sections were stained with Lille’s allochrome to facilitate 

the distinction of different collagen types in the tissue. Allochrome is similar to Masson’s 

trichrome, except collagens within the tubule basement membranes and interstitial 

fibrosis stain purple and blue, respectively (Lillie 1951). 

Image Analysis  

Image analysis was conducted using the open-source software ImageJ. The 

average fluorescence intensity of both the tubules and the glomeruli were measured in the 

three disease groups (Stone, Diabetes, and FSGS).  

Cells were counted in images of DAPI stained sections with VTEA, a software 

plugin for ImageJ (Winfree 2017). VTEA utilizes nuclear staining, such as DAPI, to 

segment cells from the tissue volume for quantitation.  

In order to calculate the amount of fibrosis in each sample, the total area of the 

tissues was calculated, and the average signal was measured. Otsu autothresholding was 
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then applied to select for SHG signal with high intensity (Otsu 1979), and the area 

occupied by the thresholded pixels was calculated using the “area fraction” measurement 

in ImageJ.   

For correlation of SHG images to histology staining, three regions were randomly 

selected from four of the stone patient samples, for a total of twelve regions. Regions 

from the histology sections were scored by a nephropathologist. Regions from the SHG 

images were thresholded as described above, and the percent area occupied by SHG 

signal was calculated.  

Statistical Analysis  

Statistical analysis was conducted using PRISM software. Mean +/- standard 

deviation was reported. Statistical significance was determined using one-way ANOVA 

and significance was set to P<0.05. 
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    Steps in Pipeline 

Sample 
Tissue 

obtained 
through 

Clinical 
Disease 

No. of 
Gloms 

Pre 
scanning 2P/SHG Lillie's 

Allochrome Analysis  

Stone 1 PCNL Nephrolithiasis 2 X X X  

Stone 2 PCNL Nephrolithiasis 5 X X X X 
Stone 3 PCNL Nephrolithiasis 3 X X X X 
Stone 4 PCNL Nephrolithiasis 16 X X X X 
Stone 5 PCNL Nephrolithiasis 0 X    

Stone 6 PCNL Nephrolithiasis 4 X    

Stone 7 PCNL Nephrolithiasis 2 X    

Stone 8 PCNL Nephrolithiasis 0 X    

Stone 9 PCNL Nephrolithiasis 0 X    

Stone 
10 PCNL Nephrolithiasis 3 X    

Stone 
11 PCNL Nephrolithiasis 8 X    

        

Diabetic 
1 PCNL Nephrolithiasis, 

Diabetes 2 X X X X 

Diabetic 
2 

Diagnostic 
kidney 
biopsy 

Diabetes 2 X X X X 

Diabetic 
3 

Diagnostic 
kidney 
biopsy 

Diabetes 15 X X X X 

        

FSGS 1 
Diagnostic 

kidney 
biopsy 

FSGS 9 X X X X 

FSGS 2 
Diagnostic 

kidney 
biopsy 

FSGS 15 X X X X 

FSGS 3 
Diagnostic 

kidney 
biopsy 

FSGS 5 X X X X 

FSGS 4 
Diagnostic 

kidney 
biopsy 

FSGS 9 X X X X 

Table 1.1 - Summary of tissue samples and the steps of the processing pipeline 



 

 21   

 

  

Figure 1.1: Flowchart representing the general methodology described in this paper. 

A) example of a non-deparaffinized kidney tissue section. b) Representative image of 

a non-deparaffinized tissue section imaged using widefield epifluorescence. c) The 

same section was imaged using two-photon/second harmonic generation imaging. d) 

This section was lastly deparaffinized and stained with Lillie’s allochrome.   
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Figure 1.2: Widefield fluorescence imaging of non-deparaffinized tissue sections 

allows for quality assessment. Imaging was performed using a fluorescence slide 

scanner with filter cubes set for DAPI, GFP, and TRITC fluorescent spectra. Two 

samples are shown above, with each channel displayed individually and as a 

composite of the three channels. The sample in (a) (stone patient sample 1) was used 

for the duration of the study, whereas the sample in (b) (stone patient sample 5) was 

not used due to poor sample quality   
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Figure 1.3: Two-photon /second harmonic generation imaging yield quantitation on 

collagen content. Two-photon imaging and SHG imaging were conducted on the four 

non-deparaffinized kidney tissue sections obtained from kidney biopsies of stone-

forming patients. a–c) Tissue autofluorescence is displayed in orange, and collagens 

are shown in blue. To estimate the amount of collagenous 

content in each sample unsupervised thresholding on the signal was applied and was 

normalized to the tissue area. Results from that analysis are shown in (d) 
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Figure 1.4: SHG imaging results correlate with Lillie's allochrome staining for 

collagens. a) SHG imaging and two-photon autofluorescence from two different 

samples. b) The same images with only SHG signal displayed. c) The same regions 

from the same sections are displayed after staining with Lillie's allochrome. The blue 

hue corresponds to fibrosis, dark purple is showing collagens that makeup the 

basement membranes (arrowheads, typically non-fibrillar), and nuclei are stained dark 

brown/black. Arrows denote areas of signal in the SHG images that correlate with the 

Lillie's allochrome stain.  Glomeruli and distal tubular segments have a dim 

autofluorescence compared to proximal tubules. Scale bars are 100 microns 
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Figure 1.5: SHG imaging results correlate with Lillie's allochrome staining for 

collagens. a) SHG signal of one region from each scored sample. b) The same regions 

from the same sections after staining with Lillie's allochrome. c) Shows the correlation 

of pathologist scoring of Lillie's allochrome staining to scoring from auto-thresholding 

(r2 = 0.752) 
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Figure 1.6: Detection of changes in tubulo-interstitial and glomerular endogenous 

fluorescence during disease. a–c) The analysis of tubulo-interstitial 

endogenous fluorescence was conducted on images obtained in the GFP channel 

(epifluorescence imaging), as shown previously in Figure 2. d–f) 

Glomerular analysis was conducted on images obtained using two-photon 

and second harmonic generation imaging. g, h) Show the results from the tubulo-

interstitial and glomerular analyses, respectively. g) Data points represent the average 

intensity of the whole tissue.  (continued on next page) 
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(Figure 1.6 cont.):  h) Data points represent the average intensity of all of the 

glomeruli combined for each sample. The data point displayed in pink in the diabetes 

group is from a stone patient that also had history of diabetes. Single and double 

asterisks denote significant comparison between diabetes or FSGS to the stone 

reference group, respectively (p < 0.05). No difference was observed when comparing 

diabetes versus FSGS for either tubulo-interstitial of glomerular endogenous 

fluorescence 
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Figure 1.7: Nuclear staining and cytometry can be conducted on paraffin-embedded 

samples without deparaffinization. a) A non-deparaffinized kidney section (10 μm 

thickness) was incubated with DAPI and subsequently imaged using confocal 

fluorescence microscopy. A z-stack spanning the entire thickness was obtained (step 

size 1 micron). Scale bar = 250 micron. b, c) High magnification region from the 

yellow box in (a). Scale bar = 150 micron.  (continued on next page) 
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(Figure 1.7 cont.): . d) Segmentation results from tissue cytometry VTEA analysis. 

Each color represents an individual nucleus that was segmented. Total count was 

11,863 cells for the image volume from (a). e, f) Glomerulus from (b) is enlarged and 

displayed. Scale bar = 100 μm. g) Segmentation results from VTEA analysis. In total, 

141 nuclei were identified in the glomerulus with a density of 5.5 × 10−4 cells/μm3 
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Chapter 2 - Developing a robust analytical pipeline for large scale data 

Introduction 

Comprehensive tissue interrogation has become an area of interest in numerous organ 

systems aside from the kidney. Consortiums such as the Kidney Precision Medicine 

Project (KPMP) and the Human BioMolecular Atlas Program (HuBMAP) are dedicated 

to uncovering and characterizing the cellular components that make up each organ 

system. For consortiums like the KPMP, this analysis is focused on disease states such as 

AKI, CKD, and/or diabetes. By looking at these diseases, we aim to classify patients 

based on their molecular pathways as well as identify cells and/or pathways that could be 

targets for novel therapies (de Boer 2020). Other consortiums, like the HuBMAP, are 

focused on creating healthy reference atlases of numerous different organ systems in 

order to understand the intricacies of how the human body functions.  

Included below are two papers that describes research results within the Kidney 

Precision Medicine Project. The first details our early work on large-scale image analysis 

and supervised classification of cells based on antibody staining and intensity using 

VTEA, a free ImageJ plugin (Ferkowicz 2021). The excerpt from the second manuscript 

describes work that was conducted to develop the unsupervised learning methodologies 

within VTEA and apply them to the renal space in order to classify cell types and 

uncover and characterize the cellular niches (Winfree 2022). These papers are indicated 

with italic section headers (and for the published paper, used with permission of the 

publisher; for the paper presently under review, quotations used by permission of the 

authors). 
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In the first paper, I was tasked with conducting the glomerular-based analysis 

shown in Figure 2.7, as well as assisting with the segmentation and analysis of the 

different biopsies imaged, as shown throughout the entirety of the paper. In the excerpt 

from the second paper, I was the primary researcher for the CODEX multiplexed 

imaging. I was heavily involved in the creation of the antibody panel, conjugated 

antibodies, conducted the experiment, and helped with the initial analysis shown in 

Figure 2.8 (Winfree 2022)  

2.1 – Large-scale three-dimensional imaging and analysis of the human kidney 

(Ferkowicz 2021) 

Introduction 

For nearly 70 years, histological analysis of biopsy samples has represented the 

“gold standard” of renal pathology, with clinical diagnoses largely based upon structural 

changes detected using morphological stains. However, as we enter the era of 

personalized medicine, researchers increasingly appreciate the need to obtain and 

quantify additional molecular and genetic information from clinical tissue samples, 

information that can be used to develop mechanism-based diagnoses and individualized 

therapies.  

Advances in molecular biology have made it possible to collect a rich molecular 

phenotype of individual samples, even to characterize the genome and transcriptome of 

individual cells. In the realm of renal research, single-cell “omics” techniques are poised 

to provide new insights into the mechanisms underlying kidney development, disease and 

treatment (Malone 2018, Park 2019). However, a general shortcoming of these 

approaches is that in the process of homogenizing a tissue for cellular analysis one loses 
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all spatial context, discarding crucial information about the organization of structures and 

cells in the tissue and the relationships that inform the in-situ behaviors of each cell. 

Spatial context is particularly important to understanding cell function in the kidney, 

whose structure reflects multiple layers of cellular organization. Endothelia and epithelia 

are organized into sheets that are organized into capillaries and tubules, which are in turn 

are organized into capillary networks and nephrons whose function is mediated by their 

organization within the cortex and medulla. This spatial complexity is compounded in the 

context of disease in which the structure and cellular relationships are disrupted in a time-

dependent way, with the additional complication of the local infiltration and activation of 

immune cells.  

An alternative approach is to use multiplexed fluorescence microscopy to 

characterize the protein or RNA phenotype of cells in fixed tissue sections. Confocal 

microscopy extends the spatial context of fluorescence studies into three dimensions 

(3D), which is critical for capturing the structure and inter-relationship of large 

multicellular structures such as glomeruli and tubules. Whereas light microscopy has 

traditionally been used to sample representative regions of a tissue sample, automated 

systems can now be used to collect multiplexed images of entire millimeter-scale samples 

with subcellular resolution. The analysis of image volumes of this size and complexity is 

well beyond the capabilities of visual inspection and depends upon advanced methods of 

digital image analysis that are used to identify and quantitatively characterize each cell, 

essentially providing a census of every cell in the specimen. The resulting data, which 

may consist of hundreds of features measured for each of hundreds of thousands of cells, 
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are then analyzed using methods of multidimensional data analysis to test hypotheses and 

to identify unforeseen patterns and relationships.  

This approach, which we have termed “tissue cytometry” has been used to obtain 

unique insights into cellular function in lymphatic tissues (Petrovas 2017, Im 2016, Liu 

2015, Fonseca 2015, Radtke 2015, Gerner 2015, Gerner 2012), tumors (Lee 2019, Halse 

2018), bone marrow (Coutu 2017), and by our group in human and mouse kidney 

(Winfree 2017, Winfree 2017, Winfree 2018, Micanovic 2018, LaFavers 2019, Makki 

2020). Although these studies demonstrate its power, the wide-scale adoption of tissue 

cytometry as a tool in biomedical research has been limited by the fact that published 

examples utilize specialized techniques that are beyond the capabilities of most 

laboratories. Here we describe a complete and accessible pipeline, including methods of 

sample preparation, microscopy, image analysis, and data analysis for large-scale tissue 

cytometry of human kidney tissues.  

Results 

Overview of the approach  

The defining goal of our approach is to maximize the information content of 

images collected from human kidney samples. Each additional parameter improves our 

ability to unravel the complexity of the kidney, to test hypotheses, and to reveal 

unforeseen relationships and processes. The need to extract maximum information from 

each sample is particularly acute for human tissue samples. First, these samples are 

frequently rare, particularly for specific disease states. Second, human tissue samples 

incur an ethical responsibility to the donor/patient to justify their sacrifice by extracting 

maximum information from each precious sample. Thus, we developed a tissue 
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preparation, imaging and image analysis workflow that provides a quantitative 

characterization of every cell in an entire 50 micron thick tissue sample with respect to 

eight different fluorescent probes, tissue autofluorescence, and second-harmonic 

generation. Described in detail in subsequent sections, the entire process is summarized 

below and schematized in Figure 2.1.  

Cryosectioned samples are first placed in a temporary mount and imaged using 

multiphoton microscopy to collect high-resolution autofluorescence and SHG images of 

the entire sample. The section is then removed from its temporary mount and processed 

for fluorescence labeling with six antibodies, fluorescent phalloidin, and DAPI. The 

tissue is then mounted permanently on a slide, where it is imaged in its entirety using 

spectral confocal microscopy. The resulting 16-channel image volume is spectrally 

deconvolved to discriminate the fluorescence of the eight fluorescent markers. VTEA 

software is then used to segment the resulting DAPI volume into the individual nuclei of 

each cell and to quantify the fluorescence in each of the eight channels. VTEA provides 

scatterplots of the fluorescence associated with each nucleus that can be gated to identify 

specific cell types, that are then mapped back onto the original image volume. The 

combination of image maps and scatterplots are then used to interactively explore the 

image volume. In the following sections, we present an expanded demonstration of this 

workflow and how it can be used to extract and explore the cellular and molecular 

constitution of human tissue samples.  

Multiphoton microscopy of unlabeled human kidney tissue  

The endogenous fluorescence of tissues is frequently considered an objectionable 

impediment to immunofluorescence microscopy. However, autofluorescence, arising 
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from a variety of different molecular sources (e.g., NADH, flavins, porphyrins, collagen, 

elastin, and lipofuscin) has also been used as a “label-free” approach for characterizing 

tissue structure and detecting pathologies (Croce 2014, Dong 2010). The fact that tissue 

autofluorescence can be efficiently stimulated by two-photon processes means that 

multiphoton microscopy can be used to simultaneously image tissue autofluorescence 

alongside signals arising from SHG, another label-free imaging modality. The 

predominant source of SHG signals in biological tissues is fibrillary collagen. 

Accordingly, SHG has been previously used to detect fibrosis and other pathological 

alterations of the extracellular matrix (Dong 2010, Ranjit 2016).  

Figure 2.2 shows the results of a study in which multi- photon microscopy was 

used to collect a 3D volume of autofluorescence and SHG signals from a 4 mm by 9 mm, 

50 micron thick section of fixed human nephrectomy tissue. Since tissue cytometry 

requires images collected at a spatial resolution sufficient to distinguish individual nuclei, 

we employed an approach in which the image volume of the tissue is constructed as a 

mosaic of smaller image volumes (each ~400 micron across), collected using a ×20 

objective, with a numerical aperture large enough (0.75) to provide subcellular resolution. 

For each panel of the mosaic, the tissue was illuminated at 910 nm, and two- channel 

images (SHG and autofluorescence) were collected at 1 micron intervals through the 

entire 50 micron thickness of the tissue. The process was then repeated across the entire 

sample, and the resulting volumes stitched together into a single mosaic.  

The images of tissue autofluorescence (Figure 2.2 A, D, G) demonstrate that 

tissue autofluorescence provides structural information sufficient to identify glomeruli 

and tubules, but also regions of apparent tubular drop out (arrows in Figure 2.2G). The 
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images of SHG, that largely reflect fibrillary collagen, provide a complementary 

characterization of the structure of the extracellular matrix, including regions of collagen 

deposition likely to reflect fibrosis. Interestingly, SHG signals are frequently strong in 

regions lacking autofluorescence, consistent with the expectation of fibrosis in regions of 

tubular drop out. Table 2.1 shows the results of quantitative analyses of the 

autofluorescence SHG images of this and four other nephrectomies, which were used to 

determine the number of glomeruli and the percentage of the tissue section collected from 

the cortex (based upon autofluorescence) and the percentage of the tissue area that is 

fibrotic (based upon SHG).  

Spectral confocal microscopy of human kidney labeled with eight fluorescent probes  

Although the autofluorescence image provides structural information, and the 

SHG indicates the distribution of fibrillary collagen, a characterization of the cellular 

constitution of the sample requires immunofluorescence labeling of cell- specific 

proteins. Thus, after multiphoton microscopy, the tissue was removed from its temporary 

mount and labeled with eight fluorescent probes. As described in “Methods”, the tissue 

was processed for immunofluorescence labeling, using antibodies to aquaporin-1 (AQP1, 

to label proximal tubule cells), THP (to label thick ascending limbs), and CD68, CD3, 

SIGLEC8, and myeloperoxidase (MPO) (to label macrophages, T cells, eosinophils, and 

neutrophils, respectively). Following immunofluorescence labeling, the tissue was 

incubated with fluorescent phalloidin (to label filamentous actin) and DAPI (to label cell 

nuclei). The tissue was then mounted in a permanent mount and imaged using spectral 

confocal microscopy and the same 3D mosaic imaging approach described above.  
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Although the excitation and emission spectra of the fluorescent probes are offset 

from one another, they nonetheless overlap with one another to varying degrees. In order 

to selectively distinguish the fluorescence of each probe, we employed an approach in 

which spectral information obtained separately for each probe was used to “unmix” the 

images of the combined fluorescence (see “Methods”). In order to capture as much 

spectral information as possible, the sample was illuminated sequentially at 405, 488, 

552, and 635 nm, and four channels of fluorescence were collected for each illumination. 

This procedure was repeated for each focal plane for each panel of the mosaic, resulting 

in a rich 16-channel image volume of the tissue that was then spectrally deconvolved, 

using linear unmixing, to distinguish the eight different fluorescent probes.  

Figure 2.3 shows how the addition of probes to detect filamentous actin, THP and 

AQP1 augments the information provided by autofluorescence and SHG. As expected, 

fluorescent phalloidin strongly labeled the filamentous actin of the vasculature, 

glomerular capillaries, basement membranes and tubule brush borders. The magnified 

images shown in Figure 2.3D-I demonstrate that AQP1 immuno- fluorescence correlates 

well with the phalloidin fluorescence of the brush borders of proximal tubule cells. In 

contrast, immunolabeling for THP identifies a distinct set of tubules of the thick 

ascending limb, but also strongly labels structures in tubule lumens that appear to be 

tubular casts. Interestingly, regions showing strong SHG fluorescence and amorphous 

phalloidin labeling correlate with regions lacking immunofluorescence (indicated with 

arrows in Figure 2.3G, H, I), consistent with the loss of tubular markers in fibrotic 

regions.  
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3D tissue cytometry of human kidney  

Figure 2.4A shows a projection of the same tissue volume shown in Figure 2.3C, 

with the addition of the nuclear fluorescence of DAPI and the immunofluorescence 

detected for CD68, CD3, and MPO (labeling macrophages, T cells, and neutrophils, 

respectively). Although several interesting patterns are apparent in the figure, it is clear 

that the richness of the data in this 9800 × 19,800 × 50 voxel, 8-probe image volume 

exceeds our ability to evaluate it visually. In order to fully explore and discover 

meaningful patterns in an image of this scale and complexity, the image must be 

converted into quantitative data.  

Quantification of large-scale three-dimensional images of tissues has been 

conducted using an approach that has been variously termed histo-cytometry (Gerner 

2012, Li 2017), 3D confocal cytometry (Coutu 2017), 3D imaging cytometry (Lee 2019), 

and tissue cytometry (Winfree 2017, Winfree 2017, Winfree 2018). Conceptually similar 

to flow cytometry, tissue cytometry is based upon the detection and attribution of 

immunofluorescence signal levels to individual cells, providing a multiparameter analysis 

of a cell population. However, as it is based upon fluorescence measurements detected as 

a laser scans over a tissue, tissue cytometry provides this information along with the 

spatial location of each cell, as demarcated by methods of digital image analysis 

(segmentation). The combination of large-scale microscopy with automated methods of 

digital image analysis transforms microscopy from a tool for characterizing sample 

regions into one providing a census of every cell in a tissue sample.  

