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Abstract: Due to the high occupational pressure suffered by intensive care units (ICUs), a correct
estimation of the patients’ length of stay (LoS) in the ICU is of great interest to predict possible
situations of collapse, to help healthcare personnel to select appropriate treatment options and to
predict patients’ conditions. There has been a high amount of data collected by biomedical sensors
during the continuous monitoring process of patients in the ICU, so the use of artificial intelligence
techniques in automatic LoS estimation would improve patients’ care and facilitate the work of
healthcare personnel. In this work, a novel methodology to estimate the LoS using data of the
first 24 h in the ICU is presented. To achieve this, XGBoost, one of the most popular and efficient
state-of-the-art algorithms, is used as an estimator model, and its performance is optimized both
from computational and precision viewpoints using Bayesian techniques. For this optimization, a
novel two-step approach is presented. The methodology was carefully designed to execute codes
on a high-performance computing system based on graphics processing units, which considerably
reduces the execution time. The algorithm scalability is analyzed. With the proposed methodology,
the best set of XGBoost hyperparameters are identified, estimating LoS with a MAE of 2.529 days,
improving the results reported in the current state of the art and probing the validity and utility of
the proposed approach.

Keywords: artificial intelligence; automated machine learning; Bayesian optimization; ICU occupancy;
intensive care unit; length of stay; machine learning; MIMIC; XGBoost

1. Introduction

The intensive care units (ICUs) of hospitals have a variety of devices to monitor the
patients’ health states that generate a large amount of data, allowing healthcare personnel
to be aware of the patient’s vital sign values and to make the most appropriate decisions
to ensure their correct evolution [1]. It is very difficult to analyze all of this volume of
information manually, so it is of great interest to use artificial intelligence (AI) tools that
automate and help in these tasks [2], especially in extraordinary situations such as the one
experienced due to the COVID-19 pandemic, where ICUs were overwhelmed.

The patient’s ICU length of stay (LoS) is an important metric from a clinical point of
view. Due to the high occupational pressure suffered by the ICU, a correct estimation of
the patients’ LoS in the ICU is of great interest to predict possible situations of collapse, to
help healthcare personnel to select appropriate treatment options and to predict patients’
conditions. The design of a reliable estimator system is useful to anticipate future collapse
situations and to take the corresponding actions [2], such as conditioning an area similar to
the ICU urgently that accommodates future patients. In this field there are several studies.
The vast majority of them approach the problem as a binary classification, predicting, for
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example, which patients will stay in the ICU for more or less than a defined number of
days [3–5]. However, other studies approach the problem from the point of view of the
exact calculation of LoS [6–8], which allows for a finer prediction of the ICU situation.
In this article, it was decided to approach the problem from this second point of view,
estimating the ICU stay duration from the monitoring data obtained during the first 24 h
since the moment the patient accessed the ICU. In order to obtain more precise results, it
was decided to delve into the optimization of the hyperparameters of the model, a task
which requires a high computational load.

One of the goals of high-performance computing systems is to reduce the execution
time of a given task [9]. Due to the increased computational load of artificial intelligence
problems, it is necessary to use these systems to reduce the execution time. In recent years,
performance enhancement from one processor generation to another has stagnated, making
it necessary to find other ways to optimize the performance of algorithms. One of the
main alternatives is the use of GPUs (graphics processing units), which help to continue to
reduce execution times.

Occupancy prediction is a frequent topic within the healthcare ecosystem [10,11],
as well as in other related fields, such as building energy systems [12], building perfor-
mance [13] and heating, ventilation and air conditioning (HVAC) system control [14]. In this
work, we propose a new methodology based on a novel two-step Bayesian optimization
approach to improve LoS estimation methods used to predict ICU occupancy. This method
allows one to optimize an LoS XGBoost predictor that uses clinical variables extracted from
ICU monitoring, by finding the best set of hyperparameters of the model. The proposed
approach improves the results of LoS predictions that would be obtained in the case of
carrying out the optimization in the conventional way (regular Bayesian) and also improves
the results obtained in other state-of-the-art works [3–8].

Due to the high computational load that this task entails, an important part of the
methodology is the parallelization of the problem on a GPU architecture, allowing it to be
solved in a computationally efficient way. XGBoost is used as estimator model. All these
contributions are supported by experimental results.