While a variety of software tools have been developed to support quantitative 

analysis of two-dimensional images, few have been developed for the analysis of large-
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scale 3D image volumes. Moreover, none integrate all of the necessary tools of image 

processing, segmentation, quantification, and data analysis into a single package. We 

developed VTEA in response to the need for an accessible, yet powerful solution to 3D 

tissue cytometry. Developed as a plug-in for the widely-used ImageJ freeware, VTEA 

organizes each of the steps of tissue cytometry into a bidirectional workflow that 

facilitates interactive exploration and analysis of complex, 3D image volumes.  

VTEA tissue cytometry is based upon a strategy in which each individual cell is 

identified by its fluorescently- labeled nucleus and then characterized by quantification of 

the immunofluorescence of the cell markers in the region immediately surrounding the 

nucleus. A 3D watershed segmentation of the nuclei in the image shown in Figure 2.4A 

identified 248,050 nuclei from the 1.7 mm3 volume of the tissue, each of which is 

depicted in a different color in Figure 2.4B. Although difficult to discern in this image, 

the tissue includes several high-density regions, which are shown in a density plot in the 

inset. Some of these regions are associated with regions of immune cell infiltrates that are 

apparent in the original image (indicated with arrows in Figure 2.4A).  

The nuclear segmentation is used to define regions that are used to quantify 

nuclear fluorescence, and in the region immediately surrounding the segmented nucleus, 

the fluorescence of each of the eight fluorescent probes following linear unmixing. 

VTEA presents these data in csv files, as well as in interactive scatterplots that can be 

used to visualize the distributions of values any two measurement parameters along the x 

and y axes (Figure 2.4F, G). In order to extend the dimensionality of these scatterplots, 

each point can be rendered in a color representing the value of a third measurement 

parameter of the user’s choice.  
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The VTEA scatterplots can be used to identify specific cell types in fluorescence 

images in an approach similar to that used by FlowJo to identify cells in flow cytometry 

analyses of suspended cells. Like FlowJo, VTEA provides the user with a tool to draw 

“gates” on the scatterplots to identify specific cell types based upon the levels of 

fluorescence of specific cell markers. Figure 2.4F shows examples of gates drawn onto a 

scatterplot of AQP1 and THP fluorescence to define cells of the proximal tubule and 

thick ascending limb, respectively. This gating procedure is repeated for each of the cell 

markers to identify each cell type and the resulting gated data is used by VTEA to 

generate a new version of image in which the identity of each cell is mapped onto its 

nucleus in a unique color. Figure 2.4C shows the results of scatterplot mapping of 

different cell types based upon gating the fluorescence levels obtained from the image 

shown in Figure 2.4A. Figure 2.4H, I show the results of gating the magnified sub-

regions shown in Figure 2.4D, E, respectively. In these examples, the fluorescence of 

antibodies against THP, AQP1, MPO, CD68, and CD3 was used to identify cells of the 

thick ascending limb, proximal tubule, neutrophils, macrophages, and T cells, 

respectively. The fluorescence of phalloidin was used to detect cells rich in F-actin, 

primarily cells of the glomeruli and peritubular capillaries. As this mapping is 

immediately updated as gates are adjusted, it provides an effective method for visually 

validating the gating strategy. As the gated cells are rendered in a single, bright color, the 

mapped image also serves to more clearly delineate the distribution of dimly-labeled cells 

(e.g., CD3+ cells).  

VTEA’s scatterplot functions are crucial to accurate identification of specific cell 

populations in highly multiplexed image volumes. The quantitative analysis and gating 
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procedures described above were conducted on fluorescence data following linear 

unmixing which, as described above, was used to distinguish the fluorescence of each 

individual probe from the combined spectrum of the eight fluorescent probes. Although 

linear unmixing is effective for distinguishing probes whose fluorescence levels are 

similar, it frequently fails to completely eliminate crosstalk of strong signals into the 

spectral channels used to detect weaker signals. In the samples analyzed here, the 

fluorescence of the THP probe was much stronger than the other probes. However, 

VTEA scatterplot tools can be used to selectively identify cells whose target probe 

signals are contaminated by fluorescence crosstalk by the intense THP signal. For 

example, the crosstalk from THP cells with high signal spilling into the AQP1 channel 

can be parsed out by plotting AQP1 vs. THP (Figure 2.4F). VTEA’s ability to represent a 

third dimension of data in 2D scatterplots using color can also be used to isolate the effect 

of crosstalk. In Figure 2.4G, color is used to represent AQP1 fluorescence. When viewed 

in this way, the cells whose CD68 signal derives from AQP1 crosstalk are immediately 

apparent, and easily excluded from the “true” CD68+ gate.  

The data derived from VTEA analysis of this volume are summarized in Table 

2.1, along with those from four other nephrectomy tissue samples. The degree of fibrosis 

varied between a minimum of 7.7 to a maximum of 12.3% of total areas. As expected, the 

distribution and abundance of tubular cells varies depending on various renal areas 

sampled (cortex vs. medulla). Interestingly, there was a consistent immune cell 

infiltration in all the specimens imaged, distributed in a focal pattern within each tissue. 

The average number of immune cells (reported as % of total cells) were: 2.1 ± 0.9, 0.3 ± 

0.1, and 5.0 ± 2.2, for neutrophils, inflammatory macrophages, and T cells, respectively.  
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Multiplexed analysis of tissues at this scale offers unique benefits. First, the 

extended volume of sampling increases the likelihood of detecting rare events. The scale 

of the image is sufficient to detect multiple highly-localized foci of inflammation, which 

may be missed when surveying a small area of tissue. More significantly, the ability to 

con- duct a multiparametric analysis of multiple events provides the opportunity to 

identify meaningful correlations that might otherwise be missed. For example, four 

regions of inflammation are indicated in Figure 2.5A, each with a different constitution of 

T cells (white) and neutrophils (red) (Figure 2.5B–E). While the underlying basis of these 

differences is unknown, an evaluation of the corresponding immuno- fluorescence, 

autofluorescence, and SHG images suggests that they may reflect regions at different 

stages of inflammation, associated with various degrees of fibrosis (increased SGH 

density), and tubular drop-out (loss of autofluorescence, AQP1, and THP 

immunofluorescence). While this interpretation may be speculative, it demonstrates how 

an image of an entire tissue might provide a snapshot in time of multiple regions of 

injury, each at a different stage, and how a multiparameter analysis might be used to 

understand the progression of injury.  

Application of large-scale 3D tissue cytometry to kidney biopsies  

Figure 2.6 shows an example of one of the most exciting applications of tissue 

cytometry—the analysis of clinical biopsy samples, in this case kidney core biopsies 

obtained from patients diagnosed with diabetic nephropathy. Label-free imaging 

uncovers the structural make-up of the biopsies (glomeruli, tubules, renal capsule, etc.) 

and the associated area of collagen deposition through SHG. Spectral confocal imaging 

and results of tissue cytometry with VTEA are shown in Figure 2.6 and Table 2.2, 
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respectively. In the example shown, we can infer an advanced degree of fibrosis, which 

corresponds to the advanced clinical disease of the patients (CKD stages 3 and 4). 

Although it may be premature to derive meaningful conclusions from this small 

sample size, the analysis already underscores the heterogeneity of diabetic kidney disease 

and the presence of active foci of inflammation with neutrophil and macrophage 

infiltration even in advanced disease. Other observations of interest are the change in 

structural markers, especially THP, which is significantly decreased compared to 

reference tissue with comparable amount of cortical tissue (samples 1, 2, and 4, Table 

2.1): THP+ cells (%): 0.2 ± 0.2 vs. 6.1 ± 1.9, respectively (p = 0.03). The absence of T 

cells is also noted (P < 0.05 compared to reference tissue) and needs to be validated in a 

larger series. 

Figure 2.7 shows a specific example of how tissue cytometry can be used to study 

the cellularity of glomeruli, a key site of pathology in diabetic kidney disease. Compared 

to reference tissue, where the range of glomerular cellular density is consistent, diabetes 

induces an increase in glomerular cellular density in many but not all the studied biopsy 

specimens (Figure 2.7A). Interestingly, cellularity remains homogeneous within each 

specimen, suggesting that glomerular pathology induced by diabetes is global and not 

focal in nature. Furthermore, diabetes does not increase immune cell infiltration of 

glomeruli, as shown in Figure 2.7B.  

Discussion 

Here we have demonstrated an accessible approach to tissue cytometry, a 

technique that is increasingly used to analyze and understand the complex biology of 

human and animal tissues. As compared with traditional methods of histology, 
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fluorescence-based tissue cytometry offers several advantages. First, the fluorescence 

modality is compatible with confocal or multiphoton microscopy, which can be used to 

collect 3D image volumes, providing unique structural information, more accurate 

representations of spatial relationships and a more accurate and extensive census of cells 

in a tissue. Second, fluorescently-labeled antibodies, lectins and toxins can be used to 

provide molecular specificity, which supports enumeration of specific cell types and 

structures. Third, fluorescence supports multiplexing, which can be used to detect 

multiple cell types, and thus their interactions, in the same tissue. Finally, quantitative 

methods of digital image analysis are more fully developed and implemented for the 

analysis of fluorescence images, facilitating automated analysis of large and complex 

image volumes.  

The nascent field of tissue cytometry developed naturally (and inevitably) from 

the development of methods for large-scale, high-content, and high-resolution imaging. 

The automation of confocal microscope systems gave researchers the capability to collect 

fluorescence images of centimeter-scale samples at submicron resolution. The 

development and implementation of methods of tissue clearing extended the depth of 

image volumes from tens of microns into the range of millimeters. Whereas once con- 

focal image volumes might consist of the fluorescence of two or three probes, new laser 

systems and methods of spectral deconvolution now enable researchers to simultaneously 

resolve seven or more probes in the same sample.  

The scale and complexity of these image volumes presents both an opportunity 

and a challenge. Capable of providing rich molecular data for entire tissue biopsies, tissue 

cytometry can transform fluorescence microscopy from a tool used to qualitatively 
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characterize “representative fields” into a tool for generating a quantitative, multi- 

parameter census of every cell in a tissue. However, tissue cytometry is still a developing 

field—effectively extracting information from such large and complex image volumes 

depends upon developing methods of microscopy optimized for quantitative analysis, 

methods of image analysis suited to quantitatively characterizing individual cells in a 

tissue and methods of data analysis that can be used to explore, and ideally, discover 

unforeseen patterns in the data. Thus, tissue cytometry remains a tool that is utilized by 

relatively small number of laboratories with particular skill in quantitative microscopy. 

Here we have presented a straightforward workflow for tissue cytometry based 

upon commonly used methods of tissue processing, microscopy techniques that can be 

implemented by nearly all commercially- available confocal microscope systems, and an 

image and data analysis workflow based upon the easy-to-use VTEA freeware that we 

developed as a plug-in for ImageJ. We specifically show how this approach can be used 

to study human kidney tissue both in nephrectomy reference tissue and from kidney 

biopsies from patients with diabetes.  

Although we have described a workflow that is specific in its details, tissue 

cytometry is a highly flexible research tool that is compatible with a variety of different 

methods of tissue preparation and fluorescence microscopy. Our approach is based upon 

analyses of OCT-frozen tissue cryosections. While frozen tissues are common to research 

laboratories and tissue banks, a rich repository of clinical samples are embedded in 

paraffin. Such samples are compatible with immunofluorescence once “deparaffinized” 

by treatment with organic solvents. This approach was used in recent studies in which 

quantitative multiplexed immunofluorescence was used to analyze human tumor biopsies 
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(Lee 2019, Halse 2018). These studies demonstrate the exciting potential of tissue 

cytometry as a tool for extracting new data from archived clinical samples. Cellular and 

molecular data obtained from tissue cytometry could be combined with corresponding 

clinical data to provide unique insights into disease and therapy. However, the potential 

large-scale studies of this kind will critically depend upon the quality and consistency of 

the clinical samples.  

For our studies, tissue samples were cut to a nominal thickness of 50 micron, a 

thickness that could be rapidly labeled and imaged, and yielded substantial amounts of 

high-quality data. However, spatial scale of tissue cytometry can be significantly 

increased through the use of “tissue clearing” techniques that extend the depth of 

fluorescence microscopy by reducing light scatter. Tissue cytometry has been applied to 

cleared tissues to characterize cell populations in tissues samples that are hundreds of 

microns thick (Lee 2019, Coutu 2017, Li 2017). While tissue clearing significantly 

extends the scope of fluorescence imaging, it does so at the cost of time. First the process 

of tissue clearing typically requires days in itself. Second, extending the thickness of 

tissues extends the time required for all incubations as well as the time required to collect 

image volumes.  

The process of collecting multiplexed fluorescence images required 24–36 hours 

per sample, largely due to the inherently slow process of single-point scanning confocal 

microscopy. Alternative modes of microscopy could be used to accelerate image capture. 

For example, microscope systems such as spinning-disk confocal and light-sheet 

microscopes speed the process of image capture by collecting images of entire fields in a 

matter of milliseconds. A light-sheet microscope system, modified to accommodate the 
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geometry of tissue sections on slides, was demonstrated to be capable of collecting a 1 

mm3 volume in <1 min (Glaser 2019). Another alternative is the “ribbon-scanning” 

confocal microscope system, which uses a high-speed resonant scanner to continuously 

scan a sample as the stage translates though the sample. A commercially available system 

was recently demonstrated that could scan a two-channel image of an entire 1 mm2 field 

in <3 min (Watson, 2017). The impressive speed advantage of the light-sheet and ribbon-

scanning systems is reduced somewhat for studies involving more than one or two 

probes, since collection of additional channels requires repeated, time-consuming filter 

changes (for the light-sheet system) or additional stage scans (for the ribbon-scanning 

confocal).  

In order to glean as much information as possible from each sample, we first used 

multiphoton microscopy to acquire autofluorescence and second-harmonic images of 

unlabeled tissue, and then used confocal microscopy to acquire 8-channel fluorescence 

images following labeling with fluorescent probes. Multiphoton-excited autofluorescence 

and SHG have previously been used to analyze mouse experimental mouse models of 

kidney injury (Strupler 2008), and to characterize unlabeled human bladder biopsies (Jain 

2012), human prostate (Tewari 2011), and human colorectal cancer (Matsui 2017). 

However, we are unaware of studies in which multiphoton microscopy of unlabeled 

tissue was followed by confocal microscopy of the same tissue following fluorescent 

labeling. Imaging the same tissue before and after labeling is complicated by the need to 

manipulate the sample between the two image collections. In our protocol, the unlabeled 

tissue was removed from the temporary mount for fluorescent labeling, subsequent 

confocal imaging was conducted after the tissue was mounted a second time. The process 
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of tissue incubation and remounting introduced small changes in the overall shape of the 

tissue, so that the multiphoton and confocal images were only approximately registered 

with one another, compromising our ability to include autofluorescence and SHG data in 

the VTEA cytometry analysis. We have since developed a new technique whereby tissues 

are fluorescently labeled while still mounted on the slide, eliminating the misregistration 

of multiphoton and confocal fluorescence images. Doing so will increase the data space 

of each cell in the tissue so that it includes not only the 8 fluorescent probes, but also the 

autofluorescence and SHG associated with each cell.  

Multiplexed fluorescence microscopy is complicated by the extensive overlap in 

the excitation and emission spectrum of fluorescent probes, which limits the 

discrimination of any single fluorophore in a multi-labeled sample. Imaging up to three or 

four probes can be accomplished by judicious choice of optical filters. However, 

distinguishing additional fluorescent probes typically requires spectral deconvolution of 

fluorescence images, particularly in the presence of tissue autofluorescence. In our 

studies, we used linear unmixing to discriminate eight fluorescent probes. We found that 

linear unmixing was frequently only partially successful in removing the strong 

fluorescence of the probes used to detect AQP1 and THP from that of probes used to 

identify immune cells. Whereas residual signal contamination would ordinarily be 

difficult to detect and correct, we describe how VTEA’s scatterplot tools simplify the 

process of discriminating cell populations in the presence of signal crosstalk. The VTEA 

scatterplots can also be used to identify signal saturation, an issue that is frequently 

encountered due to between-sample variability, and com- promises the signal linearity 

that is prerequisite to linear unmixing.  
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The problem of spectral crosstalk in multiplexed imaging can be avoided in two 

ways. First, a number of techniques have been developed whereby highly multiplexed 

fluorescence images are assembled from a sequence of images of tissues labeled with 

between one and three probes at a time. In this approach, following imaging, the first set 

of probes are removed (Golstev 2018, Agasti 2017, Wang 2017, Wahlby 2002) or their 

fluorescence is quenched (Hillert 2016, Schubert 2006, Lin 2015, Gerdes 2013) the 

sample is labeled with a new set of probes, and the tissue is imaged again. As this process 

is repeated, highly-specific images of 50 or more different antigens can be collected from 

the same tissue sample. The second approach to avoiding spectral crosstalk is to abandon 

fluorescence as the source of image contrast. Imaging mass cytometry uses heavy metal 

isotopes to label antibodies, which are then used like fluorescently-labeled antibodies to 

label tissues. The isotopes are detected using mass spectrometer following ablation of the 

tissue with either a laser (Giesen 2014) or ion beam (Angelo 2014). Using isotopes with 

appropriately distinct mass-to-charge ratios, images of more than 30 probes can be 

collected with subcellular resolution (Giesen 2014). The major drawback of sequential 

fluorescence and imaging mass cytometry is that neither is compatible with tissues more 

than a few microns in thickness, limiting their ability to characterize tissues in 3D.  

Perhaps the most challenging aspects of tissue cytometry are those involved with 

extracting and exploring the complex data obtained from large multiplexed 3D image 

volumes. In most published examples of 3D tissue cytometry (Petrovas 2017, Im 2016, 

Liu 2015, Fonseca 2015, Radtke 2015, Gerner 2015, Gerner 2012, Lee 2019, Moreau 

2012), image analysis is first conducted using combinations of custom-designed and 

commercial software, and the resulting data are then exported to Excel and/or FlowJo for 
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data analysis. The Schroeder laboratory developed an alternative approach, in which 

images are first segmented using Imaris, and then analyzed using the custom-designed 

XiT software which provides additional capabilities for image quantification and data 

exploration (Coutu 2018). We developed VTEA in response to the need for powerful, yet 

accessible software that incorporates the entire image and data analysis into a single 

platform. This design provides a seamless bidirectional conduit between the image and 

data space, facilitating refinement of image analysis, interactive exploration of image 

data and discovery of unique patterns and associations. Insofar as VTEA is an evolving 

platform that is continuously being refined and extended, the version demonstrated here 

represents only a fraction of the capabilities that we will have incorporated into the 

version available at the time of publication. In addition to the features demonstrated here, 

the new version will provide tools for [1] analysis of structural features [2], analysis of 

spatial relationships and [3] unsupervised analysis of multiplex data.  

In conclusion, we provide a complete workflow to perform large-scale 3D 

imaging and tissue cytometry on human kidney tissue, which could be used to extract 

“big data” type spatial information from kidney biopsies from patients with kidney 

disease. We showed examples of how such analyses can provide useful insights that can 

be linked to the biology or pathology of kidney disease. We anticipate that this imaging 

and analytical approach will complement other Omics type outputs and could help 

spatially map pathological changes that occur with kidney disease.  

Methods 

Reference kidney samples (from tumor-free regions of nephrectomies or deceased 

donors) were obtained from the KPMP (Kidney Precision Medicine Project, 
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https://kpmp.org) and diabetic nephropathy biopsy specimens were obtained from the 

Biopsy Biobank Cohort of Indiana. This study was approved by the Institutional Review 

Board of Indiana University. The diabetic nephropathy biopsies were indicated because 

of rapidly progressing kidney disease and the patients were at stage 2 or 3 CKD at the 

time of biopsy with nephrotic range proteinuria.  

Sample sectioning for multiphoton and confocal microscopy  

Fresh-frozen human kidney samples are placed in cold Optimal Cutting 

Temperature (OCT) compound for 3 min and then transferred to a cryomold with 

partially frozen OCT in the bottom on a block of dry ice. Once the OCT is completely 

frozen, the tissue block is wrapped in parafilm and stored at 80°C. Frozen tissues are 

sectioned to a thickness of 50 micron using a cryostat and then immediately fixed in 4% 

fresh PFA for 24 h, and subsequently stored at 4 °C in 0.25% PFA.  

Multiphoton microscopy  

The imaging strategy described here consists of two steps. Multiphoton 

microscopy is first used to collect auto- fluorescence and second-harmonic images of the 

unlabeled tissue. The tissue is then labeled with fluorescent compounds and antibodies 

and confocal microscopy is used to collect multiplexed images of the fluorescent labels. 

Since fluorescence labeling was accomplished with the tissue suspended in a solution, 

this sequential approach required that multiphoton microscopy be conducted on unlabeled 

tissue mounted in a temporary mount from which the tissue could be easily removed. 