The remainder of the article is structured as follows. First, the materials used are
detailed. Then, the proposed methodology is explained and the experimental results are
presented. Finally, the discussion and conclusions of the work are presented.

2. Materials
2.1. Data Source

In this work, the MIMIC-III (Medical Information Mart for Intensive Care III) [15]
ICU database, developed by the MIT (Massachusetts Institute of Technology), was used. It
contains data from 61,532 ICU stays at Beth Israel Deaconess Medical Center.

The database collected demographic data, vital sign measurements made at the bed-
side (1 data point per hour), laboratory test data, procedures, medications, caregiver notes,
imaging reports, signals (electrocardiography (ECG), photoplethysmogram (PPG), arterial
blood pressure (ABP)), etc. It contains the variable to be estimated in this work (LoS in the
ICU) with a resolution of ±10−4 days (±8.64 s). Figure 1 shows the different data sources
of an ICU. The detailed structure of the database can be found in the MIMIC-III original
publication [15].
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Figure 1. Intensive care unit structure.

2.2. XGBoost

XGBoost [16] is a gradient boosting technique based on ensemble learning. These
techniques correct errors made by previous models in successive ones, optimizing a loss
function. This function (1) is modified at each iteration t. The successive models are built
using the exact greedy algorithm, which analyzes all possible split loss reduction options,
until the stop condition is achieved. A more detailed explanation may be found in [16].

L(t) =
n

∑
i=1

l(yi, ŷi
(t−1)) + Ω( ft) (1)

where l is a differentiable convex loss function that must be transformed into another one in
a Euclidean domain using Taylor’s Theorem, the pair (yi, xi) represents the training set, ŷi
is the final prediction and Ω( ft) is the regularization term used to penalize more complex
models through both Lasso and Ridge regularization and to prevent overfitting.

XGBoost is one of the most popular algorithms in the state of the art [17], highlighting
its computational efficiency and GPU support. It is one of the most used algorithms in
recent biomedical works based on tabular data [18–20].

As stated above [21,22], XGBoost uses three types of parameters: general, booster
and learning task parameters. General parameters indicate the booster used: tree or linear
model. Booster parameters are related with the booster employed and define the internal
performance parameters, e.g., learning rate or number of estimators, while learning task
parameters indicate the corresponding learning objective. The methodology presented in
this work focuses on learning task parameters seeking to optimize the performance of the
XGBoost regressor model. These parameters are:
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• Learning rate: Step-size shrinkage used in updates to prevent overfitting. After each
boost step, the weights of the new features can be obtained directly, and the learning
rate reduces the weights of the features to make the boost process more conservative.

• Maximum delta step: the maximum delta step each leaf output is allowed to be.
• Maximum depth of a tree: increasing this value will make the model more complex.
• Maximum leaves: maximum number of nodes to be added.
• Minimum child weight: Minimum sum of instance weight (hessian) needed in a

child. If the tree partition step results in a leaf node with the sum of instance weight
being less than the minimum child weight, then the building process will give up
further partitioning.

• Number of estimators: The number of trees in the ensemble. It is equivalent to the
number of boosting rounds.

• Region alpha: L1 regularization term on weights. Increasing this value will make the
model more conservative.

• Region lambda: L2 regularization term on weights. Increasing this value will make
the model more conservative. It is normalized to number of training examples.

• Scale pos weight: controls the balance of positive and negative weights, useful for
unbalanced classes.

• Subsample: Subsample ratio of the training instances. Setting it to 0.5 means that
XGBoost would randomly sample half of the training data prior to growing trees.
Subsampling will occur once in every boosting iteration.

2.3. Bayesian Optimization

One of the relevant parts of a machine learning pipeline is the optimization of the
estimator model. This task implies a high computational load, so optimizing it efficiently is
a key factor. Given a dataset D, the goal of hyperparameter optimization [23] is to find λ
in (2):

λ∗ = arg min
λεΛ

IEDtrain ,DtestεDV(L,Aλ, Dtrain, Dtest) (2)

where λ is a vector of hyperparameters from the hyperparameter search space Λ, A is the
predictive model and V(L,Aλ, Dtrain, Dtest) measures the loss of the model A.