Accordingly, multiphoton microscopy was conducted on tissues that were rinsed in PBS 

and temporarily mounted in a nonhardening mounting medium on low-charge slides and 

sealed via removable rubber cement sealant.  
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Both multiphoton and confocal microscopy were conducted using a Leica SP8 

confocal scan-head mounted to an upright DM6000 microscope with computer-controlled 

motorized stage. In order to collect images of entire millimeter-scale tissues at submicron 

resolution, the Leica Tile Scan function was used to collect a mosaic of smaller image 

volumes using a high-power, high-numerical aperture objective. The Leica LASX 

software was then used to stitch these component volumes into a single image volume of 

the entire sample. The scanner zoom and focus motor control were set to provide voxel 

dimensions of 0.5 by 0.5 micron laterally and 1 micron axially.  

Multiphoton excitation microscopy was conducted using a 20 × 0.75 NA Leica 

multi-immersion objective (adjusted for water immersion), with excitation provided by a 

MaiTai DeepSee tunable titanium-sapphire laser (Spectra Physics, Santa Clara, CA) 

adjusted to 910nm. The descanned pathway was configured for multiphoton imaging by 

fully opening the confocal pinhole and adjusting photomultiplier detectors to collect 

emissions from 439 to 465nm (for SHG) and from 473 to 497 nm (for autofluorescence).  

Fluorescence labeling for confocal microscopy  

Following multiphoton microscopy, the temporary mount is dismantled, and the 

unlabeled tissue is carefully retrieved for fluorescence labeling. The tissue is washed in 

PBS for 10min and placed in blocking buffer (PBS with 0.1% Triton X-100 (MP Bio- 

medical) and 10% Normal Donkey Serum (Jackson Immuno Research)). The tissue is 

gently rocked for 4–8 h at room temperature after which it is placed in 200 microliters of 

a solution containing antibodies to be used for indirect immunofluorescence (AQP1, 

MPO, CD68, and SIGLEC-8) and rocked for 8–16 h at room temperature. The tissue is 

then washed in two changes of 2 ml of PBST (PBS with 0.1% Triton X-100) over 6 h, 
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and placed in blocking buffer. After 4–8 h of gentle rocking at room temperature, the tis- 

sue is then incubated in the panel of secondary antibodies. Following an 8–16h 

incubation the tissue is washed in two changes of 2 ml of PBST over 6 h, and placed in 

blocking buffer for 4–8 h. The tissue is then incubated at room temperature in 200 

microliters of a solution containing the directly-labeled antibodies (THP, CD3) as well as 

DAPI and OregonGreen phalloidin. After 8–16 h in this solution, the tissue is washed in 

two changes of PBST over 6 h and mounted in Prolong Glass (Thermo Fisher) on acid-

cleaned slides.  

Confocal microscopy of labeled tissue  

Confocal microscopy was conducted using a Leica 20× 0.75 NA multi-immersion 

objective (adjusted for oil immersion), with excitation provided by a solid state laser 

launch with laser lines at 405, 488, 552, and 635 nm. A total of 16 images is collected for 

each focal plane of each panel of the 3D mosaic. The sample is first illuminated at 405 

nm, and the four confocal detectors (two PMT, two HyD) adjusted to collect 410–430, 

430–450, 450–470, and 470–490 nm emissions. The sample is then illuminated at 488 nm 

and the confocal detectors adjusted to collect 500–509, 510–519, 520–530, and 530–540 

nm emissions. The sample is then illuminated at 552 nm and the confocal detectors 

adjusted to collect 570–590, 590–610, 610–630, and 631–651 nm emissions. Finally, the 

sample is illuminated at 633nm and the confocal detectors adjusted to collect 643–664, 

664–685, 685–706, and 706–726 nm emissions. The resulting 16-channel image is then 

spectrally deconvolved (via linear unmixing, as described below) to discriminate the 

eight fluorescent probes in the sample.  
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Spectral deconvolution  

The excitation and emission spectra of many of the fluorescent probes used in 

these studies overlap with one another. In order to discriminate each of the 8 fluorescent 

probes, the 16-channel images were spectrally deconvolved using the Leica LASX linear 

unmixing software. The unmixing matrix is derived from 16-channel reference images of 

singly-labeled samples (tissue labeled with DAPI or OregonGreen alone, or samples 

containing microspheres (Thermo Fisher, cat# C37253) labeled with one of the 

fluorophores used for immunofluorescence.) Spectral deconvolution results were 

validated by collecting 16-channel images of three samples containing 6 different 

fluorescently-labeled microspheres in different known pro- portions, and then comparing 

the numbers of microspheres identified by linear unmixing with the numbers expected 

based upon their known proportions. Regression of the pooled results indicated an 

excellent agreement between the observed and expected counts and a G-test of 

independence detected no significant difference (P = 0.98).  

Quantitative image analysis—tissue cytometry  

All tissue cytometry was conducted using the Volumetric Tissue Exploration and 

Analysis (VTEA) software. VTEA is unique 3D image processing workspace that was 

developed by our group as a plug-in for ImageJ (Winfree 2017). Compatible with 

essentially any personal computer system, VTEA can be obtained using the ImageJ 

updater system as described at https://imagej.net/VTEA. The details of VTEA’s operation 

and utility are described in more detail in the Results section. Validation of the gates 

drawn on the analytical scatterplots was performed by visual mapping of the gated cells 

over the image volume and kept constant between specimens in the particular study. Cell 
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density isomaps (e.g., Figure 2.4B) were generated in R using ggplot. Tissue volumes 

were quantified as the product of the lateral dimension of the tissue (quantified in FIJI) 

multiplied by the mean depth of the tissue, as measured by the distance between the first 

and last sections containing at least one segmented nucleus.  

Image processing for figures  

As described above, mosaic image volumes were assembled using the Leica Suite 

X software. Quantitative analysis was conducted using raw image data, but micrograph 

images presented in figures were contrast enhanced in a way that preserved the visibility 

of both the dim and bright structures of the original images. Images in figures were 

processed, assembled and annotated using Adobe Photoshop.  

Statistics  

When applicable, average values are reported ± standard errors. Two-tailed 

Student’s t tests were used as tests of significance.  

2.2 Excerpt from: Integrated cytometry with machine learning applied to high-content 

imaging of human kidney tissue for in-situ cell classification and neighborhood 

analysis (Winfree 2022) 

Introduction  

Renal researchers increasingly appreciate the importance of characterizing the 

cellular niches of the kidney (cell types and subtypes, physiological state, neighborhood 

interactions) and how they are altered in kidney disease (Anders 2011, Chessa 2016, 

Winfree 2021, Lake 2021). Imaging of kidney tissue specimens with single-cell 

resolution at a large scale is an attractive approach for uncovering cellular niches in their 

tissue context (Ferkowicz 2021, Neumann 2021, Ferreira 2021). Such an approach has 
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become more feasible because of the increased ability to collect mesoscale imaging 

datasets on accessible confocal microscopes, whole slide imagers and light-sheet 

microscopes. Furthermore, combining mesoscale imaging with highly multiplexed 

staining or labeling approaches allows for the capture, in situ, of hundreds-of-thousands 

cells that may be classified by many markers. The scale and depth of these data create a 

mounting challenge for timely quantitative and interpretable analysis. This is particularly 

important for kidney research, where biopsy-scale multiplexed imaging datasets of the 

human kidney are being collected and publicly released by large collaborative consortia 

such as the Kidney Precision Medicine Project (KPMP) and the Human BioMolecular 

Atlas Program (HuBMAP) (El-Achkar 2021, HuBMAP Consortium 2019).  

Tissue cytometry (TC) is a powerful approach for analyzing mesoscale 

fluorescence images with single-cell resolution (Ferkowicz 2021, Winfree 2017, Stolzfus 

2020, Li 2017, Gerner 2012). Depending upon the imaging platform, datasets may be 

either 2D or 3D (Winfree 2017, Golstev 2012). An important first step in TC is to survey 

all the cells by segmentation. This is often accomplished by using nuclei as fiduciaries for 

cells. Segmentation entails identifying regions of images as nuclei based on contrast 

provided by stains, registering each individual nucleus as an object, and identifying an 

associated cytoplasm spatially or with a specific marker. Features to describe these cells 

can be calculated on this segmentation. These features could be related to fluorescence 

intensities of markers within or around the nucleus (i.e. the cytoplasm) or based on the 

spatial coordinates or proximity relationships to these nuclei (Winfree 2017, Gerner 

2012, Golstev 2018). Multiplexing several markers in the same experiment enhances the 

richness of the imaging data, by providing specificity of cell types based on unique 
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markers (or unique combination thereof) and generating spatial information based on the 

distribution of stains within the tissue (Ferkowicz 2021, Gerner 2012, Golstev 2018, Lin 

2018).  

In a standard cytometry analysis, after cell segmentation, cells can be classified 

and quantitated by supervised approach using gating based on marker intensity, in which 

cells are defined according to threshold levels of marker fluorescence (gating). However, 

as the scale and complexity of multiplex mesoscale image volumes increase, such a 

manual approach becomes intractable and increasingly unlikely to be successful at 

uncovering the complex spatial organization and cellular niches of the kidney. 

Multiplexed mesoscale tissue cytometry thus requires tools supporting unsupervised 

analysis, ideally with machine learning, to characterize the cellular makeup of a tissue 

accurately and completely, to identify cellular niches and to map their neighborhoods and 

microenvironments (Stoltzfus 2020, Golstev 2018, Jackson 2020, Shurch 2020, Stoltzfus 

2021). Given the complexity of the interacting processes of segmentation, classification, 

quantification and neighborhood analysis, the ideal system should incorporate all these 

processes into a single, integrated analysis and visualization software package.  

Since the initial description of VTEA as an open-source project, several excellent 

tools for tissue cytometry have been developed. In this time VTEA (v0.5.2-v0.7) has 

been used in several projects involving single imaging fields to large mesoscale multi- 

fluorescence kidney image volumes to perform supervised cytometry analysis with gating 

(Lake 2021, Ferkowicz 2021, Black 2021, Black 2021, Varberg 2017, Makki 2020, 

Woloshuk 2021, Micanovic 2021). However, machine learning, data visualization and 

analysis tools that are useful for multidimensional, big-data scale imaging data were not 
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previously implemented in VTEA’s uniquely integrated pipeline. Here we describe 

VTEA 1.0 which specifically adds, 1) machine learning for clustering and dimensionality 

reduction to aid in automated classification of cell types, 2) neighborhood analysis to 

uncover cellular niches and 3) new data visualization tools to support discovery. To 

facilitate this growth of VTEA’s integrated approach, a SciJava framework was 

implemented (Rueden 2021, Schindelin 2012). VTEA now supports extensible image 

processing, segmentation, classification, visualization, and neighborhood analysis for 

processing on hundreds-of-thousands of cells and multi-gigabyte datasets with a fully 

integrated workflow. We demonstrate the utility of VTEA by identifying cell subtypes 

based on labels, spatial association and neighborhood membership using large scale 3D 

and 2D imaging data from kidney tissue.  

Results 

Applying VTEA’s pipeline on highly multiplexed CODEX data of the human kidney to 

uncover cell sub- types and biologically relevant cell neighborhoods  

Human cortical biopsy underwent CODEX imaging with 23 markers (Figure 

2.8A, Table 2.3) and analyzed with VTEA to perform cytometry, cell-classification, and 

neighborhood analysis (Figure 2.8B-E). Unsupervised hierarchical clustering of the 

11,355 segmented cells identified the major cell types in the kidney (Figure 2.8B). Using 

subgating and subclustering, additional novel cell state phenotypes were identified 

including PROM1-positive (CD133) thick ascending limb and proximal tubule cells 

(Figure 2.8B, and 2.9D) and CD68-positive dendritic cells, CD68-positive putative 

macrophages, and CD68- positive epithelial cells (Figure 2.8C and 2.9C-E). To 

determine if specific cellular microenvironments were present in the tissue, VTEA’s 
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neighborhood analysis function was used to tabulate neighborhoods and revealed, after 

clustering and dimensionality reduction, unique neighborhoods with associations between 

tubular epithelial cell subtypes and immune cells, such as the association of PROM1-

positive TAL and PROM1-positive PT cells with low levels of CD68-positive 

macrophages (Figure 2.8D and E, N4 and N5 respectively) and an association of CD90-

positive proximal tubules with DC and T-cells (Figure 2.8E, N6).  

Discussion 

In this work, we present an integrated tissue cytometry approach with VTEA to 

analyze and extract biologically relevant data from state-of-the-art and increasingly 

multiplexed fluorescence imaging datasets of human kidney tissue. This approach 

leverages innovative tools for analysis and visualization using machine learning to 

perform rigorous, reproducible, and informative analysis that could be used to uncover 

the complex spatial organization and cellular make-up of the human kidney. Using this 

analysis pipeline, we demonstrated how we can improve the accuracy and resolution of 

cell classification in kidney tissue. Furthermore, we showed unique advantages of this 

approach in performing advanced quantitative analysis to uncover cell populations based 

on spatial associations and neighborhood memberships. In addition, VTEA has the tools 

to perform intuitive analysis on highly- multiplexed datasets and extract novel 

information on cell subtypes and neighborhoods that could complement findings from 

other omics studies at the single cell level. VTEA is available for download through the 

FIJI plugin updater with the source code is available on github, https://github.com/icbm- 

iupui/volumetric-tissue-exploration-analysis. Additional description and vignettes 

demonstrating the use of VTEA are available at https://vtea.wiki.  
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One of the advantages of incorporating machine learning and dimensionality 

reduction in the VTEA workflow, as compared to relying only on one label of interest to 

identify cells, is the ability to use information from the other label intensities and 

potentially additional spatial parameters. These added parameters increase the 

discriminative power to identify specific population of cells such as better identification 

of low intensities of a specific marker. These applications will improve the accuracy 

compared to a standard gating strategy and increase the confidence of identifying novel 

cells that may be biologically relevant, as we showed for low AQP2 expressing cells in 

the distal nephron.  

In addition to improving the accuracy and resolution of cell classification, the 

workflow of VTEA with machine learning tools will facilitate the cytometry analysis of 

imaging data that was not previously feasible using a standard VTEA approach. We 

present examples of spatially overlapping cells within structures like glomeruli. Taking 

advantages of multiple dimensions, it is possible now to accurately quantify the various 

cell types within glomeruli. This process could also be semi-automated using the data 

analytical tools provided, thereby having important potential implications on studying 

human glomerular pathology, where the cell density of specific cell types such as 

podocyte, immune and mesangial cells may be linked to the pathogenesis of kidney 

disease (Ferkowicz 2021). We also demonstrated the utility of VTEA in classifying cells 

based on spatial parameters, such as neighborhood memberships based on association 

with structures such as vessels and or other cell types. In the CD45-positive immune cell 

example, we could classify two cell populations based on nuclear staining and association 

with vessels. We hypothesize that these immune cell subpopulations may reflect different 
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stages of activity and infiltration: from margination, extravasation and exiting vessels 

towards forming foci of inflammation within the peritubular space. These findings are 

only proof-of-principle of the capabilities of VTEA in using imaging-based data for 

discovery of spatially based cell niches and require further validation to fully determine 

biological relevance and generalizability (Lake 2021, Black 2021).  

Next, we demonstrated VTEA’s utility in segmentation and analysis of imaging 

data from kidney tissue, while supporting classification, quantitation, and visualization. 

VTEA can process mesoscale datasets with tens to hundreds of thousands of cells both in 

2D and 3D while maintaining the interactive characteristics of the analysis. In the 

multiplexed 3D confocal large-scale data, we used unsupervised analysis and 

dimensionality reduction to classify the cell types and validated these classes of cells 

based on visualizing the distribution of intensity for each classified cell type. This 

provides a semiautomated process for large and high-content datasets that augments the 

rigor of other quality check measures already used, such the validation of the identified 

cells by mapping them in the original image.  

We also analyzed highly multiplexed large-scale data from human cortical kidney 

tissue imaged with CODEX. This imaging technology expands the ability to multiplex 

markers on the same 10 micron thick tissue sections using DNA-conjugated antibodies. 

With CODEX imaging, these antibodies are revealed three at a time by the reversible 

binding of fluorescent oligonucleotide reporters. Following imaging, the fluorescent 

reporters are stripped from the tissue and replaced with a second set of three probes and 

imaged again. This process is repeated until all the antibodies in the tissue have been 

revealed. Images of DAPI-labeled nuclei are collected in each round to enable 
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registration of images into a single highly multiplexed image. Although CODEX imaging 

has been described on mouse and human kidney tissue recently (Neumann 2021), the 

analytical output from such data has been limited. Using the integrated analytical pipeline 

with VTEA, we can perform not just cytometry, but also use unsupervised machine 

learning to classify major cell types and uncover novel subtypes. For example, we 

demonstrate the existence of subtypes of proximal tubules (PT: CD90-positive PT, 

PROM1-positive PT) and thick ascending limb cells (PROM1-positive TAL). 

Subclassifying also identified T-cell subtypes based on multiple markers. Using 

neighborhood analysis, we can uncover new spatial associations that could inform on the 

biology. For example, macrophage association with PROM1-positive TAL cells is 

consistent with recent single cell transcriptomics data suggesting the transcriptional 

phenotype of PROM1-positive TALs, may be in niches of immune activation (Lake 

2021). We expect that applying VTEA analysis on such highly multiplexed CODEX data 

will complement and spatially anchor single cell transcriptomics data and may inform 

and confirm (at the protein level within the tissue) transcriptomics outputs such as 

receptor-ligand analyses.  

The advantages of VTEA analysis have been outlined in this work and include the 

unique integrated workflow in the setting of a general framework of accessibility, 

flexibility, and extensibility. VTEA can work as a stand-alone tool carrying the imaging 

data (after collection) all the way to analysis, which offers unique advantages. For 

example, applying the integrated VTEA workflow to analyze human kidney multiplexed 

imaging data will enhance efficiency and discovery because all the steps, including 

advanced machine learning analysis and visualization, occur in one software space. 
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Furthermore, VTEA has unique strengths such as: 1) fine-tuning, in real-time, image 

processing and segmentation parameters to optimize the analysis and 2) gating for 

interactive back-and-forth between image and analysis. Importantly, VTEA can also 

operate with custom workflows to accept inputs from other sources. For example, a better 

segmentation algorithm (by importing segmentation maps) or an outside set of 

measurements (such as from MorphoLibJ) can be easily imported. VTEA also exports 

csv files of measured and unsupervised machine learning features and indexed 

segmentation maps for integration into other tools and pipelines.  

Tissue cytometry with VTEA still has limitations. Despite the advantages of an 

integrated workflow that has been applied on computer desktops (not requiring computer 

clusters or server-based), the analysis and visualization of large mesoscale datasets will 

require desktop computers with enhanced data processing and RAM. Although the 

analyses of the smaller image datasets presented here can be performed on very modest 

computers (e.g., 2016 Macbook). There are also persistent challenges in mobilizing large 

datasets from acquisition platforms to the analysis computers. Importantly, this is not 

unique to VTEA or even TC and a problem that pertains to other mesoscale and omics 

datasets. Combining datasets, into the same analytical and non-overlapping image spaces 

within VTEA is an ongoing area of research and development. Practically, with progress 

in multiscale and hierarchical image formats this may be greatly simplified soon (Moore 

2021). Furthermore, multiple datasets can be aligned into a single analysis with VTEA 

using normalization and mapping strategies but testing and adequately addressing batch 

effects needs to be established across image datasets (Hickey 2021). One possibility is to 

use cell-centric neighborhood analysis, which is, by default, normalized spatially for a 
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common set of cell classifications, to combine disparate imaging datasets. We recently 

used such an approach on 3D large-scale multiplex confocal image volumes of human 

biopsies from the Kidney Precision Medicine Consortium and successfully combined 

neighborhoods of ~1.2 million cells (Lake 2021).  

In conclusion, we present tissue cytometry with VTEA as a solution to analyze 

and interpret high- content imaging data of human kidney tissue. Using appropriate 

unsupervised machine learning approaches, we demonstrated how VTEA can classify 

and characterize cell populations based on a suite of cell-wise features including intensity 

measurements and neighborhood cell population statistics. We anticipate that this 

approach will be useful in uncovering the complex spatial organization and cellular 

make-up of the human kidney and generalized to analyzing imaging data of tissues from 

other organs.  

Methods 

Tissue acquisition 

Tissue was collected and processed under the Institutional Review Board at 

Indiana University approved protocols: 1906572234, for nephrectomy samples and 

1010002261, for human biopsy samples. 

CODEX 

Antibody Conjugation and Validation. 14 of the 23 antibodies used here were 

conjugated in-house using the protocol outlined by Akoya Biosciences. To conjugate 

barcodes to antibodies, antibodies were reduced using a “Reduction Master Mix” (Akoya 

Biosciences) to which lyophilized barcodes resuspended in molecular biology grade 

water and “Conjugation Solution” (Akoya Biosciences) were added and incubated for 2 
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hours at room temperature. Labeled antibodies were purified from free-barcode in a 3-

step wash and spin process and stored at 4°C. Successful conjugation was validated via 

SDS-PAGE gel electrophoresis as well as immunofluorescent staining of reference tissue 

followed by confocal microscopy. 

Tissue Preparation. 10-micron sections of human renal tissue embedded in OCT 

were cut onto poly-L-lysine coated coverslips. Sections were prepared as detailed by 

Akoya Biosciences and as described previously7,14. Tissue retrieval was conducted with 

a 3-step hydration process, followed by fixation with a PFA-containing solution. 

Following fixation, the coverslip mounted tissue was incubated overnight at 4°C with an 

antibody cocktail of 23 of the antibodies listed in Table 2.3. Tissues were washed, and 

post-fixed in 4% PFA for 15 minutes.  

Imaging. Antibodies were imaged cyclically using the CODEX system from 

Akoya Biosciences and a Keyence BZ-X810 slide scanning microscope fitted with a 20x 

air objective (0.75 NA). Images were processed using the CODEX Processor (Akoya 

Biosciences) and images exported for analysis with VTEA.  

Software design, development, and distribution  

Volumetric Tissue Exploration and Analysis (v1.0) was developed in Java, with 

SQL, R-script and Python, using the integrated development environment Netbeans 

(Apache) using a maven build scheme. Major application program interfaces (APIs) used 

in VTEA include SciJava (v.30.0.0), ImageJ (v.1.53f), h2 (v. 1.4.198), SMILE (v.1.5.3), 

Renjin (v3.5-beta76) and JFreeChart (v. 1.5.0). The github release tag @cdfbd46 can be 

used to perform all the analyses presented here. VTEA v1.0, bleeding- edge and archival 

versions, can be downloaded and built from source-code using a maven build scheme, 
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https://github.com/icbm-iupui/volumetric-tissue-exploration-analysis . Stable releases can 

be installed in FIJI by using the FIJI updater and selecting the “Volumetric Tissue 

Exploration and Analysis” update site. General description, analysis vignettes with 

demonstration data and development plans can be found at https://www.vtea.wiki and 

https://imagej.net/plugins/vtea.  

Computers used in analysis 

Image data was analyzed VTEA on a Macbook laptop (mCorei5, 8 GB RAM, 

2016), a Lenovo P51 (Xeon quad-core, 64 GB RAM) or an 8-core custom-built 

workstation (Xeon 8-core, 256 GB RAM).  

Figure preparation 

All images were generated in ImageJ/FIJI and plots (scatter, violin, heatmaps), 

gated cell overlays and segmentation maps were created by VTEA. Photoshop (Adobe) 

was used for final annotation and assembly of panels. Scales were set by the microscopy 

platform and annotated in ImageJ/FIJI. All intensity changes are linear unless otherwise 

noted.  
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Figure 2.1: Overview of the tissue cytometry workflow. Major steps involved in the 

tissue imaging analysis pipeline 
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Figure 2.2: 3D multiphoton microscopy of unlabeled nephrectomy. Mosaic of high 

resolution image volumes collected from a 4 mm by 9 mm, 50 micron thick section of 

paraformaldehyde-fixed human nephrectomy tissue. A) Maximum projection image of 

3D volume of tissue autofluorescence. B) Maximum projection of 3D volume of 

second-harmonic generation (SHG) images. C Overlay of autofluorescence and SHG. 

D–F Show corresponding ×4 magnification images of the region indicated in the upper 

box in (A), and (G–I) show corresponding ×4 magnification images of the region 

indicated in the lower box in (A). Arrows in (G, H) indicate regions of apparent 

tubular drop out and fibrosis. Scale bar in (A) represents 1 mm. Scale bar in (D) 

represents 250 microns in (D–I). 
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Sample % 
Cortex 

Tissue 
Volume 

mm3 

SHG+ 
area % 

total 

Total 
cell 

Cell 
density 

cells/mm3 

THP+ 
cells/mm3 

(%) 

AQP1+ 
cells/mm3 

(%) 

MPO+ 
cells/mm3 

(%) 

CD68+ 
cells/mm3 

(%) 

CD3+ 
cells/mm3 

(%) 

Siglec8+ 
cells/mm3 

(%) 

1 90.5 1.73 11.7 248,050 143,506 4495 (3.1) 21,807 
(15.2) 

2,152 
(1.5) 551 (0.3) 5481 

(3.8) 
15 

(0.0001) 

2 89.9 0.62 10.9 154,471 249,772 14,166 
(5.7) 

21,81 
(8.5) 864 (0.3) 11 (0.0) 298 (0.1) 0 (0) 

3 60.4 1.03 12.3 214,769 207,947 38,840 
(18.7) 

40,221 
(19.4) 

5852 
(2.8) 435 (0.2) 4131 

(2.0) 0 (0) 

4 100 0.45 10.4 112,360 250,786 23,826 
(9.5) 

31,533 
(12.6) 

11,595 
(4.6) 

1129 
(0.5) 

16,452 
(16.6) 0 (0) 

5 44.7 0.72 7.7 234,685 326,625 99,141 
(30.4) 

63,357 
(19.4) 

3592 
(1.1) 

1063 
(0.3) 

8,706 
(2.7) 0 (0) 

Table 2.1 - Results of label free and VTEA analysis of five nephrectomy samples 
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Figure 2.3: 3D confocal immunofluorescence of structural markers. A) Maximum 

projection of combined autofluorescence and SHG images. B) Maximum projection of 

mosaic of confocal fluorescence image volumes of Oregon-Green phalloidin. C) 

Overlay of maximum projection confocal fluorescence images of phalloidin (green) 

and antibodies to Tamm–Horsfall Protein (THP, cyan) and aquaporin-1 (AQP1, 

magenta). D–F Show corresponding ×4 magnification images of the region indicated 

in the upper box in (A), and (G–I) show corresponding ×4 magnification images of the 

region indicated in the lower box in (A). Arrows in (G–I) indicate regions of fibrosis 

and apparent tubular drop out. Scale bar in (A) represents 1 mm. Scale bar in (D) 

represents 250 microns. 
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Figure 2.4: 3D confocal fluorescence microscopy and cytometry of structural and 

immune cell markers. A Maximum projection of combined fluorescence images of 

DAPI (gray), phalloidin (green) and antibodies to THP (cyan), AQP1 (magenta), 

myeloperoxidase (MPO, red), CD68 (yellow) and CD3 (white). Arrows indicate two 

regions of immune cell infiltrates. (continued on next page) 
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(Figure 2.4 cont.): B) Projection of 3D image volume of binary map of nuclei 

following image segmentation using VTEA. Each segmented nucleus is presented in 

an arbitrary color. Inset is an isomap of cell density with darker colors depicting 

higher cell densities. C) Distribution of different cell types following scatterplot 

gating. Green—phalloidin, Cyan—thick ascending limb, and Magenta—proximal 

tubules. Red—neutrophils, Yellow—macrophages, White—T cells. D, E Show 

corresponding ×4 magnification images of the regions indicated in the two boxes 

shown in (A). F, G Show scatterplots of the fluorescence intensity of THP vs. AQP1 

and MPO vs. CD68, respectively. In each scatterplot, the color of each point 

represents the fluorescence intensity of a third probe (phalloidin and AQP1, 

respectively were chosen for these examples). H, I Show the locations of the different 

cell types in the regions shown in (F, G), respectively, as determined by scatterplot 

gating. Scale bar in (A) represents 1 mm and 250 microns in (D). 
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Figure 2.5: 3D confocal fluorescence and multiphoton autofluorescence/SHG 

microscopy of regions of apparent injury. A) Maximum projection of combined 3D 

fluorescence image volume of phalloidin (green) and antibodies to THP (cyan), AQP1 

(magenta), myeloperoxidase (MPO, red), CD68 (yellow), and CD3 (white). B–E ×4 

magnifications of regions indicated in boxes in (A). Top row— confocal fluorescence 

images. Middle row—corresponding autofluorescence images. Bottom row— 

corresponding SHG images. Scale bar in (A) represents 1 mm and in (B) 250 microns 

for (B–E). 
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Figure 2.6: 3D Multiphoton autofluorescence/SHG and confocal immunofluorescence 

microscopy of diabetic renal biopsies. Gallery of 50 microns sections of diabetic 

biopsies. A–C) Maximum projections of combined 3D label-free autofluorescence 

and SHG images (Autofluor/SHG) (left) and immunofluorescence confocal images 

(right). Phalloidin (green), THP (cyan), AQP1 (magenta), myeloperoxidase (MPO, 

red), CD68 (yellow), and CD3 (white). D–F) Insets from biopsies representing 

highlighted regions in (A) through (C), respectively. The top row shows maximum 

projections of combined autofluorescence and SHG images and the bottom row shows 

corresponding immunofluorescence images. Scale bar in (A) represents 2 mm and in 

(D) represents 100 microns (D–F). 
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Sample % 
Cortex 

Tissue 
Volume 

mm3 

SHG+ 
area % 

total 

Total 
cell 

Cell 
density 

cells/mm3 

THP+ 
cells/mm3 

(%) 

AQP1+ 
cells/mm3 

(%) 

MPO+ 
cells/mm3 

(%) 

CD68+ 
cells/mm3 

(%) 

CD3+ 
cells/mm3 

(%) 

Siglec8+ 
cells/mm3 

(%) 

DN 1 90.8 0.1281183 9.4 59,852 467,163 343 (0.07) 52,131 
(11.2) 991 (0.2) 4355 

(0.9) 0 (0) 47 
(0.001) 

DN 2 100 0.01018575 12.6 48,827 479,365 2926 (0.6) 88 (0.02) 2258 
(0.05) 

216 
(0.05) 0 (0) 30 

(0.006) 

DN 3 100 0.0729754 27.3 41,536 569,178 260 (0.05) 96 (0.02) 2480 
(0.3) 

12443 
(2.2) 0 (0) 41 

(0.007) 

Table 2.2 - Results of label free and VTEA analysis of three diabetic biopsies 
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Figure 2.7: Scatterplots of glomerular nuclear density and immune cell density. A) 

Total cell densities for five reference (black dots) and five diabetic (red dots) cases. B) 

Density of all probed immune cells (myeloperoxidase (MPO), CD68, CD3, and 

SIGLEC8 positive cells) from the same samples. Each dot represents a single 

glomerulus. 
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Antibody Significance 
CD45 Leukocytes 
CD90 Differentiation 
CD3 Pan T Cells 
CD4 CD4+ T Cells 

CD11c Res. Dendritic 
CD45R0 Mem T Cells 

MPO Neutrophils 
CD68 Macrophages 

HLA-DR APCs 
AQP1 PT, TDL 

E-cadherin DCT, CD, Loop 
B-catenin Tubular epithelium 

LRP2 PT 
Podocalyxin Podocytes 
Uromodulin TAL 

a-SMA Arterioles 
CD31 (PECAM1) Endothelium 

Cytokeratin 8 CNT and CD 
IGFBP7 Injury 
pcJUN Stress kinase 

PROM1 (CD133) Fibrosis 
  

Table 2.3 - Antibodies used for CODEX multiplexed imaging 
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Figure 2.8: Automated detection, classification of cell-types and assessing cellular 

microenvironments in CODEX data with VTEA. Multiplexed immunofluorescence 

image dataset of human reference kidney was processed, segmented, and analyzed 

with VTEA. A) Maximum projects of subsets of channels highlighting tubular 

epithelium or immune cells in the renal cortex. Left panel indicates three regions 

given in Aa, Ab and Ac and segmentation mask (inset). Scale bars are 500 um and 30 

microns. B) Segmented cells with associated marker intensity with clustered using 

hierarchical clustering and projected into t-SNE space using the average intensity of 

associated markers. Putative cell-types as indicated. C) Marker intensity for clusters 

identified in B, normalized by marker. Cell types include subclasses of epithelial and 

leukocytes. TMEM and TN are putative memory and novel T-cells. epithelium 

identified included proximal tubule (PT) S1, S2 and S3 subsegments, loop of Henle 

thick ascending limb (TAL) and the distal nephron subsegments distal convoluted 

tubule (DCT) and collecting duct (CD). Markers are given at bottom. A subset of 

clusters had overlapping proximal tubule (LRP2-positive green arrowhead) and TAL 

(cyan asterisk) or leukocyte signatures (green and orange asterisks). D) Using cell-

types defined in C) and Figure 2.9, neighborhoods were defined in VTEA for every 

cell within 50 microns. The cell census for all neighborhoods was used to cluster and 

map the neighborhoods to t-SNE space in VTEA. E) The distribution of cell-types was 

plotted by neighborhood as a heatmap to identify unique microenvironments in the 

tissue volume. 
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Figure 2.9: Subclustering of epithelial cells in CODEX data uncovers novel cell states 

in the proximal tubular (PT) and thick ascending limb (TAL). A-B) Clusters 12 or 

clusters 0 and 7 from Figure 2.8 were subgated based on intermediate LRP2 

expression and either CD68 or PROM-1 or UMOD expression. C) Cluster 12 was 

reclustered separating CD68+ DCs, putative macrophages and CD68-positive PT 

cells. D) Clusters 0 and 7 were subgated and reclustered identifying two PT cell-types 

(PROM-1-positive vs. CD90+). E) CD68-positive DC-cells and putative epithelium 

are readily identifiable (Ea-f vs Eg-m). Ec-f and Ei-l are insets for Ea and Eh 

respectively. 
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Chapter 3- CODEX Multiplex Imaging of the Murine Kidney 

Introduction 

 CODEX multiplex imaging is a unique technology in that it expands the usability 

of a single tissue section beyond the limitations of standard imaging practices. With 

standard protein-based imaging, the number of probes that can be imaged at one time is 

limited to around four to eight probes, depending on the expertise of the user. In order to 

image multiple cell types in the kidney with standard imaging practices, numerous tissue 

sections would be necessary, which is not always possible with renal biopsy specimens, 

as discussed in the first chapter of this work. CODEX multiplex imaging removes the 

need for multiple tissue sections via its cyclic staining and imaging procedure.  

 Imaging with the CODEX system starts with a two-day staining process, where 

the tissue is subjected to a multi-step fixation followed by the addition of the primary 

antibodies. These antibodies have a unique oligonucleotide tag that is complimentary to 

only one specific barcode attached to a reporter that gets added later, during the imaging 

process. Once tissue imaging begins, the reporters are added to the tissue in sets of three, 

incubated, imaged, and then stripped from the tissue so the next set of three can be added.  

 Another benefit to the CODEX imaging process is that all probes of interest are 

being imaged on the same tissue slice at the same time. This allows for the most accurate 

cell association studies to be conducted, as it eliminates the need to superimpose 

consecutive sections on one another. While serial sectioning is a common practice for 

obtaining spatial relationship information on multiple cell types, there is the potential for 

artifacts to be introduced by incomplete alignment of the consecutive sections. There is 

also the possibility that sections could be skipped during sectioning, thereby increasing 

the chances of indirect correlations being made.   



 

83 
 

In our early studies where CODEX multiplexed imaging was used to validate 

findings from spatial transcriptomics, we showed that the distribution of infiltrating 

macrophages and neutrophils shifted towards the medulla with injury (Ferreira 2021). In 

order to further characterize these finding, we expanded both the antibody panel and the 

number of samples being analyzed. Mice from four different groups were selected, 

including wildtypes from sham and 22-minute clamp/6-hour recovery IRI surgery, as 

well as THP knockout mice from sham and surgery groups. THP has a diverse repertoire 

of functions in the kidney, including but not limited to water impermeability and ion-

channel activity of the TAL cells, homeostasis of calcium, magnesium and mononuclear 

phagocytes, and – most importantly for this study - susceptibility and response to kidney 

injury (Micanovic 2020).   

 THP is a protein uniquely made in the TAL cells of the kidney. During AKI, the 

production of THP is reduced at both the RNA and protein levels, therefore inducing a 

state of THP deficiency (Micanovic 2020). Due to this, THP knockout mice experience 

more severe injury than wildtype mice when they undergo IRI surgery. Because of THP’s 

role in signaling and other homeostatic regulatory processes (neutrophil and macrophage 

regulation, suppression of inflammation), the total loss of THP that is seen in the 

knockout state leads not only to a more severe injury, but also a longer lasting 

inflammatory state. Therefore, when looking at both wildtype and THP knockout mice 

that have undergone IRI surgery, one could hypothesize that there would be differences, 

not only in the amount of inflammation present, but also in the number and distribution of 

immune cells that are present.  
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 In this study we investigated eleven different samples, two wildtype sham, three 

wildtype IRI, three THP knockout sham, and three THP knockout IRI tissues. Each tissue 

was stained with 33 different antibodies, which are listed in Table 3.1, and imaged using 

CODEX multiplexed imaging. After imaging, unsupervised analysis of the segmented 

cells was utilized to facilitate their classification within the specimens. A unique aspect of 

this study is that all eleven datasets were combined into a single analytical space and 

investigated for changes in immune cell counts and distributions throughout the kidney. 

This was done using a scaling and normalization algorithm within the R software using 

cell objects derived from the VTEA analytical pipeline. With this approach, major cell 

classes were identified, including all tubule sections, broad immune cell classes, and 

different types of vasculature. In addition to the identification of major cell classes, such 

analysis allowed us to define the changes in immune populations between injury and 

sham, as well as between knockout and wildtype samples.  

Results 

Identifying major cell types and classes present in the mouse kidney 

The first goal of this experiment was to create an atlas of the murine kidney, 

identifying all of the major cell types present, including tubule segments, vasculature, 

resident immune cells, and other interstitial cells. In order to achieve this, all eleven 

samples were analyzed in one space to allow for direct comparisons between injury and 

sham, as well as THP knockout versus wildtype. This approach also allowed us to detect 

and correct for any batch effect between groups. Twenty-three cell clusters were 

identified, including five unique immune cell classes and three classes of non-defined cell 

types (Figure 3.1). All cell classes indicated were first identified using violin plots to 
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determine which clusters contained cells positive for specific markers (Figure 3.1). After 

putative cell classes were determined, we then validated these identities through a process 

of back-mapping, where clusters were overlayed onto the original image and the staining 

could be displayed next to the positive cells found. An example of this validation is 

shown in Figure 3.1 for three different cell classes.  

Cell types from each segment of the nephron were identified. For example, in 

proximal tubules we were able to distinguish S1, S2, and S3 segments. Podocytes were 

identified by their unique nephrin staining, and LRP2 (megalin) was used to identify the 

proximal tubules. Other markers that were used include the following: THP (uromodulin) 

for the thick ascending limbs (in wildtype mice), AQP2 for the collecting ducts, and 

Na+/K- ATPase for the distal nephron segments. The different components of the 

vascular system of the kidney were identified based on staining with endomucin, CD31 

(PECAM1), and von Willebrand factor for the endothelium, and a-SMA for arterioles.   

 For the immune cells, multiple antibodies were selected which ranged from pan 

markers to specific immune cell subtypes. CD45, MHCII, CD74, and CD3 were chosen 

to distinguish major immune cell types. Specifically, CD45 is present in almost all 

immune cells, MHCII is a marker for all antigen presenting cells, CD74 marks 

macrophage and myeloid cells, and CD3 is a pan T cell marker. We also included 

specific markers for immune subtypes such as T helper cells (CD4), cytotoxic T cells 

(CD8a), natural killer cells (NKp46), neutrophils (CD11b and Ly6G), and dendritic cells 

and M1/M2 macrophage differentiators (CD11c, CD206, CD169, and Chil3).  
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Subsetting the immune populations 

The parent clustering using Louvain methods (a graph based unsupervised 

clustering using community-based detection) provided five immune cell clusters. These 

were not very distinct clusters, leading us to believe many immune cell subtypes were 

consolidated into one cluster. Because of this, we decided to pull the five main immune 

cell clusters from the parent Louvain and re-clustered them with a new feature space that 

was specific to immune cells. Doing this resulted in 12 unique classes, as shown in 

Figure 3.2. Figure 3.2 also shows the immune cell Louvain clustering broken down by 

condition, in order to see any shifts in abundance from one condition to another between 

the clusters. The T cell and neutrophil clusters both showed an increase in injury, as well 

as in the absence of THP. There were nine different monocyte populations uncovered as 

well, including two classes of dendritic cells and seven macrophage classes. The two 

dendritic cell classes differed in their CD11c intensities, as well as CD74 and MHCII 

levels (Figure 3.2). For the seven macrophage classes, the distinctions were more subtle. 

There was one CD169+ macrophage class identified (Cluster 1, Figure 3.2), but the other 

six classes only differed in their levels of CD74 and MHCII staining (Figure 3.2).  

To help elucidate the types of macrophages, we then mapped each of the clusters 

back onto the image to see their distributions and how injury effected their location. 