In this work, Bayesian techniques [24] were used to carry out this task, which stand
out for their computational efficiency when performing the search. The surrogate model
(a Gaussian stochastic probabilistic model) was used. The optimization was divided into
several stages: The first stage was the set-up of the surrogate model. Next, the best
hyperparameter combination was sought, and it was applied to the real objective function.
Finally, the surrogate model was updated. This process was repeated iteratively until the
defined criteria were achieved.

One of the most used objective functions is that of expected improvements (3), because
it can be calculated in closed form if the estimator model y with the configuration λ follows
a normal distribution (4) [23].

IE[II(λ)] = IE[max( fmin − y, 0)] (3)

IE[II(λ)] = ( fmin − µ(λ))Φ(
fmin − µ(λ)

σ
) + σφ(

fmin − µ(λ)

σ
) (4)

where φ(·) and Φ(·) are the standard normal density and standard normal distribution,
and fmin is the best observed value.

In this work, the open-source package Hyperopt [25], which uses Bayesian optimiza-
tion as the search technique, was used.
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3. Methodology

The proposed methodology to optimize the estimator model of the patient’s LoS is
divided into several stages. Figure 2a shows an outline of these stages, while a more
detailed explanation of the hyperparameter search using Bayesian optimization is shown
in Figure 2b. The first stage is related to the data preprocessing and the feature extraction.
The second one is devoted to building the LoS estimator. In this work, we propose to use
the state-of-the-art approach based on gradient boosting, namely XGBoost, due to the good
results obtained in estimation tasks and the high level of computational improvement that
could be achieved on a GPU architecture during the optimization stage. The third stage is
devoted to optimizing the model hyperparameters in order to improve the performance of
the estimator. In this work, a novel two-step Bayesian optimization approach is proposed,
implemented on a GPU architecture to reduce the execution time. Finally, the estimator
model is validated.

(a) (b)
Figure 2. Outline of the proposed methodology. (a) Shows a general outline, while a more detailed
explanation of the hyperparameter search using Bayesian optimization is shown in (b).

3.1. Data Preprocessing and Feature Extraction

The first stage of the pipeline was devoted to data preprocessing to obtain a set of
features, derived from the clinical data, used to fit and validate the estimator model. Such a
stage required two tasks.

The first task consisted of selecting the variables used to produce the dataset from the
original database. In this approach, all available clinical variables were considered, selecting
only the ones that were present in at least 80% of the patients for building the model, as in
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other published works [21,26]. The reason why all of the variables were not available for all
patients was because, depending on the pathology and the patient’s clinical condition, only
a certain set of variables was monitored. Patients who did not have values in at least 2/3 of
these variables were subsequently discarded. In order to deal with missing data, a schema
for input data was required to fill values on such empty variables. Although there are other
imputation methods, such as MissForest [27] or generative adversial networks [28], in this
work we have proposed using K–Nearest Neighbors, as it is one of the most widely used in
the current state of the art, in addition to its simplicity in implementation and usage.

The next task consisted of the conversion from variables to features, in this case by
computing the mean value, standard deviation and maximum and minimum values of
the clinical variables gathered during the first 24 h of the patient’s ICU stay, except for the
volume of urine, for which only the total volume in this time interval was used.

3.2. LoS Estimation Model Building

Once the previous preprocessing stage was completed, it was necessary to proceed
with the configuration stage of the ICU LoS estimator model. As mentioned above, the
XGBoost model was used, which was fitted using the above described features. In order to
train the model, a random split train and test of these data was carried out following a ratio
of 80/20. To validate the model, the mean absolute error (MAE) (5) was used, which is one
of the most popular metrics in the current state of the art, allowing for the comparison of
the results.

MAE =
n

∑
i=1
|ŷi − yi| (5)

where n is the number of patients, ŷi is the LoS estimated by XGBoost model and yi is the
golden standard for the LoS, obtained from the database.

3.3. XGBoost Optimization: Two-Step Approach

To improve the accuracy of the model, we delved into the automatic optimization of
the hyperparameters of XGBoost instead of using the default values.

This stage was divided into two steps. A first search step was executed using the
initially defined hyperparameter search space. Then, a second search was performed once
the search space was modified after the hyperparameters’ evolution during the first search
stage was analyzed.

The optimization started with the hyperparameter search space (Λ) definition, which
consisted of indicating which parameters should be varied during the different iterations (2)
and within which limits, in addition to indicating the type of search space. There are three
types of search space distributions: uniform, log uniform and q uniform, which return
real values uniformly distributed between defined limits. Log uniform is more suitable for
geometric series, whereas uniform and q uniform are more suitable for arithmetic series,
with the difference being that q uniform returns round values, so the selection of the search
space depends on the hyperparameter type. This part was fundamental, since an incorrect
definition of space can cause the process to not work efficiently in computational terms.

In addition to defining the search space, it was necessary to define an objective function
to minimize in each iteration, that is, the statistical metric that defined the quality of the
estimator model needed to be defined. In this work, it was decided to use the MAE (5) as a
metric. Firstly, the maximum number of evaluations (m) was defined as 5000.

Once this first search was completed, the search space was modified to improve
the results obtained avoiding the bottlenecks derived from the initial defined limits and
refocusing on the area where the best value was found after the first search, but expanding
the search limits, as shown in the Results section. Table 1 summarizes the search space
distribution used in the first and second phases, and the types of distributions used.
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Table 1. Hyperparameter distributions.

Hyperparameter Distribution Type First Step Distribution Second Step Distribution
Min Max Min Max

Learning rate loguniform −8 0 −7.5 −4.5
Max. depth quniform 1 15 14.5 25

Min. child weight quniform 0 10 6 12
Max. delta step quniform 0 10 0 0.5
Subsample ratio uniform 0.1 1 0.4 0.7
Lambda region uniform 0.1 1 0.7 1.2
Alpha region uniform 0.1 1 0.4 0.8

Scale pos weight uniform 0.1 1 0.45 0.85
Max. number of

leaves quniform 0 10 0.1 1

Number of
estimators quniform 1 10,000 100 2500

4. Results

In this section, the results obtained using the proposed methodology are presented
and analyzed, in terms of the set of hyperparameters identified during the optimization
stage, the performance of the model estimator using MAE as the metric and the com-
putational performance. For this analysis, the initial dataset is randomly split into train
(27,077 patients) and test (6770 patients) sets, calculating the MAE for the test set.

4.1. Hyperparameter Tuning Stage

Regarding the hyperparameter optimization stage, the method permits one to reduce
the MAE, and consequently improve the estimations of the model, by identifying the
set of parameters that provides the lower MAE. Table 2 shows the best combination of
hyperparameters obtained both after the first search and after the second search, explained
and described in Section 3.

Table 2. Hyperparameter optimal values.

Hyperparameter Best Value
First Search Second Search

Learning rate 0.00135 0.00132
Max. depth 15 24

Min. child weight 9 12
Max. delta step 0 0
Subsample ratio 0.525 0.529
Lambda region 0.891 1.184
Alpha region 0.661 0.559

Scale pos weight 0.674 0.755
Max. number of leaves 0 0
Number of estimators 745 812

The whole evolution of interactions of both optimization steps are plotted in Figure 3,
which shows the minimum value of the MAE obtained (grouped into intervals of 50 iterations),
that clearly shows the downward trend. The figure also shows how after redefining the search
space from the results of the first search step (black vertical line), there is a sharp drop in the
value of the MAE, obtaining a minimum value of 2.529 in iteration 6962.

Another important element when analyzing the optimization stage of the model is the
evolution in the search, that is, how the values of the hyperparameters vary throughout
the different trials. Figure 4 shows the value of one of the model hyperparameters (the
maximum depth) in each trial, with its corresponding MAE. The figures corresponding
to the rest of the hyperparameters are shown in the Supplementary Materials. From
these figures, what was indicated above can also be seen, meaning that there is no direct
correlation between the value of the individual hyperparameter and the value of the MAE
obtained. However, it shows that the intervals between the optimal MAE value obtained
and the trend in the search are found. From these results, a second optimization step was
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performed by redefining the search space of the Bayesian model, modifying the search
space limits. After this second optimization step, a MAE of 2.529 was obtained.

Figure 3. Evolution of minimum MAE across 50 iteration intervals.

Figure 4. Evolution of maximum depth value and its corresponding MAE across the trials.

4.2. Estimator Validation

Only the first stay of each patient was selected in the database to avoid possible informa-
tion leakage and to compare the results obtained with related works [8], resulting in a total
of 46,476 stays. As indicated in Section 3, a second filtering was subsequently carried out to
discard patients for whom more that 1/3 of the variables were unavailable, obtaining a total of
33,847 ICU stays. Table 3 shows the main characteristics of the resulting cohort.
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Table 3. Characteristics of the data source.