Mac.2 and Mac.3, for example, were dispersed through the cortex of the WT Sham 

sections, but shifted towards the medulla of the kidney in IRI (Figure 3.3). While the 

abundance of Mac.2 and Mac.3 decreased in the THP knockout mice, the same shift 

towards the medulla was noted, leading us to believe that these are infiltrating 

macrophages. Mac.1, Mac.4, Mac.5, and Mac.6 showed less obvious distribution changes 
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when looking at the WT Sham and IRI sections. They did, however, show an increase in 

abundance in the THP knockout mice (Figure 3.3).  

Niche analysis of monocyte populations 

Due to the distribution changes noted in some of the immune cell classes, 

neighborhood analysis was conducted to quantify the associations and cell to cell 

interactions between macrophage populations of interest and tubule segments. With this 

analysis, we focused on the CD169+ macrophages, Mac.2, Mac.3 and Mac.5 clusters. 

Pearson’s correlation showed that Mac.2 and Mac.3 had a positive correlation with S1/S2 

PT’s, TAL.1 and TAL.2 in the WT Sham tissues (Figure 3.4). In the WT IRI samples, the 

positive S1/S2 PT correlation became negative, the TAL.1 positive correlation decreased, 

and the TAL.2 association markedly increased (Figure 3.4).  CD169+ macrophages 

showed an increased positive correlation in WT IRI samples as well, as did Mac.5. Mac.5 

however, showed an interesting association with the KIM1+ S3 PT’s that persisted in 

both the WT Sham and IRI groups. This population did however show the same increase 

in correlation with TAL.2 as the other macrophage clusters in the WT IRI sections.   

 When looking at the THP knockout tissues, Mac.2, Mac.3 and Mac.5 followed the 

same changes in correlations as the wildtype tissues. While they started as a scattered 

population in both the cortex and medulla in the THP knockout sham, they showed an 

increase in positive correlations with the more medullary-based TAL populations after 

injury (Figure 3.4). The CD169+ macrophages, however, showed a different pattern. 

Rather than shifting towards the TAL populations like the WT IRI samples, this 

population stayed associated with the PT populations, especially the S3 PTs, and also 

showed a shift towards the glomeruli in the knockout samples (Figure 3.4).  
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Discussion 

Using CODEX multiplexed imaging, we were able to image 33 different markers 

on a single tissue specimen, eliminating the need for serial sectioning and overlaying 

images onto one another to see associations of cell types. With this method, we identified 

each segment of the nephron, multiple types of vasculature, as well as twelve different 

immune cell subtypes. Within sections of the nephron, we were also able to subdivide the 

proximal tubules into four different classes, two of which were positive for KIM1. S1/S2 

segments were able to be differentiated from the S3 segments based on LRP2 staining 

intensity, which is known to be lower in the S3 segments. We were also able to identify 

the thick ascending limbs of the loop of Henle within the THP knockout mouse, even 

though THP was not present. To do so, Na+/K- ATPase staining intensity was evaluated, 

as the thick ascending limbs have a lower Na+/K- ATPase signal than that of the distal 

tubule segments. The classes identified as potential TAL clusters were also mapped back 

onto the tissues in order to confirm the location of these segments, as TALs are in both 

the cortex and early medullary regions.  

 For the immune cells, we created an expansive panel to be able to identify not 

only the major immune cell classes but also the specific subtypes within each group. This 

analysis provided twelve unique immune cells classes, including neutrophils, T cells, NK 

cells, dendritic cells, and macrophages. The neutrophils were identified by the presence 

of Ly6G, T cells by the presence of CD3, NK cells by the presence of NKp46, and 

macrophages were broadly identified by the presence of MHCII and CD74. In order 

identify the B cells and fully separate the T cell subtypes, there is some optimization 

needed with both the antibody selection and analysis. The dendritic cells and 
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macrophages, however, were able to be sub-classified with more resolution. There were 

two dendritic cell populations identified, clusters 3 and 10, that differed in their 

expression levels of CD11c. The seven macrophage clusters were able to be distinguished 

by levels of CD11b, CD169, and CD206 as well as the initial CD74 and MHCII levels. 

Immune cell cluster 1 was called CD169+ macrophage because of its high CD169 

intensity, setting it apart from the other macrophage classes. The other macrophage 

clusters were labelled Mac.1 – Mac.6, as the distinguishing features became less 

apparent. The Mac.1 population (Cluster 5) had some CD11b staining that the other 

populations did not have. Due to their response to injury and THP deficiency, the Mac.2 

and Mac.3 populations are likely infiltrating macrophages. Clusters 9, 11, and 12 (Mac.4, 

Mac.5, and Mac.6) were harder to distinguish, as their staining differences were only 

seen in MHCII and CD74. Mac.5 in particular is a population of interest, as it doesn’t 

respond to injury or THP deficiency as one would have expected. Mac.5 not only 

increased in the THP knockout mice, but it also stayed associated with the KIM1+ S3 

PTs in both the wildtype and THP knockout IRI mice. This suggests that rather than 

being regulated by THP, this population could be responding to the presence of KIM1.  

In this study, we were able to characterize the mouse kidney using a novel 

methodology. Characterizing the renal space of the mouse as extensively as we did can 

provide an almost endless amount of information, focusing on the immune cells was only 

the start of the possible routes that could be taken. Future directions for this project 

include looking into the other immune cell subtypes that were not explored yet, further 

classifying the proximal tubule classes and studying areas of injury, as well as analyzing 

changes in vasculature and its association with injury. The three non-defined classes that 
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were found could also be further studied to see what cell types might be present in those 

classes. This study could also be expanded to examine at other recovery time points, as 

the six-hour recovery is still early. Including later time points could help provide more 

information on the immune cell response, as more population changes may occur as 

recovery progresses.  

Methods 

 Tissue Sectioning  

10-micron sections were cut onto Poly-L-Lysine coated coverslips and stored at -

80C overnight until staining the next day.  

Tissue Staining  

Upon removal from -80C coverslips were placed on dririte beads for two minutes 

to thaw. Samples were then placed in acetone for ten minutes to remove the rest of the 

OCT from around the tissue and the coverslip. After washing in acetone, coverslips were 

placed in a humidity chamber for two minutes, then rehydrated in a two-step hydration 

buffer wash. Tissues were then fixed in a mixture of PFA and hydration buffer for ten 

minutes. After fixing, residual fixative solution was rinsed with hydration buffer, and 

then coverslips were placed in staining buffer for thirty minutes, during which the 

antibody cocktail was made for the samples. Tissues were allowed to incubate in the 

antibody cocktail overnight at 4C. After overnight incubation, tissues were washed of the 

staining solution in staining buffer, and then placed in a pos-label fixative solution for ten 

minutes. Tissues were washed again, fixed in methanol for five minutes, washed, and 

placed into a final fixative solution for twenty minutes. Coverslips were then stored in 

storage buffer and stored at 4C until imaging.  
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Reporter Plate 

Reporter stock solution was created using nuclease free water, assay reagent, 

DAPI, and 10x CODEX buffer. Solution was distributed into the appropriate number of 

wells for the number of cycles, and up to three reporters were added to each well.  

Imaging and Image Processing – Imaging of the coverslips was conducted using a 

Keyence BZ-X810 epifluorescence microscope, a 20x air objective, and filter cubes for 

DAPI, GFP, TRTIC, and Cy5. Images were stitched and processed using the CODEX 

Processing software. Processing included background subtraction to correct for 

autofluorescence, tissue drift compensation (cycle alignment), and deconvolution.  

Image visualization and analysis  

Visualization of images was conducted using ImageJ/FIJI, and initial analysis 

used VTEA, a free plugin for ImageJ.  In order to combine datasets into one analytical 

space, the data was imported into R studio, and was normalized and scaled before being 

analyzed.   
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Antibody Significance 
CD11b Macrophage 
CD45 Pan Immune Cells 
CD11c Dendritic Cells 
B220 B Cells 
CD3 T Cells 

CD169 Monocytes & Macs 
Ly6G Neutrophils 

CD206 M2 Macrophages 
Chil3 M2 Macrophages 
CD4 T Helper 
CD8a Cytotoxic T Cells 
Ly6C Bone Marrow Macs 

NKp46 NK Cells 
CD74 MHC Class II 

MHC-II APC’s 
CD90 Differentiation 

pMLKL Necroptosis 
CD71 Transferrin 

VCAM1 Non-repairing Cells 
pcJUN Stress Kinase 
Ki67 Proliferation 
KIM1 Injury 
ATF3 Injury 

Nephrin Podocytes 
LRP2 PT 
THP TAL 

NaK ATPase Distal Nephron 
AQP2 Collecting Ducts 
CD31 Vasculature 
VWF Endothelial 

a-SMA Arterioles 
Endomucin Endothelium 

  

Table 3.1 - Antibodies used for CODEX multiplexed imaging of mouse kidney specimens 
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Figure 3.1: CODEX multiplex imaging allows for the identification and classification 

of all major cell types present within the kidney, including immune cells and injured 

populations. A) Representative image of a wildtype sham kidney that was analyzed in 

this dataset. Channels included are CD31 (endothelium), LRP2 (proximal tubules), 

UMOD (thick ascending limbs), NaK ATPase (distal nephron), and AQP2 (collecting 

ducts). Scale bar is 1 mm. B) tSNE plot of the Louvain clusters from the eleven 

datasets analyzed. C) Violin plots showing the average intensity of specific markers 

across the different Louvain clusters determined in B. D) Back mapping of three 

different clusters to show the validation steps that are taken to confirm the identities of 

each cluster proposed in B. 
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Figure 3.2: Subclustering and identifying immune cell populations. A) tSNE plot of 

the immune subclustering results from the immune populations pulled from the parent 

Louvain in Figure 3.1B. B) The immune tSNE plot broken down by condition to show 

changes in the abundance of each cluster across the conditions. C) Violin plots 

showing the average fluorescence intensity of major immune cell markers.  
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Figure 3.3: Changes in abundance and distribution of myeloid cells in injury and THP 

-/- mice. A) The percent of the total cell count from each specimen per condition of 

the eight myeloid cell subclusters found in this analysis. B, C) Back mapping of each 

of the myeloid cell clusters are shown in white with AQP2 staining in magenta. 

Representative tissues from the wildtype sham and IRI groups are shown. 
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Figure 3.4: Myeloid niches change in injury and THP -/-. Pearson correlation plots 

show the associations of macrophage classes of interest with different sections of the 

nephron and their shifts in injury and THP -/- 
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Chapter 4 - Surveying the heterogeneity in the human renal cortex and its changes with 

disease  

Introduction  

 In order to elucidate the changes that occur in the renal cortex during disease, the 

CODEX multiplex imaging and analysis pipeline was applied to human kidney tissue 

specimens. We created a panel of antibodies, shown in Table 4.1, to not only annotate the 

cell populations and niches present in healthy reference tissue, but also to understand the 

changes that may occur in patients with AKI, as well as a variety of other diseases, 

including CKD, IgA nephropathy, and Systemic Lupus Erythematosus (SLE). Samples 

from patients with stone disease were considered “reference” tissues for this study, as 

those patients had no comorbidities or evidence of disease aside from stone formation. 

Stone disease samples with no comorbidities have been validated as a good source of 

reference tissue in previous studies (Winfree 2022, Sabo 2022).  

 With the five reference samples analyzed in this study, all major tubule segments 

were able to be accurately identified, as well as endothelial and vasculature cell types, 

and major classes of immune cells. When comparing reference tissue to any of the 

disease states, changes were seen in the proportions of immune cell populations, an 

increase in a class of stromal cells (potential features of fibroblasts versus altered 

endothelial cells) with disease, and a decrease in a population of proximal tubules that 

were also positive for thymocyte differentiation antigen-1 (also known as CD90) in 

disease. CD90 is a regenerative cell marker and is often associated with damaged or 

actively repairing cells. Studies that have been conducted on specimens from patients 

with DKD showed that while serum and urinary levels of CD90 went up with disease, 
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protein levels in renal tissue were significantly decreased (Wu 2020). A significant 

correlation between tubular CD90 and renal function was noted as well, indicating that 

CD90 is shed from proximal tubules as disease progresses (Wu 2020). Characterization 

of these cell types at the protein level using an imaging approach in the human kidney has 

not been previously performed.  

Results 

Creating an atlas using reference tissue specimens  

 In order to create a comprehensive protein-based imaging library of healthy renal 

cortex, five reference tissue specimens underwent CODEX multiplex imaging using the 

marker panel shown in Table 4.1 and combined into a single analytical space, as 

described in the previous chapter. Examples of each of the antibodies used are also 

shown in Figure 4.1. Using the Louvain unsupervised clustering method, we found a total 

of sixteen unique classes of cells (Figure 4.2). Within these sixteen classes, the expected 

major cell types were identified, including all sections of the nephron, vessels and other 

endothelial cells, and various immune cells. As was described in Chapter 3.2 with the 

mouse studies, putative cell classes were determined using violin plots of average marker 

intensity and then validated with back-mapping in the imaging data (not shown).  

For the nephron segments, podocalyxin was used to mark the podocytes, LRP2 

and AQP1 for proximal tubules, THP for the thick ascending limbs, E-cadherin for the 

distal nephron, and Cytokeratin 8 for the connecting tubules and collecting ducts. β-

catenin was also used to mark the tubule epithelium through the whole nephron. For the 

vasculature, α-SMA was selected to identify the arterioles and CD31 for other 

endothelial cells. Along with the major tubule segments, we also uncovered some 



 

101 
 

unexpected tubule subclasses, including a class of CD90+ proximal tubules and a class of 

PROM1+ (prominin-1 or CD133) proximal tubules (Figure 4.2). There were also two 

immune cell populations that were identified: one resident macrophage population, and a 

T cell population.  

 Using the cell classes defined in Figure 4.2, we then performed cell-centric 

neighborhood analysis in order to determine cell associations within niches and the 

distribution of specific cells, based on distance. Each tubule segment had their own niche, 

including the CD90+ proximal tubules (neighborhood 1, Figure 4.3). In total, there were 

four different neighborhoods with significant levels of at least one proximal tubule class. 

Another niche of interest was neighborhood 5, which showed a significant association 

between the resident macrophage population and the PROM1+ S1/S2 PT population, 

along with some of the endothelial classes. Based on recent data from the KPMP, 

PROM1+ proximal tubules may be associated with altered repair states (Lake 2022).  

Combining reference and disease specimens 

Four specimens from patients with different renal diseases were imaged in the 

same manner as the reference tissues and were added to the combined analytical space. 

Adding these disease specimens expanded the dataset to 169,802 cells, and the number of 

clusters identified with Louvain clustering increased to seventeen (Figure 4.4). The same 

major cell classes were identified, including the CD90 and PROM1+ proximal tubule 

clusters. The combined Louvain set was then separated to show changes in cell 

abundance in each cluster between the reference and disease tissues. Doing this showed a 

significant difference in two populations: the CD90+ proximal tubule population and a 
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population of stromal cells (Figure 4.4). The CD90+ proximal tubule population showed 

a decrease, whereas the stromal cell class showed a prominent increase with disease.  

 As was done with the reference tissues, neighborhood analysis was conducted on 

the combined dataset in order to see changes in the niches present in the various types of 

diseases included. Figure 4.5 shows a breakdown of the neighborhoods found in the 

combined dataset. Notable neighborhoods include 1, 3, 4, and 5, all of which have a high 

proportion of the stromal cells class and neighborhood 11, which contains the CD90+ 

proximal tubule population. For the neighborhoods containing stromal cells, distinctions 

can be made by the distribution of cells present. Neighborhood 1 has the largest 

proportion of this stromal cell class and contains DC/myeloid cells. Neighborhood 3 

shows a correlation between stromal cells and PROM1+ proximal tubules. Neighborhood 

4 contains a large proportion of CD4+ T cells. Lastly, neighborhood 5 indicates these 

stromal cells can also be associated with S1 and S2 proximal tubules.  

Changes in neighborhood proportions in disease 

When comparing the distribution of neighborhoods between reference and 

disease, neighborhood 1 shows a large increase in the disease group, while almost absent 

in the reference group (Figure 4.5). The proportion of neighborhoods 4 and 5 was also 

increased in the disease group, though not as dramatically as is seen with neighborhood 1. 

The CD90+ proximal tubule-specific neighborhood (neighborhood 11) was not present in 

the disease tissues but was very prominent in the reference set. Neighborhood 3 was the 

only neighborhood of interest that showed no significant change in disease.  

 To see if these changes were consistent between the four disease groups studied, 

we also examined the neighborhoods for each disease sample separately (Figure 4.5). 
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Neighborhood 1 was increased in all four disease samples, with IgA showing the largest 

increase. For neighborhood 4, the AKI sample showed the largest increase, and the IgA 

sample was similar to that of the reference sample. Neighborhood 5 showed a decrease in 

the IgA sample compared to reference, but the other three disease samples were increased 

compared to reference. As expected, neighborhood 11 was either small or nonexistent in 

all four disease samples, and neighborhood 3 only showed an increase in the CKD 

sample.  

Discussion 

This study provided new insight into the renal cortex in both healthy reference 

and disease specimens. We were able to identify multiple cell types, encompassing each 

major segment of the nephron, vasculature and vessels, major immune cells, and injured 

cell types as well. There was a unique CD90+ proximal tubule population that was only 

present in the reference samples, a PROM1+ proximal tubule population that was present 

in both reference and disease groups, and a stromal cell population that was prominently 

present in the disease samples. CD90 has been associated with mesenchymal stem cells 

and a regenerative potential (Wu 2021). Therefore, a decrease in the abundance across all 

disease states included in our analysis could be explained by advanced disease and loss of 

repair potential. This decreased presence could also support what was suggested by Wu et 

al, that severe injury may cause a shedding of CD90 from the tubular epithelium (Wu 

2020).  

 The PROM1+ proximal tubule population was present in both reference and 

disease tissues, with a slight increase in the disease tissues. This population was present 

in neighborhood 3, which also had a prominent association with the stromal cell class. 
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PROM1 has similar proposed functions to CD90 and has been seen in association with 

regeneration and repair (Shrestha 2021). Since the CD90+ proximal tubules and the 

PROM1+ proximal tubules were seen in separate populations and neighborhoods, this 

could indicate that these markers are labelling different cell types, the function of which 

is linked to their spatial distribution and the interacting cells within that 

microenvironment.    

 Another interesting population that was uncovered with the addition of disease 

specimens was the stromal cell population. When studying reference tissue alone, this 

population was not present, but it had a prominent presence in the disease tissues, 

indicating a potential association with injury or inflammation. Future studies that 

incorporate additional antibodies could uncover whether this population is made of 

several cell subtypes. With the current panel of markers used, we hypothesize that these 

are a stromal cell population, and the increased presence in disease tissue may be 

consistent with changes in fibrosis and inflammation.   

 There are a handful of weaknesses that come with this study, the first of which is 

the low number of samples investigated for each disease state. As this is one of the first 

studies using CODEX multiplex imaging to survey the human kidney, our primary goal 

was to create a representative sampling of healthy cortical tissue, and then expand the 

technology to study disease and validate its use on non-healthy tissue. We were 

successful with both parts of this goal, and future work will be to increase the sample size 

for each disease state, as well as include other pathologies such as diabetic kidney disease 

or focal segmental glomerulosclerosis. We also aim to expand the antibody panel and 

incorporate markers that could provide additional insights into pathways of disease. 
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While we created a robust structural panel, the immune and injury markers have room for 

improvement. The major immune cell classes were able to be identified with the current 

panel, but the specific cell subclasses were not investigated. Similarly, the injury markers 

were not fully investigated in this study, aside from CD90 and PROM1.  

 Because of the richness and depth of information present in this dataset, focusing 

on the proximal tubules and their injured subtypes represented one possible way to guide 

the analysis. With the nature of this methodology, the analysis could easily be adjusted to 

look at specific aspects of each disease state as well. Rather than focusing on damaged 

tubules, immune cells could be targeted for analysis, or the glomeruli. Vasculature could 

also be analyzed for changes in density or evidence of injury across various disease 

states.  

Methods 

Tissue Sectioning  

10-micron sections were cut onto Poly-L-Lysine coated coverslips and stored at -

80C overnight until staining the next day. Serial sections were collected for each biopsy.  

Tissue Staining 

Upon removal from -80C coverslips were placed on dririte beads for two minutes 

to thaw. Samples were then placed in acetone for ten minutes to remove the rest of the 

OCT from around the tissue and the coverslip. After washing in acetone, coverslips were 

placed in a humidity chamber for two minutes, then rehydrated in a two-step hydration 

buffer wash. Tissues were then fixed in a mixture of PFA and hydration buffer for ten 

minutes. After fixing, residual fixative solution was rinsed with hydration buffer, and 

then coverslips were placed in staining buffer for thirty minutes, during which the 
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antibody cocktail was made for the samples. Tissues were allowed to incubate in the 

antibody cocktail overnight at 4C. After overnight incubation, tissues were washed of the 

staining solution in staining buffer, and then placed in a pos-label fixative solution for ten 

minutes. Tissues were washed again, fixed in methanol for five minutes, washed, and 

placed into a final fixative solution for twenty minutes. Coverslips were then stored in 

storage buffer and stored at 4C until imaging.  

Reporter Plate 

Reporter stock solution was created using nuclease free water, assay reagent, 

DAPI, and 10x CODEX buffer. Solution was distributed into the appropriate number of 

wells for the number of cycles, and up to three reporters were added to each well.  

Imaging and Image Processing – Imaging of the coverslips was conducted using a 

Keyence BZ-X810 epifluorescent microscope, a 20x air objective, and filter cubes for 

DAPI, GFP, TRTIC, and Cy5. Images were stitched and processed using the CODEX 

Processing software. Processing included background subtraction to correct for 

autofluorescence, tissue drift compensation (cycle alignment), and deconvolution.  

Image visualization and analysis 

The resulting images were visualized using ImageJ/FIJI, and initial analysis was 

conducted using VTEA. Images were visually assessed for tissue and staining quality, 

before using unsupervised analysis to remove any potential artifacts. After sections were 

visually checked for staining and imaging quality, each sample underwent semi-

supervised classification in order to ensure similar major cell types could be identified 

between each sample, using VTEA. After samples were validated, the resulting data was 
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combined into one analytical space in R, allowing us to directly compare the samples to 

one another.    
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Antibody Significance 
CD8 CD8+ T Cells 

CD20 B cells 
CD45 Leukocytes 
CD90 Differentiation 
CD3 Pan T Cells 
CD4 CD4+ T Cells 

CD11c Res. Dendritic 
CD206 M2 

CD45R0 Mem T Cells 
MPO Neutrophils 
CD68 Macrophages 

HLA-DR APCs 
AQP1 PT, TDL 

E-cadherin DCT, CD, Loop 
B-catenin Tubular epithelium 

LRP2 PT 
Fibronectin Pre-collagen 
Podocalyxin Podocytes 
Uromodulin TAL 

a-SMA Arterioles 
CD31 (PECAM1) Endothelium 

Cytokeratin 8 CNT and CD 
Citruline H3 Netosis 
OPN (SPP1) Osteopontin 

Ki67 Prolif. Cells 
Vimentin Fibroblasts 
IGFBP7 Injury 
KIM-1 Injury 

pMLKL Necroptosis 
VCAM1 Non-repairing  

ERG Endothelial Nuclei 
EGFR Growth Factor 
pcJUN Stress kinase 

PROM1 (CD133) Fibrosis 
FOXP3 T Regs 

LC3 Autophagy 
  

Table 4.1 - Antibodies used for CODEX multiplexed imaging on human renal cortex 
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Figure 4.1: Staining panel utilized for the human CODEX experiments. A) 

Representative image from one of the reference specimens imaged. Channels included 

are CD31 (endothelium), PODXL (podocytes), CHD1 (tubular epithelium), AQP1 

(proximal tubules) and LRP2 (proximal tubules). Scale bar is 500 microns. B) 

Example images of all of the structural antibodies used in the staining panel. All 

images are scaled the same, scale bar is 500 microns. C) Example images of cell state 

markers included in the staining panel. Scale is 200 microns. D) Example images of 

immune cell markers included in the staining panel. Scale is 200 microns. E) 

Composite image of the vascular-specific stains included in the staining panel. Scale 

is 50 microns.  F) Composite image showing an example of tubule staining of both 

proximal tubules and distal convoluted tubules. Scale is 50 microns. G) Example 

region showing T Cell staining using CD3 and CD4. Insets highlight an example of 

overlapping staining between CD3 and CD4. Scale bar is 20 microns. 
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Figure 4.2: Louvain clustering of reference tissue identifies major cell types. tSNE 

plot showing the classes that were determined using Louvain clustering methods with 

segmented cells. Class identities label each cluster, and are listed with their cluster 

color association.  
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Figure 4.3: Neighborhood analysis of reference tissues. Stacked bar plot showing the 

distribution of cell classes from Figure 4.2 across 12 different niches. Bars represent 

proportion of each nice a specific group makes up.  
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Figure 4.4: Louvain clustering of reference and disease tissues show changes in 

abundance of clusters A) tSNE plot showing the Louvain clusters found when 

combining reference and disease specimens. B) tSNE plot from A displaying cells 

from reference tissue specimens only. C) tSNE plot from A displaying cells from 

disease tissue specimens only 
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Figure 4.5: Neighborhood analysis of reference and disease specimens so unique 

injury niches. A) Stacked bar plot showing the niches present in the reference and 

disease specimens combined. B) Stacked bar plot showing niches of all reference 

versus all disease. C) Stacked bar plot showing niches of all reference versus each 

disease specimen individually  
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Chapter 5 - CODEX Multiplex Imaging of the Renal Papilla 

Introduction 

 As mentioned in previous chapters, the human kidney is made up of distinct 

regions, each performing a specific and important role in maintaining proper kidney 

function. Of these regions, the papilla is one of the least studied and little is known about 

its exact role. Collecting ducts and the thin limbs of the loops of Henle are the main 

structural components of the papilla, along with vasculature and interstitial space. Some 

studies have found that the papilla may contain a niche of stem cells, though there is still 

some debate on this topic (Vanslambrouck 2011). There is a limited amount of 

information available on the papilla, leaving it an understudied mystery.  

 Understanding the structure of the papilla and the way cells interact with one 

another will be crucial in answering a lot of the questions surrounding the growth and 

development of RP and kidney stones. One of the main questions that remains 

unanswered is what happens to the papillary tissue when plaque starts to develop in the 

kidney. Current theories suggest that as plaque forms, it eventually breaks through the 

epithelial lining of the renal papilla and becomes exposed to the urine space, allowing 

stones to develop overtime (Kahn 2015). There are some persons that form plaque 

without ever having a stone event, though the true prevalence of that is unknown. 

Determining what changes in the papilla that allow the plaque to breach the epithelial 

layer is an important step in understanding the events leading to stone formation.  

 Included in this chapter is a manuscript summarizing work that was conducted in 

order to help characterize the papilla and elucidate the roles of the cells present in the 

space. Spatial transcriptomics and CODEX multiplex imaging were once again utilized in 
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tandem, this time on human papillary samples from either reference nephrectomies or 

kidney stone former that underwent surgery for stone removal. For this manuscript, I 

conducted all of the CODEX experiments, including development of the antibody panel 

and setting up/initiating the analytical pipeline. I was also tasked with overseeing the 

final interpretations of the data included in the following manuscript. (Italicized text 

below is used by permission of the authors.)  

5.1 – A spatially anchored transcriptomic atlas of the human kidney papilla identifies 

significant immune injury and matrix remodeling in patients with stone disease  

Introduction 

The prevalence of kidney stone disease, or nephrolithiasis, is increasing in the US 

and around the world. Nephrolithiasis is associated with significant morbidity, impaired 

quality of life and significant health care utilization. This disease is complex, with a 

multifactorial etiology influenced by genetic and environmental factors (Worcester 2010) 

(Howles 2020). Despite decades of innovation and efforts by researchers to describe its 

pathophysiology, the precise mechanisms contributing to kidney stone formation remain 

poorly understood (Khan 2021). A key factor leading to this knowledge deficit is the 

paucity of data on the cellular and molecular makeup of the kidney papilla and its 

alteration with stone disease. In addition, the spatial distribution of various cell types and 

their association with mineral deposition (such as Randall’s plaque) during stone disease 

is largely unknown.  

Experimental studies in rodent models of crystal formation and mineral deposition 

suggest that stone disease may be driven by inflammation, oxidative stress and 

osteogenic-like changes in the kidney papilla (Khan 2012, Joshi 2015, Khan 2016, 
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Taguchi 2017). However, human data in stone patients are often limited (Khan 2021). 

There is some evidence to suggest a role of the immune system in the pathogenesis of 

stone disease. For example, proteins associated with immune cell activation have been 

discovered in proteomic studies of kidney stones from patients (Mushtaq 2007, Canales 

2010, Okumura 2013, Kusmartsev 2016, Tang 2019, Xia et al. 2021). However, it 

remains unclear if the identified proteins are directly involved in the formation of CaOx 

stones or if they are simply a byproduct of non-stone related events (Witzmann 2016). 

The enrichment of specific immune proteins can depend on the type of stone, such as the 

preponderance of neutrophil proteins in brushite compared to CaOx stones (Makki 2020).  

Renal papilla samples from stone formers are very challenging to obtain as they 

require a biopsy during a nephrolithotomy surgical procedure. Molecular data from such 

specimens is more limited. In CaOx stone formers, Taguchi et. al. showed enriched gene 

expression of pro- inflammatory M1 macrophages by bulk microarray analysis of human 

papillary samples, thereby supporting an important role of macrophage activity in kidney 

stone disease (Taguchi 2016, Taguchi 2021). However, the complexity of immune cell 

types, their distribution and spatial neighborhoods are not known in humans. Such 

knowledge could be important to understand the mechanisms of stone pathogenesis, 

particularly to determine if immune activation is widespread or limited to cell niches 

associated with mineral deposition in the papilla.  

Indeed, it is unclear if the underlying pathology in stone disease is limited to areas 

of plaque deposition or if it is more diffuse across the papilla. Technological advances 

such as single cell and spatial transcriptomics, and large-scale high-resolution imaging, 

allow for the spatial definition of cell types and states based on transcriptomics and 
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protein markers. These technologies can advance our understanding of the pathogenesis 

of nephrolithiasis by defining spatial niches of various cell types/states in stone disease 

and address existing gaps.  

In this work, we procured difficult to obtain human kidney papilla biopsy 

specimens from stone formers and reference nephrectomy tissues to create a spatially 

anchored transcriptomic atlas of the renal papilla using integrated single nuclear RNA 

sequencing (snRNAseq) and spatial transcriptomic (ST). By using high-resolution large-

scale multiplexed 3D and CODEX imaging, we defined the spatial localization and 

niches of specific cell subtypes of the human papilla and the changes in this landscape 

with stone disease. We discovered that areas of mineral depositions are immune active 

zones consisting of immune injury and matrix remodeling genes that affect multiple cell 

types extending beyond areas surrounding mineralization. Our studies also identified 

MMP7 and MMP9 as potential urinary biomarkers associated with stone disease and its 

activity.  

Results 

Identification and localization of cell types in the kidney papilla  

We recently reported a comprehensive single nuclear RNA sequencing 

(snRNAseq) profile (over 200,000 cells) of the adult human kidney from the HuBMAP 

and KPMP consortia (Figure 5.1A) (Lake 2021). We leveraged this dataset to gain a 

deeper understanding of cell type diversity in the human kidney papillae and unique 

features compared to the cortical- medullary cell types. Renal papilla samples contributed 

20,338 nuclei to this dataset (Figure 5.1B). These samples were acquired from papillary 

biopsies of CaOx stone formers or were dissected from reference nephrectomies. In 
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addition to the expected papillary cell types such as principal and intercalated collecting 

duct cells, descending and ascending thin limbs, papillary surface epithelial, stromal and 

endothelial cells (Figure 5.1C), notable differences in gene expression were observed 

between papillary and cortico-medullary principal (PC) and intercalated (IC) cells (Figure 

5.1D). For example, the urea transporter UT2 (SLC14A2) and Aquaporin 2 (AQP2) were 

both upregulated in papillary PCs and ICs. In contrast, the expression of the epithelial 

sodium channel ENaC (SCNN1G, SCNN1B) and PTH receptor (PTH2R) were more 

abundant in the cortico-medullary nuclei. Further, the gene RALYL, encoding the RNA- 

Binding Raly-Like Protein and responsible for the cystic Bardet-Biedl Syndrome 1, was 

predominantly expressed in PCs outside the papilla (Figure 5.1D). Distinct sodium 

bicarbonate transporters were also expressed in papillary as compared to cortico-

medullary cells. These findings highlight the unique physiological role of these papillary 

cells in regulating water and urea transport and acid base balance in this unique 

environment and may have relevance to the pathogenesis of cystic disease.  

We then sought to orthogonally validate these cell types and spatially resolve 

them in papillary tissue from controls and nephrolithotomies of subjects with CaOx 

stones. We used snRNA-seq labels to resolve the ST gene expression profiles obtained 

from 10X Visium (Figure 5.1E-P). The integrated analysis showed the mapping of the 

appropriate histological structures with the papillary tubules (Figure 5.1F-G). The 

majority of papillary surface epithelial cells (PapE) mapped to the outer edge as expected 

(Figure 5.1E, H, N). Fibroblast and immune signatures were identified in all the samples 

tested. We found a unique population of undifferentiated cells that were enriched in 

injury associated genes and lacked a transcriptomic signature specific to a unique cell 
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identity (Figure 5.1B). Undifferentiated cells were more abundant in stone disease 

samples (Figure 5.1Q). ST data showed that these cells frequently localized near areas of 

mineralization and are likely a result of localized injury to the adjoining tubules (Figure 

5.1H-J).  

Further characterization of the PCs showed that in addition to the healthy PC1 

population, a PC2 population enriched with stress/injury genes was identified. These 

principal cell subtypes were compared to the undifferentiated epithelial cell type that also 

exhibited an injury signature (Figure 5.1B). Stone samples had a higher proportion of 

PC2 (compared to PC1) and undifferentiated cells by both snRNAseq and ST (Figure 

5.1Q). Both PC1 and PC2 cells expressed canonical papillary PC markers; however, PC2 

cells also expressed injury markers such as VIM, JUNB, JUND, LCN2 and MAP1LC3B 

(LC3) (Figure 5.1R). The undifferentiated epithelial cells had greater expression of injury 

markers such as PROM1, IGFBP7 and SPP1 and likely represents a degenerative state.  

To extend the transcriptomic cell type prediction to the protein level, we 

performed highly multiplexed CODEX imaging of reference tissues using 32 cell 

markers (Figure 5.1S-X). Applying unsupervised analysis and classification based on the 

markers used, the presence of various expected cell types was confirmed, mapped within 

the tissue, and aligned with the cell types from the transcriptomic datasets (Figure 5.1T 

and 5.1U). We confirmed the presence of a significant resident immune cell population, 

with a predominance of macrophages with high expression of CD206 (M2-

Macrophages). CODEX analyses uncovered two populations of collecting duct cells in 

the papilla, CD1 and CD2, which predominantly consist of principal cells based on the 

distribution outlines in Figure 5.1C. These two populations were differentiated by the 
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expression of injury and renewal markers in CD2 such as LC3, p-MLKL, PROM1 and 

Ki67 and were consistent with the transcriptomic injury signature uncovered in PC2 cells. 

We also uncovered a population of undifferentiated epithelial cells (Figure 5.1T, 1U) 

whose protein expression profile also overlaps with the undifferentiated population 

uncovered by ST (high expression of IGFBP7 and PROM1). Thus, using snRNAseq, ST 

and CODEX we validated the cellular diversity in the papilla and identified new cell 

populations with plausible biological significance (see below).  

Using CODEX, we then explored the population of stromal cells localized in the 

papillary interstitium, which was divided into separate cell classes based on an 

unsupervised analysis (Figure 5.1W). We uncovered and spatially mapped two 

populations of fibroblasts based on the expression of fibronectin (FN1), vimentin (VIM) 

and osteopontin (SPP1 or OPN). We also identified a population of myofibroblasts with 

high expression of α-SMA (Figure 5.1X). The presence of fibroblasts in the papilla is 

consistent with our snRNAseq and ST findings in Figure 5.1E-1P.  

Transcriptomic signatures of CaOx stone formation within the renal papilla  

Using the snRNAseq data, we determined the differentially expressed genes 

(DEGs) between CaOx stone and reference samples for each cell type in the papilla 

(Figure 5.2 A-D). Multiple cell types in stone samples expressed increased levels of 

injury and stress genes such as SPP1, CLU, LCN2, S100A11, MMP7 and CD74. These 

injury genes were similarly upregulated in the cell signatures and global gene expression 

in the ST stone samples (Figure 5.2E-F). Pathway analysis detected significant 

enrichment of common pathways related to protein translation, among the cells from 

patients with stone disease. We also observed enrichment of pathways of interest (Figure 
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5.2 A- D), such as: leukocyte activation, response to oxidative stress, ossification, 

extracellular matrix organization in most cell types, which overlapped with enriched 

pathways obtained independently from the spatial transcriptomic analysis. The 

concordant results between technologies increase the confidence in the biological 

relevance of these pathways in the pathogenesis of stone disease.  

To further gain insights into the pathogenesis of injury in stone disease, we looked 

in more detail at MMP7 expression, a gene involved in injury and matrix remodeling and 

consistently upregulated in the papillae from patients with stone disease. Figure 5.3 

shows the spatial and relative gene expression maps of MMP7. Interestingly, in reference 

tissue, MMP7 was confined to CDs, but in stone patients MMP7 showed a diffuse 

expression pattern, which was consistent with the generalized increased expression 

observed in most cell types from the snRNAseq and combined analysis (Figure 5.2E and 

5.2F).  

Regional analysis of mineralized and non-mineralized tissues  

Mineral deposition such as Randall’s plaque formation is thought to play an important 

role in the formation of stone disease. However, plaque formation is frequently focal, and 

the cellular and molecular alterations present in the microenvironment of mineral 

deposits could be important in the pathogenesis of this disease. Supervised analysis of 

spatial transcriptomic profiles based on the selection of mineral deposits in a stone 

forming papilla are shown in Figure 5.4. The results indicate that transcript signatures of 

genes such as NEAT1, CHIT1, LYZ, SPP1 and MMP9 are upregulated in areas 

contiguous to mineralized tissue compared to regions more distant (non-contiguous) to 

mineral (Figure 5.4). These genes are also associated with pathways of leukocyte 
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activation and response to oxidative stress. The expression of genes involved in 

macrophage activation such as MMP9 and CHIT1 (Figure 5.4B) was upregulated in the 

area of mineralization as compared to the non-contiguous region.  

We next wanted to better define the niche of the mineralization nidus and 

understand its contribution to injury, particularly with our findings of enrichment of 

immune cell marker genes and their association with mineral deposition. We used 

CODEX multiplexed imaging in conjunction with a panel of antibodies directed to 

different immune cell types (Figure 5.5). We took advantage of the autofluorescence 

properties of mineral deposits (Figure 5.5A-B), whereby the plaque can be identified 

without staining (Makki 2020, Winfree 2021). The main cell clusters identified in 

refences tissue (Figure 5.1T-U) were also identified here, except that there was marked 

expansion of the immune clusters (Figure 5.5B). Additional unsupervised analysis 

(Figure 5.5C) was performed on the CD45+ cell clusters from the initial analysis (Figure 

5.5B), which resolved immune cells into major lymphocyte and myeloid clusters. The 

latter can be broadly divided into three categories based on markers such as CD68 and 

CD206, which correspond to an inflammatory (M1), alternatively activated (M2) and 

intermediate phenotype (M1/M2). Mapping back immune cells to the tissue images 

reveals that certain areas of plaque deposition serve as a nidus for immune activation 

(Figure 5.5D), where the deposited mineral is surrounded by inflammatory macrophages 

(M1 and M1/M2), which are known to be antigen presenting cells (APCs) (Figure 5.5E). 

At the periphery of this immune nidus, these APCs interact with CD4+ T and B 

cells, a phenomenon consistent with classic immune activation and synapse formation 

(Figure 5.5E). Interestingly, not all the plaque areas are involved with immune activation, 
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and neighboring areas with mineral did not have significant immune cells. We then 

examined the distribution of other interstitial cell populations such as fibroblasts and 

myofibroblast in these areas (Figure 5.5F-G). The plaque areas without immune activity 

had significant fibroblast infiltration (Figure 5.5H). Cumulatively, these data demonstrate 

that the presence of plaque is immunogenic. It elicits a varied immune response with a 

defined progression from myeloid to a mixed lymphocytic infiltrate and a non-

overlapping fibrogenic response consisting of activated fibroblasts and myofibroblasts for 

repairing the injured tissue.  

Large scale 3D imaging and tissue cytometry establishes inflammatory stress signaling 

and macrophage activation as cardinal features of stone disease  

Next, we wanted to determine if immune activation and oxidative injury are 

cardinal features in the papilla of CaOx stone forming patients, independent of large 

mineral deposits. Using quantitative large-scale 3D imaging and tissue cytometry on 

papillary tissue specimens from controls and subjects with CaOx stone disease and no 

visible mineral deposits (N=4 each group), we quantified the expression and distribution 

of phosphorylated c-JUN (p-c-JUN, marker of oxidative stress and stress kinase 

activation) and CD68 (marker for inflammatory macrophages) (Figure 5.6). Patients with 

CaOx stones compared to controls had a significantly higher abundance of CD68+ 

macrophages (3.4 +/- 1.4 vs. 1.2 +/- 1.1 % of total cells, respectively; p=0.03) and p-c-

JUN+ cells (12.4 +/- 4.0 vs 4.0 +/- 3.8 % of total cells, respectively, p=0.01) than non-

stone formers. Macrophage infiltration was diffuse, and activation of c-JUN was not 

restricted to a specific cell type (Figure 5.6D), which is consistent with the findings from 
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snRNAseq and transcriptomic analyses suggesting increased stress signaling across 

multiple cell types in the papillae of stone patients.  