MIMIC-III Resulting Cohort

Number of patients 46,476 33,847
Number of ICU stays 61,532 33,847

Average age 64.93 74.65
Gender F: 20,380

M: 26,096
F: 19,319
M: 14,528

LoS average 4.92 4.32
LoS standard deviation 9.64 6.21

LoS variance 92.91 38.55

Table 4 shows the clinical ICU variables and features extracted from each patient. It
consists of a total of 35 variables as 139 features.

Table 4. Features extracted from each clinical variable.

Clinical Variables Statistics

Age Value in admission
Gender F/M

Urine output Accumulated value after 24 h
Glasgow coma motor scale
Glasgow coma verbal scale
Glasgow coma eyes scale
Systolic blood pressure

Heart rate
Body temperature

PaO2
FiO2

Serum urea nitrogen level
Sodium level

Potassium level
Bilirubin level

Respiratory rate
Glucose
Albumin

Anion gap Average, maximum, minimum
and standard deviation value

after 24 h
Chloride

Creatinine
Lactate

Calcium
Haematocrit
Hemoglobin

INR 1

Platelets
Prothrombin time test

Activated thromboplastin time
Base excess

PaCO2
FiCO2

PH
Total CO2

1 International normalized ratio of prothrombin time.

To quantify the precision of the model when estimating the patient’s LoS in the ICU,
the MAE was used as the metric. As mentioned above, the initial dataset was split into
train (27,077 patients) and test (6770 patients) datasets, calculating the MAE for the test set.
The LoS was estimated with a resolution of ±10−4 days, obtaining a MAE of 2.529 days,
lower than the rest of the current state-of-the-art works consulted. Rouzbahman et al. [29]
obtain a MAE of 5.07 days, while Alghatani et al. [30] obtain a MAE of 2.64 days, both
using MIMIC as the database. Moreover, the final MAE obtained is lower than the MAE
obtained with the default hyperparameters (3.040) and after the first optimization step
(2.539). Although it is true that there are studies with a slightly lower MAE value, they
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focus on a specific group of patients, instead of addressing the problem from a generic
point of view, as we do. Our work improves the results of those who face problems from a
generic point of view. Table 5 shows the results obtained.

Table 5. Comparison of the MAE obtained using the default model with respect to that obtained after
the first and second steps of the optimization phase.

Default Estimator
(Without Optimization)

Optimized Model
(After First Step)

Optimized Model
(After Second Step)

3.040 2.539 2.529

4.3. Computational Performance

Model fitting and optimization are extremely expensive processes. To carry out this
work, a high-performance computing system was required. This architecture consisted
of a 24-core CPU, 256 GB of RAM and one NVIDIA A100 GPU unit. The GPU had 40 GB
of memory and consisted of 108 multiprocessors, allowing the execution of 2024 threads
per multiprocessor, a total of 221,184 threads per GPU [31]. One of the main objectives of
the methodology proposed in this article was computational efficiency. For this, it was
necessary that the software used could be executed on the GPU.

In order to benchmark the effects that hardware and dataset dimensions have on
the performance of the proposed method, several tests were conducted, both on the GPU
and on the CPU (using one core and three cores). Each hardware configuration was
tested with three different dataset versions, namely the original dataset used in a previous
experiment (dataset), this dataset reduced to half of the number of patients (Subdataset 1)
and a dataset with half of the features (Subdataset 2). Both the selection of patients and
characteristics were performed randomly. Table 6 shows the results obtained in minutes
using 100 iterations (m).

Once the drastic difference in time between the CPU and GPU was verified, the
number of iterations was increased to 500, only using the GPU to analyze how it influenced
the execution time. It was observed that the execution time increases practically in the same
proportion as the number of iterations. The variation in this proportion is due to the fact
that depending on the value of the hyperparameters in which it is iterating, the execution
time differs.

Table 6. Time comparison. m is the number of iterations.

CPU GPU
1 Core

(m = 100)
3 Core

(m = 100)
m = 100 m = 500

Dataset 85.86’ 39.26’ 9.70’ 75.23’
Subdataset 1 82.56’ 41.86’ 11.82’ 63.06’
Subdataset 2 44.63’ 24.50’ 9.07’ 44.63’

5. Discussion

The proposed methodology allows one to identify the set of hyperparameters that
provides the best performance of the predictor in terms of minimizing the mean absolute
error (MAE). With the best combination of hyperparameters, the LoS was estimated with a
MAE of 2.529 days, lower than the rest of the current state-of-the-art works consulted. It is
also lower than the MAE obtained after the first search stage (MAE = 2.539 days) and lower
than using the default XGBoost hyperparameters set without executing the optimization
task (MAE = 3.04 days). Although it is true that there are studies with a slightly lower MAE
value, they focus on a specific group of patients, instead of addressing the problem from a
generic point of view, as was indicated in Section 1.

XGBoost was used as an estimator model due to being one of the ones that obtains the
best results in other current state-of-the-art works and its computational efficiency. How-
ever, the same methodology could be applied to other models (Random Forest, Support
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Vector Machine, etc.). The feature extraction stage could be modified adding data from
other ICU sensors, extracting other statistics or considering another time window instead
of 24 h.

One of the fundamental reasons for obtaining better results is the optimization phase
of the model. Adapting the search methodology to work in the GPU allowed us to intensify
the search for the best combination of hyperparameters. In addition, as already indicated
above, the search technique used based on Bayesian optimization was characterized by
performing the search for hyperparameters more efficiently from a computational point of
view. The results also confirm that the two-step approach proposed for the optimization of
the estimator model improves the results obtained. This same proposal could be applied to
another problem.

A stagnation of the MAE improvement is observed with the passing of the trials,
which gives rise to an analysis of the relationship of computational cost–improvement
obtained, in which it would be necessary to assess the available hardware and the allowable
error in each particular situation. Regarding the relationship between the individual
values of the hyperparameters and the value of the MAE, no clear patterns are observed,
which justifies that what is really relevant is the combination of the values of the different
hyperparameters, not the values of each one separately. This demonstrates the need to
perform the optimization of the model automatically, as was the case in this work, instead
of performing it manually, which would be unfeasible in terms of work times, and worse
results would be obtained.

From the computational results, how the use of the GPU drastically reduces the
execution time is observed. It is also interesting to analyze how the variations in the size of
the dataset hardly imply variations in execution times in the GPU. This makes sense, since
although the size of the dataset is reduced, GPUs are characterized by processing large
amounts of data in parallel in a single clock cycle, so the variation in the size of the dataset
does not always imply a variation in the timing of execution. If the same methodology was
used in the classic architectures based solely on the CPU, the execution time would have
been drastically higher, which would limit the ability to analyze the possible improvements
to be made to the methodology for a real clinical application.

As for future lines of work, this methodology can be extended in several ways. The
first line of research is related to the application domain, regarding using this novel method-
ology to estimate other time variables that are different to LoS, as well as to estimate other
variables aside from time within the ICU, and extending the applicability to other hospital
areas and by extension to any other social prediction. Another future line of research could
be exploring the configuration domain, namely the modifications in the internal configura-
tion of the methodology (the estimator model used to change the XGBoost predictor model
by any other regressor model that could provide a time estimation). Modifications in the
optimization stage and in the feature extraction stage are also of great interest, using more
data sources or using different feature extraction techniques.

6. Conclusions

This article presents a methodology to estimate the LoS in the ICU using data collected
by UCI sensors and other sources (laboratory and medical history) during the first 24 h
of a patient’s admission, focusing on the optimization stage of the estimator model, both
from a computational point of view and at the estimation precision level. To do this, the
methodology was adapted so that the training of the model was executed on the GPU
and the search for the best combination of hyperparameters was carried out automatically
using Bayesian optimization techniques in a novel two-step approach.

The results using 33,847 patients demonstrate the validity of the proposed method-
ology, obtaining a MAE of 2.529 days, lower than that of other works from the current
state of the art consulted. In addition, an improvement in model precision by dividing
the model optimization phase into two steps instead of performing it in a single step is
also demonstrated.
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This work opens several future lines of research for applying the present methodology
to predict other variables within the ICU, or in other hospital areas. Another future line of
research could be exploring modifications in the internal configuration of the methodology (the
estimator model used, modifications in the optimization stage, using different features, etc.).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23031162/s1. Figures similar to Figure 4 are added as Supple-
mentary Material for each hyperparameter.
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