MMP7 and MMP9 levels are increased in urine of kidney stone patients and correlate 

with disease activity  

The snRNAseq and ST datasets revealed upregulation of MMP7 gene expression 

in the papillae of patients with stone disease and the upregulation of MMP9 gene 

expression in regions of mineralization. While these two matrix remodeling genes could 

explain some of the mechanisms behind papillary stone-associated injury, we next asked 

if their urinary secretion can also screen for stone disease activity. To this end, we 

assayed for MMP7 and MMP9 in urine sample from a cohort of 55 patients with normal 

kidney function separated into 3 groups (Figure 5.7): 1) healthy controls with no known 

clinical history of stones, 2) inactive CaOx stone formers with a known clinical history of 

stones but without a recent stone event and 3) active CaOx stone formers undergoing 

surgery for stone removal. Our results show that the levels of MMP7 are increased in the 

urine of CaOx stone patients without active disease compared to healthy subjects 

(4.8±6.1 vs. 1.6 ng/mg Cr, respectively; p=0.01). MMP9 was also significantly higher in 

the urine of inactive stone patients compared to healthy controls (1.8±3.7 vs. 0.18±0.17 

ng/mg Cr, respectively; p=0.02). In active stone formers, we observed even higher levels 

of urinary MMP7 (8.1±6.6 ng/mg Cr; p=0.0004 vs. controls and p=0.47 vs. inactive stone 

formers) and MMP9 (8.0±10.7 ng/mg Cr; p <0.01 p<0.0001 vs. controls and p=0.01 vs. 

inactive stone formers). These results suggest that both MMP7 and MMP9 are potentially 

important markers to monitor stone disease activity.  
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Discussion 

In this work, we utilized snRNA sequencing, spatial transcriptomics, and large-

scale multiplexed imaging to establish a spatially anchored cellular and molecular atlas of 

the renal papilla in non- stone and kidney stone disease tissues. A full landscape of 

papillary cells was defined, including the presence of papillary surface epithelial cells, 

stromal and immune cells, unique subtypes of principal cells, and an undifferentiated 

epithelial cell type which localized to regions of injury or mineral deposition. Despite the 

focal nature of mineral deposition in stone disease, we showed that injury pathways are 

globally upregulated across multiple cell types within the papilla. Commonly enriched 

signaling pathways in stone disease such as leukocyte (myeloid) immune activation, 

oxidative stress and matrix remodeling were demonstrated using orthogonal approaches, 

thereby enhancing our confidence in the findings. We defined the microenvironment of 

plaque as an active immune zone with antigen presenting inflammatory macrophages 

interacting with T cells, but also demonstrated the presence of an immune lifespan around 

mineral deposition ranging from inflammation to fibrosis. Finally, MMP7 and MMP9 

were identified as two proteins linked to active stone disease and mineralization within 

the papilla. The levels of MMP9 and MMP7 in the urine were significantly higher in 

patients with history of stone disease compared to healthy controls, and correlated with 

disease activity.  

Defining the cellular and molecular landscape in the human papilla is an 

important first step to understand the pathogenesis of nephrolithiasis and identify 

potential targets for therapy. An important strength of our study is the utilization of rare 

and highly valuable papillary biopsy specimens obtained from stone patients. The 
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uncovered atlas of the renal papilla harbored expected cell types such as the principal, 

intercalated, ascending and descending thin limbs, and endothelial cells. Compared to 

cortico-medullary cells, papillary collecting duct cells displayed a unique gene expression 

signature that is consistent with the physiological milieu within the papilla. For example, 

the high expression of urea transporters is consistent with gene expression data from 

rodents (Fenton 2005). Interestingly, the papilla was enriched in two types of principal 

cells, PC1 and PC2, which frequently co-localize in the same collecting ducts. PC2 

exhibited a transcriptomic signature of cell stress and was more prevalent in specimens 

from subjects with stone disease. The biological significance of these two populations 

requires further investigation, particularly in establishing whether the injury signature of 

PC2 is a key contributor to the immune activation observed in stone disease. 

Another cell type of interest was the “undifferentiated” snRNAseq epithelial cell 

cluster. Its signature did not align completely with a specific epithelial cell type but 

exhibited gene expression features of injury and degeneration. We posit that that this 

cluster may represent a final common injury phenotype derived from epithelial cells with 

multiple origins. This cell type was more frequently mapped in the stone samples and 

was associated with areas of mineralization in ST. In an orthogonal approach with 

CODEX, we uncovered an undifferentiated cell population with protein signatures 

overlapping with the transcriptomic features of the snRNAseq cluster. Spatial mapping 

suggested that these cells are likely a mixture of injured thin limbs and papillary 

epithelium, which is consistent with the location of these cells in the UMAP space. A 

signature of injury in thin limbs is concordant with previous data from our group showing 
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that Randall’s plaque begins in thin limb cells (Evan 2003). This injured population and 

its potential association with pathology in the papilla needs further exploration.  

Comparing stone to reference samples using snRNA and spatial transcriptomics 

independently uncovered common DEGs and enriched pathways in stone disease. In 

snRNA and ST analyses, many of the genes and injury pathways uncovered were 

common among various cell types (epithelia, stromal and immune), suggesting that the 

injury signature associated with stone disease could reflect a global injury to the stone 

forming papilla. Our data provide important human tissue context to the previously 

reported hypotheses, and some of the experimental models of stone formation which 

involved inflammation, leukocyte activation (macrophage activity), ROS and 

ossification-like events (Khan 2012, Khan 2014, Joshi 2015, Joshi 2015, Taguchi 2016, 

Taguchi 2017). Our spatial transcriptomic mapping of gene expression in stone disease 

agrees with, and extends the work of Taguchi and colleagues, who explored genome-

wide analysis of gene expression on renal papillary RP and non-RP, and showed 

upregulation of LCSN2, IL11, and PTGS1 in the RP patient tissue (Taguchi 2017). RP 

has been previously described as the interstitial mineral deposition at the tip of the renal 

papillae that can serve as the origin for CaOx stone growth (Evan 2006, Daudon 2015). 

This immune active state in the regions of papillary mineralization has a molecular 

profile comparable to vascular inflammation leading to atherosclerotic disease, which has 

been proposed to play a pathogenic role in mineral deposition and stone disease (Kumada 

2004, Abbas 2014, Bird 2017, Li 2020).  

Our work particularly underscores the importance of immune system in the 

pathogenesis of stone disease, mapping significant populations of both the inflammatory 
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M1 macrophage and the alternatively activated M2 macrophage within the papilla. An 

intermediate phenotype M1/M2 was particularly abundant in areas around mineral 

deposition, highlighting that these two phenotypes likely represent a spectrum that may 

modulate disease activity (Yunna 2020, Taguchi 2021, Taguchi 2021). This is consistent 

with previous reports by Khan and others from experimental models (de Water 1999, 

Khan 2004, Joshi 2015, Taguchi 2016, Xi 2019, Taguchi 2021), but is uniquely 

demonstrated here in the human papilla. The presence of inflammatory macrophages and 

antigen presenting cells, surrounding by CD4+ T cells suggest a nidus for antigen 

presentation around plaque. Interestingly, in the same papillary specimen, we also 

uncovered a significant population of fibroblasts around an area of RP with less immune 

activity. This finding agrees with the matrix remodeling transcriptomic signature 

observed, which frequently results from chronic non- resolving inflammation. This is also 

consistent with recent findings by Canela et al. showing fibrosis and immune signature 

derived from imaging of CaOx stones with RP (Canela 2021).  

Cumulatively, these findings indicate that mineral deposits likely trigger a 

canonical immune injury pattern, which extends beyond the areas of mineralization and 

affect multiple cell types. Our data suggest that there could be various stages and 

biological responses to mineral deposition, ranging from an active acute inflammatory 

reaction, to established fibrosis secondary to chronic inflammation. Injury and 

inflammatory macrophage infiltration were demonstrated in biological replicates using 

3D imaging and cytometry. Heavy mineral deposition was not obvious in the tissues 

analyzed by 3D imaging which raises a possibility of factors other than heavy mineral 

deposition leading to injury and immune activation, or could reflect earlier stages of 
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diffuse papillary injury that precedes plaque deposition. Our data suggest that papillary 

injury triggers pro-fibrotic signaling and a vigorous matrix remodeling program. Indeed, 

our studies uncovered two matrix metalloproteinase molecules, MMP7 and MMP9, that 

are associated with stone disease and mineral deposition, respectively.  

Matrix metalloproteinases (MMPs) degrade extracellular matrix proteins during growth, 

tissue remodeling and disease processes, and are secreted by various cell types including 

fibroblasts and leukocytes (including macrophages) (Cui 2017). Some MMPs control 

leukocyte migration and can modulate the immune response by biochemical cleavage of 

cytokines and chemokines (Elkington 2009). MMP7, or matrilysin, is thought to 

modulate innate immunity and leukocyte influx, and plays a critical role in extracellular 

remodeling (Manicone 2008, Bulow 2019, Burke 2004).  

However, it is typically not expressed at the protein level in the renal cortex in 

healthy states (Zhou 2017, Fu 2019) but its expression and activity are increased in the 

setting of kidney disease. There are no previous studies that have investigated MMP7 in 

the human papilla. Furthermore, there are conflicting data about the role of MMP7 in 

experimental models of kidney disease. MMP7 is thought to mediate kidney fibrosis in 

unilateral ureteral obstruction models, and its levels are elevated in patients with CKD 

(Zhou 2017, Surendran 2004). However, MMP7 can also protect against acute kidney 

injury. In our papillary, non-stone, reference tissue, the transcriptomic signature of 

MMP7 was predominantly localized to collecting duct cells. In stone biopsy specimens, 

the expression of MMP7 was no longer limited to the collecting duct cells. snRNA and 

spatial transcriptomics were consistent in showing upregulation of MMP7 expression in 

various cell types within the papilla. We propose that induction and release of MMP7 in 
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various cell types is likely part of the matrix remodeling program induced by injury. The 

induction of MMP7 could therefore be a valuable indicator of papillary injury associated 

with stone disease.  

MMP9 (macrophage gelatinase) is another MMP that was uncovered by our 

studies in association with mineral deposition. Our spatial transcriptomic analysis showed 

enriched expression of MMP9 in areas of mineral deposition, which co-localizes with 

OPN expression. Indeed, MMP9 gene polymorphisms are associated with nephrolithiasis 

(Mehde 2018). MMP9 is upregulated by classically activated macrophages during an 

inflammatory response, and is also expressed by other inflammatory cells and osteoclasts 

(Hanania 2012, Wang 2013, Jager 2016). MMP9 is proposed to play a role in renal 

fibrosis and epithelial to mesenchymal transition (Tan 2010, Tan 2013). It also interacts 

with OPN to enhance macrophage chemotaxis and fibrosis (Tan 2013). More recently, 

experimental studies by Wu et. al. suggested that activation of ROS in kidney tubular 

epithelial cells by way of the NK-κB/MMP-9 pathway promotes crystal deposition in the 

kidney (Wu 2021). Therefore, upregulation of MMP9 could be an indicator of crystal 

deposition, immune activation, and transition towards a profibrotic phenotype.  

Since our tissue work suggested a potential role for MMP7 and MMP9, we 

investigated whether measuring these molecules in the urine could be useful in patients 

with stone disease. We found that both MMP7 and MMP9 are increased in patients with 

stone disease and their levels correlate with disease activity. MMP7 has been previously 

studied as a potential biomarker for predicting risk of acute kidney injury and CKD 

progression (Liu 2020). MMP7 correlated with fibrosis scores on kidney biopsies and 

was also found useful to predict IgA nephropathy progression (Yang 2020). More 
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recently, MMP7 levels were also elevated in patients with hypertension who developed 

CKD (Sarangi 2022). MMP9 levels have also been studied in the setting of diabetic 

kidney disease and found to be elevated in patients with macroalbuminuria (Pulido-Olmo 

2016, Garcia-Fernandez 2020). To our knowledge, our study is the first to show that the 

urine levels of MMP7 and MMP9 are elevated in patients with stone disease compared to 

non-stone forming kidney subjects, particularly in the absence of a clinically detectable 

kidney function impairment. MMP7 and MMP9 urine levels are higher, particularly for 

MMP9, in patients with symptomatic active stone disease. Large studies are needed to 

define the utility of these markers in the management of patients with kidney stone 

disease. For example, longitudinal measurements of these markers and their changes may 

help predict stone recurrence and response to therapy, supplementing computed 

tomography to reduce lifetime radiation exposure in stone formers. Indeed, our results 

provide a solid rationale to study these markers in the context of a large clinical trial.  

Our study has limitations. Renal papilla samples from stone formers are 

challenging to obtain as they require a biopsy during a nephrolithotomy surgical 

procedure. Fortunately, our investigative team has substantial experience obtaining these 

samples (Evan 2006, Evan 2018). The number of tissue specimens used to generate the 

transcriptomic and imaging datasets was relatively small, underscoring the importance 

and scarcity of these samples. Despite the sample size, the findings were validated by 

orthogonal methods and the importance of the pathways and molecules uncovered were 

ultimately linked to urinary measurements in a larger clinical cohort. Further, the co-

clustering of nuclei from the renal papilla with a publicly available snRNAseq whole 

kidney atlas (of more than 200,000 nuclei) allowed substantially more power to 
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distinguish granular cell subtypes and cell states. Due to the cost prohibitive nature of 

multi- omics studies, our approach of discovery in a small sample size and validation in a 

larger cohort serves as a viable model for hypothesis driven future studies economizing 

on tissue and maximizing validation efforts on samples collected through non-invasive 

methods over time. As discussed, the findings of elevated MMPs could also be observed 

in other forms of kidney disease. However, the cohorts used here had normal kidney 

function, and the potential utility of these markers in tracking stone disease activity, 

particularly in patients with normal kidney function, is thereby not diminished. We 

studied CaOx kidney stone formers, which is the most common type of kidney stones. 

The applicability of our findings to other types of stone disease will need to be 

established by additional studies.  

In conclusion, our integrated multi-omics investigation uncovered the complexity 

of the human kidney papilla and provides important insights into the role of immune 

system activation and mineral deposition. We established the diffuse injury associated 

with nephrolithiasis and highlight the importance of a matrix remodeling program in the 

kidney papilla. Particularly, we identified MMP7 and MMP9 as potential molecules that 

may serve as noninvasive markers of kidney stone disease course and activity. This 

investigation provides a strong foundation for future studies that explore the pathogenesis 

of kidney stone disease and the application of precision medicine to patients with 

nephrolithiasis.  
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Methods 

Human samples sources  

Single nuclear RNA sequencing sample sources snRNAseq data from 36 

subjects comprising 203,702 nuclei were obtained from the HuBMap 

(https://hubmapconsortium.org/hubmap-data/) and KPMP (https://www.kpmp.org) 

datasets that are now publicly available (GSE169285) (Lake 2021). Single cells were 

isolated from frozen tissues as previously described (Lake 2021). Of the 36, five subjects 

provided two samples each for a total of 41 samples. The presence of cortex, medulla, or 

papilla was defined by adjacent cross sectional Periodic Acid Schiff-stained histological 

sections. In these 41 samples, there were 29 samples with cortex, 14 samples with 

medulla, and five samples with papilla. Seven subjects’ samples contained both cortex 

and medulla. Of the five papilla samples, three were from CaOx stone formers obtained 

at Indiana University (see below) and two were from non- stone formers.  

Human kidney papillae samples Patients with idiopathic CaOx stones underwent 

a renal papillary biopsy procedure during a clinically indicated percutaneous 

nephrolithotomy for stone removal (Evan 2003), approved by the IRB of Indiana 

University (IRB # 1010002261). Informed consent was obtained from all study 

participants. Human reference (non-stone formers) nephrectomy papillary specimens 

without evidence of renal disease were obtained from the Biopsy Biobank Cohort of 

Indiana (Eadon 2020) (IRB #1906572234). Following extraction, papillary tissues were 

frozen on dry ice in OCT medium. For ST and CODEX imaging studies, two reference 

and three CaOx papillary specimens were used. For validation studies with 3D imaging, 
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kidney papillary sections were obtained from four additional reference and four CaOx 

biopsy specimens.  

Cohorts for urine MMP7 and MMP9 measurements Urine specimens from 20 

healthy participants (Normal) with no personal or family history of kidney stones and 18 

patients with a history of CaOx stones (Non-active stone formers) were obtained from an 

ongoing study at the University of Chicago (IRB protocol 09-164B). Participants were 

studied in the General Clinical Research Center at the University of Chicago, and the 

urine specimens used in these studies were obtained during the same morning period. 

Urine samples from 18 patients with active stone disease were obtained during elective 

percutaneous nephrolithotomy for stone disease at Indiana University (IRB protocol 

1010002261).  

snRNAseq and processing 

From an integrated HuBMAP and KPMP atlas of renal cell types (Lake 2021), the 

snRNAseq portion of the Seurat object, including papilla samples, was reproduced to 

identify cell type clusters. For quality control, 10X snRNAseq cell barcodes passing 10X 

Cell Ranger filters were used for downstream analyses. All mitochondrial transcripts 

were removed. Doublets were identified and removed with DoubletDetection software 

(v2.4.0) (Gayoso 2020). The 41 samples were merged and only nuclei barcodes with 

more than 400 and less than 7500 genes detected were maintained in the merged atlas. A 

gene unique molecular identifier (UMI) ratio filter was applied using Pagoda2 to remove 

low quality nuclei (github.com/hms-dbmi/pagoda2) (Barkas 2021). Expression was 

calculated in 10X Cell Ranger v3 after demultiplexing and barcode processing. The 
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GRCh38 (hg38) reference genome was used for the snRNAseq and subsequent spatial 

transcriptomic datasets.  

snRNAseq clustering and annotation 

snRNAseq cluster definitions were adopted from the current version of the 

combined HuBMAP and KPMP atlas (Lake 2021). Briefly, nuclei were clustered with 

pagoda2. Total counts per nucleus were normalized, batch effect was corrected, and 

principal component analyses were performed using all significant variant genes (N= 

5526). Initial cluster identities were determined by the infomap community detection 

algorithm. Using a primary cluster resolution of k = 100, all principal components and 

annotations were imported into Seurat v4.0.0 to create a merged uniform manifold 

approximation and projection (UMAP). Standardized anatomical and cell type 

nomenclature was used to annotate cell types and subtypes, based on the collaborative 

KPMP and HuBMAP definitions. These definitions were based on published datasets and 

the expertise of consortium pathologists, biologists, nephrologists and ontologists (El-

Achkar 2021, Lake 2019, Gerhardt 2021, Chen 2021, Ransick 2019, Borner 2021). 

Specifics of the cluster decision tree algorithm have been previously described (Lake 

2021). Within the integrated HuBMAP and KPMP atlas, putative adaptive and 

degenerative cell states were identified in epithelial sub-clusters with at least one of the 

following: reduced genes detected, higher mitochondrial transcript amount, higher ER 

associated transcript number, increased expression of known injury markers (e.g., 

IGFBP7, HAVCR1, LCN2, CST3, etc.), or enrichment in samples with acute or chronic 

kidney disease. Markers of these cell states were identified using the Seurat function 

“FindConservedMarkers” with the following parameter settings: grouping.var = 
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"condition.l1", min.pct = 0.25, and max.cells.per.ident = 300. The gene set for the 

adaptive and degenerative cell states were trimmed to include only enriched genes at a p 

value < 0.05 and mean log2 fold change > 0.6. Due to the consistent loss of epithelial cell 

type specific markers, all nuclei within the adaptive and degenerative cell state clusters 

were merged into a single undifferentiated epithelial cluster within the papilla snRNAseq 

UMAP.  

Visium Slide preparation, mRNA extraction and sequencing 

Frozen 10 micron sections were mounted onto etched frames of the Visium spatial 

gene expression (VSGE) slides according to 10x Genomics protocols (Visium Spatial 

Protocols—Tissue Preparation Guide, Document Number CD=G000240 Rev A, 10x 

Genomics). Tissue sections were fixed with methanol, subsequently stained with H&E 

and imaged by bright-field microscopy. Microscopic images were acquired according to 

protocols described in 10x Genomics protocols (Technical Note - Visium Spatial Gene 

Expression Imaging Guidelines, Document Number CG000241, 10x Genomics). H&E-

stained sections were imaged with a Keyence BZ-X810 microscope equipped with a 

Nikon 10× CFI Plan Fluor objective at 0.7547 um/pixel and image resolution of 

1920x1440. Images were collected as mosaics of 10x fields. Stained tissues were 

permeabilized for 12 minutes. mRNA bound to oligonucleotides on the capture areas of 

the Visium slides was extracted. cDNA libraries were prepared with second strand 

synthesis and sequenced utilizing the NovaSeq 6000 Sequencing system (Illumina) in the 

28 bp + 120 bp paired-end sequencing mode.  
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Spatial transcriptomics expression analysis 

Using Space Ranger 1.2.0 with the reference genome GRCh3-2020-A, samples 

were mapped, and counts were generated that corresponded to the barcoded 55 micron 

spot coordinates within each fiducial frame. This allowed association of read counts with 

their location within the H&E image. Space Ranger calculated differential expression 

between assigned clusters using sSeq and edgeR. The data were normalized by 

SCTransform and merged to build a unified UMAP and dataset as previously described 

(Melo Ferreira 2021). All feature plots show expression after normalization.  

Selection of histologic phenotypes 

Kidney stone papillary tissue biopsies were manually annotated utilizing the 10x 

Genomics Loupe Browser (10x Genomics Loupe Browser 5.0.0). Specific regions of the 

stone tissue papilla were categorized as either non-mineralized, contiguous to mineral, or 

mineralized regions. Spots directly overlying evident mineral precipitation were 

designated as mineralized; spots falling within a three-spot radius of the annotated 

mineral precipitation were categorized as “contiguous” to mineral; all remaining spots 

were designated as non-mineralized.  

Pathways and gene expression analysis 

Differential expression comparisons across samples were performed using R and 

the R packages ReactomePA and ClusterProfiler as previously described by Ferreira et al. 

(Melo Ferreira 2021). The DEGs in each comparison were found with the Seurat function 

FindMarkers and tested with a Wilcoxon’s rank sum test. Pathway enrichment for those 

genes was performed with the R packages ReactomePA (Yu 2016) and ClusterProfiler 

(Yu 2012).  
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Label Transfer 

Seurat v3.2 was used to accomplish label transfer from snRNA-Seq cell types and 

cell states to spatial transcriptomic spots in each sample. For deconvolution analyses, a 

Seurat v3.2 anchor methodology was used to transfer single-cell cluster information to 

Visium data as described (Melo Ferreira 2021). Each spot receives a probability or 

transfer score for its association with a given snRNA-Seq cell type or cell state cluster. 

The transfer scores are summed, and each spot is deconvoluted with the fractions of the 

spot corresponding to the relative proportion of transfer score of each contributing 

snRNAseq cluster. A pie chart is displayed over the spatial transcriptomic sample image.  

Tissue Processing, Immunofluorescence Staining and Large-Scale 3D Confocal Imaging 

Papillary biopsies were immediately immersed in OCT medium and frozen on dry 

ice. For immunofluorescence analysis, tissues were cryosectioned (Leica Biosystems, 

Wetzlar, Germany) at 20 micron thick sections. Sections were washed in PBS, fixed for 4 

hours at room temperature in 4% PFA. Next, the sections were washed in PBS two more 

times, and then blocked in 10% normal donkey serum for two hours at room temperature. 

Primary antibodies were added in blocking buffer and tissues were incubated at room 

temperature overnight. When targeting intracellular antigens, permeabilization was 

performed using 0.2% Triton X (Santa Cruz Biotechnology, Inc., Dallas, TX) (Gildea, 

2017) (El-Achkar et al. 2007). The following primary antibodies were used for detection: 

anti-aquaporin 1 (Santa Cruz Biotechnology, Inc., Dallas, TX; sc-9878), anti-CD68 

(Agilent Technologies, Santa Clara, CA; M087601), anti-phospho-c-JUN (Cell Signaling 

Technology, Danvers, MA; 9261). After washing with PBS, the following Alexa Fluor 

(ThermoFisher Scientific, Waltham, MA) dye-conjugated secondary antibodies were 
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added: donkey anti-mouse-488, anti-mouse-568 and anti-rabbit-647. 4′,6-Diamidino-2-

phenylindole (DAPI) (Abcam, Cambridge, United Kingdom; ab228549) was used for 

staining nuclei. Subsequently, sections were washed three times for 30 minutes each in 

PBS and then fixed in 4% paraformaldehyde for an additional 15 minutes. After a final 

wash in PBS for 30 minutes, sections were mounted on a glass slide using ProLongTM 

Glass Antifade Mountant, (Thermo Fisher Scientific, Waltham, MA; REF# P36980). 

Images were sequentially acquired in four separate channels using the Leica SP8 confocal 

microscope and collecting whole volume stacks using 20xNA 0.75 objective with 1.0-

micron spacing. Stacks were stitched using Leica LAS X software to generate large-scale 

3D images. A negative control without primary antibody was used to ensure the absence 

of nonspecific binding of secondary antibodies. Microscope settings were identical 

among imaging sessions for each specimen.  

3D Tissue Cytometry  

3D tissue cytometry was performed on image volumes using the VTEA software 

(Winfree 2017). Segmentation settings were adjusted to yield the best result which was 

verified visually by sampling random fields within each image stack. Fluorescence from 

phospho-c-Jun and CD68 was associated with nuclei by 3D morphology and displayed on 

a scatterplot as individual points, allowing gating of specific cell populations based on 

fluorescence intensities. Results were reported as percentage of total cells segmented in 

each large-scale image volume (Makki 2020).  

CODEX Antibody Conjugation and Validation  

A total of 32 antibodies were used for CODEX and 19 of them were conjugated 

in-house using a protocol outlined by Akoya Biosciences (Akoya Biosciences, Inc. 
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CODEX® User Manual, Menlo Park, CA). Conjugation of antibodies to their assigned 

barcodes, they were first reduced using a “Reduction Master Mix” (Akoya Biosciences, 

Menlo Park, CA). Lyophilized barcodes were then resuspended using the Molecular 

Biology Grade Water and Conjugation Solution. The barcode solution was then added to 

the appropriate reduced antibody and incubated for two hours at room temperature. After 

incubation, the newly conjugated antibody-barcode was purified in a three-step wash/spin 

process and stored at 4°C. Successful conjugation was validated via gel electrophoresis as 

well as immunofluorescent staining and confocal imaging.  

CODEX Imaging  

Human renal tissue sections of 10 micron were cut from OCT blocks onto poly-L-

lysine coated coverslips. Sections were prepared as detailed by the manufacturer’s 

instructions (Akoya Biosciences, Menlo Park, CA). Tissue retrieval was conducted with a 

three-step hydration process, followed by a PFA fixation. During fixation, an antibody 

cocktail of the 32 antibodies listed in Table 5.1 was made and then dispensed onto the 

coverslip. Tissues were allowed to incubate with the staining solution overnight at 4°C. 

The following day, the staining solution was washed from the tissues and a multi-step 

fixation occurred (Schurch 2020).  

The imaging of tissues was conducted at 20x resolution using the CODEX system 

from Akoya Biosciences and a Keyence BZ-X810 slide scanning microscope (Keyence 

Corporation, Itasca, IL). The resulting images were processed using the CODEX 

processing software (Akoya Biosciences, Menlo Park, CA) and visualized using 

FIJI/ImageJ.) 

Unsupervised analysis, clustering and mapping of cell types  
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CODEX images were segmented and analyzed using VTEA version 1.0.3, 

(Winfree 2022). Cell clusters were identified using unsupervised Ward clustering and 

dimensionality reduction visualization using t-distributed stochastic neighborhood 

embedding (t-SNE). The identity of the cell clusters was verified by plotting their mean 

intensities for specific makers and directly mapping on the image volumes using nuclear 

overlays.  

ELISA and Urine Collection 

Urine samples were collected from patients with a history of CaOx stone 

formation (non-active stone formers), from CaOx stone patients immediately before 

undergoing surgery for stone removal (active stone formers) or from non-stone formers 

as described above. The urine samples were immediately frozen at -80°C. At the time of 

analysis, samples were thawed and cleared by centrifugation for 5 minutes at 1000xg and 

assayed for urine MMP7 and MMP9 by ELISA according to manufacturer’s instructions 

(R&D Systems, DMP700/DMP900, Minneapolis, MN). Urine creatinine was used to 

normalize MMP7 and MMP9 levels between non-active, active, and non-stone formers.  

Statistics 

Statistics were used within transcriptomics analyses are described above. 

Student's t-test was used to compare the phospho-c-JUN and CD68 positive cells between 

patient samples and reference tissues. Urine levels of MMP7 and MMP9 were compared 

using ANOVA with the Tukey-Kramer post hoc test.  
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Data Availability 

Raw snRNAseq data generated as part of the KPMP has been accessed from 

atlas.kpmp.org and from the HuBMAP at portal.hubmapconsortium.org. Visium spatial 

transcriptomic data is available in GEO as GSE206306. 
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Figure 5.1: Spatially anchored cellular and molecular characterization of the human 

kidney papilla. A) An integrated snRNA sequencing atlas from the KPMP and 

HuBMAP consortia presented as a Uniform Manifold Approximation and Projection 

(Umap) combining nuclei from the renal cortex, medulla and papilla. B) A subset of 

nuclei specific to the papilla alone. C) The proportion of cell type representation 

among nuclei in each kidney region. D) Both papillary principal (PC) and intercalated 

(IC) cells had increased expression of the urate 2 transporter (SLC14A2) and other 

differentially expressed genes (DEGs) as compared to their counterparts in the renal 

cortices and medullae. E) Label transfer and mapping of the snRNAseq cell classes 

onto spatial transcriptomic spots within a reference papilla tissue. F) An enlarged area 

denoted by the box in (E) showing principal cells mapping on histologically identified 

collecting ducts in (G). H) Label transfer and mapping of cell classes onto ST spots in 

a papilla of a stone former. I) An enlarged area from (H) showing the undifferentiated 

cell signature localizing to areas of mineralization (J). K-P) ST of additional stone 

papilla specimens showing the signatures of fibroblasts and PC2 (L and M) and 

undifferentiated cells (O and P). Q) distribution of PC1, PC2 and undifferentiated cells 

between reference and stone samples across the snRNAseq and ST data. PC2 and 

undifferentiated cells were relatively more abundant in stone samples. R) Gene 

expression signatures of PC1, PC2 and undifferentiated cells, showing a spectrum of 

injury in the PC2 and undifferentiated cell types. S) Co-detection by Indexing 

(CODEX) multiplex imaging of a reference papilla tissue sample.  (Continued on next 

page) 
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(Figure 5.1 cont): T) Unsupervised clustering and dimensionality 

reduction in a t-SNE plot showing various cells classes, which were validated by the 

level of fluorescence intensity (U) and mapping back on the image. V) localization of 

CD-1 and CD-2. CD-2 cells express higher levels of injury markers (U) but are not 

segregated into separate tubules. W) Re-clustering of interstitial cells based on 

specific markers identifies populations of fibroblasts (2 subtypes, FIB1 and FIB2) and 

myofibroblasts (Myo), which were mapped into the interstitium around the epithelium 

(X). *** denote P<0.01. Scale bars: (0.5 mm in E and K, 0.25 mm in H and N, 1 mm 

in S and 100 microns in X) 
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Figure 5.2: Differentially expressed genes (DEGs) induced by stone disease in various 

cells within the human papilla. A-D) DEGs and enriched pathways in papillary cells 

by snRNAseq, showing few examples: principal cells (PC), descending thin limbs 

(DTL), fibroblasts (FIB) and immune cells (IMM). CaOx stone disease induces 

similar increases in gene expression in various papillary kidney cells. Pathway 

analysis of snRNA expression detected significant upregulation of ossification (purple 

text), extracellular matrix organization (orange text), response to oxidative stress (blue 

text) and leukocyte activation pathways (red text) (Continued on next page) 
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(Figure 5.2 cont.): E) Violin plots showing differential expression in reference and 

stone specimens across all papillary cell types of major genes consistently induced by 

stone disease. F) Expression levels of the genes shown in (E) in the cell signatures 

mapped on the spatial transcriptomics data in the refence and stone samples. 
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Figure 5.3: MMP7 expression in the papilla. Spatial transcriptomics analysis 

comparing control (Reference) and three different CaOx stone patient biopsies. In 

reference tissue, MMP7 expression is localized to collecting ducts. In stone disease, 

MMP7 expression is diffusely increased and encompasses various papillary cells and 

structures, which is consistent with the snRNAseq expression and the expression 

signature mapping on ST shown in Figure 2E and F. Scales bars in (A) and (C): 0.5 

mm for reference and top stone sample, 0.25 mm for other 2 specimen; for (B) and 

(D): 0.1 mm. 
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Figure 5.4: Signatures of injury and inflammation are localized to regions of 

mineralization in the kidney papilla from stone disease. (A) Regions of non-

mineralization compared to areas contiguous to mineral display differentially 

expressed genes (DEGs) associated with pathways leukocyte activation such as 

MMP9 and CHIT1 (B). MMP9 expression localizes in areas contiguous to mineral 

and in regions of mineralization (C). Comparisons between areas of non-

mineralization and areas of mineralization (D) also display DEGs such as MMP9 and 

CHIT1 (E). CHIT1 expression also appears to be more robust in areas of 

mineralization (F). Regional comparison between areas contiguous to mineral and 

areas of mineralization is shown in (G). SPP1, TYMP and LYZ were differentially 

expressed in areas of mineralization in this CaOx biopsy specimen (H). (Continued on 

next page) 
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(Figure 5.4 cont) SPP1 appears to be localized to regions of mineralization but also 

displays relatively high expression throughout this stone forming papilla (I).Violin 

plots show Log-Normalized values. Asterisk in A, D and G denote that the analysis 

excluded the areas of mineralized plug and was restricted to Randall’s plaque. 
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Figure 5.5: CODEX imaging of a papilla with mineral deposition identifies various 

stages of immune activation and fibrosis around the plaque. (A) CODEX imaging 

showing a unique autofluorescence of the plaque, which can be easily delineated from 

the epithelial and vascular cells. (Continued on next page) 
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(Figure 5.5 cont) B) Unsupervised analysis and clustering identify similar clusters as 

in the reference specimen (Figure 1), with extensive expansion of the immune 

clusters. C) Re-clustering and analysis of the immune cells identifies all the major 

subtypes of leukocytes. Macrophages had an intermediate phenotype between M1 and 

M2 based on the co-expression of specific markers. D) Mapping of immune cells in 

the tissue reveals niches of immune activity in certain plaque areas (area of mineral on 

left in (E), which is a high magnification view of the boxed area in (D) with features 

of antigen presentation (interaction of antigen presenting macrophages with T and B 

cells) and a diffuse activated T cells response, particularly towards the papillary 

endothelium. Interstitial cells F), particularly fibroblasts and myofibroblasts, were 

abundant throughout the tissue (G), but fibroblasts were concentrated in certain areas 

of mineral deposition with reduced immune activity (area of mineral on right in (H), 

which is a high magnification view of the same boxed area in (D) and (G)), suggesting 

progression from inflammation to fibrosis in neighboring areas within the same tissue. 

Scales bars: 500μm in (A), (D) and (G); 100 microns for (E). 
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Figure 5.6: Protein markers of oxidative stress (ROS) and macrophage activation are 

diffusely increased in biopsies of stone patients. (A-D) Representative multi-

fluorescence confocal images of kidney papillary biopsies from stone patients and 

reference nephrectomies tissue specimens (N=4 per group) stained for phospho-c-JUN 

(p-c-Jun, marker of ROS), CD68 (activated macrophages) and Aquaporin1 (AQP-1, 

marker for thin descending limbs and descending vasa recta). Images were analyzed 

using volumetric tissue exploration and analysis (VTEA) software and the resulting 

outcomes are shown in (E) and (F) for p-c-JUN and CD68 as percentages of total cells 

in each tissue. Boxed areas in (A) and (C) are enlarged in (B) and (D), respectively. 
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Figure 5.7: MMP7 and MMP9 levels are increased in urine of CaOx stone patients 

and correlate with disease activity. Urine samples were taken either from CaOx stone 

patients undergoing surgery for stone removal (active stone formers, SF) or from 

patients who had previously been stone formers (Inactive SF) or from healthy 

volunteers. Demographics and relevant clinical variables for each group are presented 

in Supplemental Table 2. Samples were assayed for urine (A) MMP7, (B) MMP9 and 

urine creatinine (Cr) by ELISA according to manufacturer’s instructions. Samples are 

plotted as log10(ng MMP/mg Cr). 
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Antibody Significance 
CD3 Pan T cells 
CD4 CD4+ T cells 
CD8 CD8+ t cells 

CD11c resident dendritic cells 
CD20 B cells 
CD45 pan leukocyte markers 

CD45RO memory T cells 
HLA-DR antigen presenter cells  

MPO neutrophils 
CD68 macrophages 

CD206 M2 macrophages 
PROM1 (CD133) fibrosis 

IGFBP7 injury  
p- c-Jun stress kinase pathway 

 Citruline H3 netosis 
FOXP3 injury 
VCAM1 non-reparining epi cells 

 phosphoMLKL necroptosis 
Fibronectin Injury, pre-collagen  

 LC3 autophagy 
Ki67 Proliferating cells 
CD90 Differentiation 
ERG Endothelial Nuclei 

Vimentin Fibroblasts 
OPN SSP1/osteopontin 

AQP1 PT, TDL 
E-cadherin DCT, CD, loop of henle 
b-catenin Tubular epethelium  

Cytokeratin8 CNT and CD 
Uromodulin  TAL 

a-sma myofibroblast, arterioles 
CD31 (PECAM1) endothelial cells 

  

Table 5.1 - Antibodies used for CODEX multiplexed imaging on human renal papilla 
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Chapter 6 - Summary of Work 

In this work, we were able to demonstrate numerous avenues of imaging the kidney, from 

brightfield microscopy to more advanced imaging techniques such as confocal 

microscopy or highly multiplexed imaging. Along with imaging techniques, we also 

explored ways of analyzing the resulting images and how to obtain the most information 

from a single section of a biopsy as we could. Due to limited amounts of renal tissue 

being available for research purposes, getting as much information as possible from a 

single biopsy is important, and we showed multiple analytical pathways that allow for 

robust assessment of a single specimen.  

  We also explored multiple different disease states throughout the projects 

described in this work, including diabetic kidney disease (DKD), focal segmental 

glomerulosclerosis (FSGS), and acute kidney injury (AKI), to highlight a few of the 

recurring topics. With the numerous imaging and analytical techniques that were utilized 

in this paper, unique aspects of each disease state were able to be uncovered. When 

looking at DKD and FSGS samples that were still paraffin embedded with widefield 

epifluorescence, tubules from the disease specimens had a different average fluorescence 

intensity compared to the healthy controls, and a similar trend was seen in the average 

intensity of the glomeruli as well.   

 We also looked at thick (50 micron) sections from patients with diabetes or 

healthy reference samples using confocal microscopy and spectral unmixing of eight 

different probes. VTEA was used to perform supervised classification of the main tubule 

segments and three immune cell types, as well as f-actin content. The glomeruli were 

chosen as a focal point again and analyzed for total cell density and immune cell density 
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as well to assess changes in disease. When looking at the whole tissue, many of the 

structural markers were less abundant, but the cellular density of the glomeruli increased.   

 For a more hands-off analytical technique, we introduced machine learning and 

unsupervised clustering to tissues imaged as described above, as well as brought in 

highly-multiplexed imaging techniques such as CODEX multiplex imaging. With eight 

probes combined with unsupervised learning, we were able to identify more cells within 

each class, catching the lower intensity cells that may have been missed in the supervised 

analysis. When combining unsupervised learning with CODEX multiplex imaging 

allowed us to identify more cell types, which uncovered interesting class subtypes such as 

PROM1+ proximal tubules and immune cell subtypes. We were also able to conduct 

neighborhood analysis to see what cells interact with one another and form niches within 

the kidney.  

 We applied this imaging and analysis technique to mouse samples as well and 

expanded the CODEX antibody panels in the human cortex and papilla.  In the mouse 

specimens, we studied the immune response to ischemia reperfusion injury and THP 

deficiency. Multiple changes in macrophage abundance and distribution were seen in 

response to both injury and THP deficiency. There are more studies that need to occur to 

fully characterize these macrophages, as well as the other immune cells that changes were 

noted in, such as neutrophils and T cells. For the human CODEX experiments, the 

cortical studies expanded on the PROM1+ populations seen in the preliminary studies, as 

well as uncovered a CD90+ proximal tubule population and an increase in a possible 

stromal cell population in disease specimens. The studies conducted on the human papilla 

were combined with single nuclear RNA sequencing and spatial transcriptomics in order 
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to combine nuclear-based data with protein-based data. A unique fibroblast population 

that was seen in association with Randall’s plaque was uncovered in this study, as well as 

subtypes of collecting duct cells and an undifferentiated cell type.  

 All of these experiments combined, both human and mouse, provided a unique 

look into the cellular heterogeneity of the kidney, and how that heterogeneity changes 

with disease. We not only surveyed numerous disease states throughout the works 

described, but we also analyzed these disease states in multiple ways in order to fully 

characterize the samples. By using state of the art techniques and pioneering new 

analytical pipelines, we were able generate an atlas of all regions of the kidney and 

identified all major components of each region, as well as the immune and injury 

components that many studies may miss.  
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