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A B S T R A C T

The control of the electrical power supply is one of the key bases to reach the sustainable development goals set 
by United Nations. The achievement of these objectives encourages a dual strategy of creation and diffusion of 
renewable energies and other technologies of zero emission. Thus, meet the emerging necessities require, 
inevitably, a significant transformation of the building sector to improve the design of the electrical infra-
structure. This improvement should be linked to advanced techniques that allows the identification of complex 
patterns in large amount of data, such as Deep Learning ones, in order to mitigate potential uncertainties. Ac-
curate electricity and energy supply prediction models, in combination with storage systems will be reflected 
directly in efficiency improvements in buildings. In this paper, a branch of Deep Learning models, known as 
Standard Neural Networks, are used to predict electricity consumption and photovoltaic generation with the 
purpose of reduce the energy wasted, by managing the storage system using Reinforcement Learning technique. 
Specifically, Deep Reinforcement Learning is applied using the Deep Q-Learning agent. Furthermore, the accu-
racy of the predicted variables is measured by means of normalized Mean Bias Error (nMBE), and normalized 
Root Mean Squared Error (nRMSE). The methodologies developed are validated in an existing building, the 
School of Mining and Energy Engineering located on the Campus of the University of Vigo.   

1. Introduction

Buildings in residential and industrial sectors have been designed, in
the past, for different situations, needs and ways of life than these days, 
without sufficient consideration of climatic conditions. These facts, 
represent the highest share of final energy in Europe, corresponding to 
40 % of the final energy consumption and 36 % of the emissions [1]. 
Furthermore, energy demand in the building sector is growing, it has 
increased by 3 % annually since 2010 and this trend is expected to 
continue in coming years [2]. Responding to many emerging needs, 
inevitably requires a very significant improvement in the energy effi-
ciency of built heritage. Thus, despite the increase in population and 
energy demand at a global level that is forecasts for 2040, an 
improvement in energy efficiency in buildings could reduce the emission 
of greenhouse gasses by >40 %, which allows to be in line with the goals 
of the Paris Agreement [3]. 

The reduction of emissions in buildings goes hand in hand with 
distributed generation, since it is an option that guarantees sustainable 

energy and is crucial to mitigate the uncertainties of the grid [4]. The 
continuous improvement in efficiency and costs promotes the use of 
solar photovoltaic (PV) generation as the most used solution to reduce 
consumption and emissions in building sector [5]. In fact, PV in-
stallations in buildings show the highest rate of growth in installed 
power in the world during the last decades and its share is increasing 
every year [6]. Therefore, PV installations in buildings are expected to 
play a key role in achieving climate targets [7]. 

The energy efficiency of buildings can be improved by 30 % without 
any structural change by optimizing the operation of loads and distrib-
uted energy [8]. The battery is recognized as a key element for real-time 
trade-off of energy supply and demand in buildings [1] and is projected 
to expand its annual growth rate in coming years [9]. The accurate 
predictive energy modeling of loads and production in buildings is 
essential to ensure the correct operation of the storage system, which 
will be reflected directly in energy efficiency improvements. Traditional 
modeling approaches as physical representations, i.e., TRNSYS, or 
mathematical programming methods, i.e., regressions, have been shown 
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to have some issues as computational cost or accuracy respectively, 
making it difficult to adapt to current needs. Thus, in a world where 
smart devices, such as smart meters, constantly produce high amount of 
data, reveals the need to work with efficient and accurate models, such 
as Artificial Intelligence (AI) techniques [10]. 

Currently, there is a great effort by the European Commission to 
show the need to improve the development of AI models. Thus, in the 
Coordinated AI Plan [11], this discipline is considered as a pillar that 
allowed Europe to boost its competitiveness and underpin the 
advancement of the areas of digitalization and green transition. The 
most extended branch of AI is the Machine Learning (ML), nevertheless, 
a more advanced category of ML models, known as Deep Learning (DL), 
has been gaining more presence in current research fields as autono-
mous driving [12], speech recognition [13] or healthcare [14]. These 
ones, replicate how the human brain behaves, being possible to obtain 
accurate predictions at a low cost by the identification of complex pat-
terns in data. Common characteristic of DL models is the structure, from 
some input features, it is sought to extract a pattern in order to extrap-
olate the results to new data [15,16]. 

Accurate DL forecasting is a complex problem as this type of model 
depends on many parameters, i.e., bias, kernel or regularization, and 
hyperparameters, i.e., number of hidden layers, hidden layer activations 
or number of nodes per layer. The search for the appropriate DL 
configuration to achieve the best performance is a challenging problem 
and it is in continuous improvement [17]. Nevertheless, the capability of 
DL methods to extract and forecast patterns in building loads [18,19] 
and distributed generation [20,21] is widely demonstrated and with 
growing interest. 

The configurations employed in this manuscript to forecast elec-
tricity consumption and PV production take into account a set of 
different parameters and hyperparameters to guarantee an adjusted 
forecast of these variables. Thus, the DL models are obtained by opti-
mizing through different values of hidden layers, hidden units, activa-
tion functions, kernel initializations, and learning rate. With the purpose 
to ensure the interdependence of each sample, the training process is 
carried out through cross-validation using 10 folds. In this way, the 
extraction of the patterns and the generalization of the results are 
ensured to use these predictions as input of the energy management 
system. 

The focus on the AI forecast allows to make accurate decisions in real 
time in the storage system, choosing the best option to meet energy 
demands in buildings. Interpretation of this data to make the decision 
taking with minimal human intervention can be carried out by an 
Intelligent Energy Management System (IEMS) [22]. With the AI 
approach, IEMS demonstrate a high degree of success of saving con-
trolling and monitoring energy. The storage trade-off can be optimized 
in order to reduce the energy bills by maximizing the self-consumption 
[23]. The IEMS predictive control can be performed by model-based or 
model-free decision algorithms. On one hand, model-based decision 
algorithms compute the action taking by using mathematical approxi-
mations modeling the physical world, p.eg., dynamic programming. On 
the other hand, in model-free decision algorithms, the action taking is 
carried out with the experience received by the interaction with the 
world, p.eg. Reinforcement Learning (RL) [24]. 

The predictive control of the IEMS is maximized model-free decision 
algorithms since the model is in continuous exploration. RL is one of the 
most active areas of research in AI in coming years [25]. These are 
presented in recent research fields as Internet of Things [26], Energy 
Management [27] or Neuroscience [28]. In contrast with typical ML 
techniques, where models learn from some input data, in RL, the 
learning occurs via interacting with an environment. It is a goal-oriented 
learning where the model depends on the consequence of its actions. 
There are diversity RL models, i.e., Q-Learning, SARSA or Dyna-Q. The 
selection of the most appropriate model to solve the problem is function 
of how it is intended to learn, how the data is treated or the type of 
problem to be solved [29]. Deep RL is a branch of RL, where the actions, 

instead of being randomly selected, are chosen by DL methods based on 
the experience gained in selecting the states [30]. 

The aim of this paper is to use DL techniques to predict energy de-
mands and renewable energy production in buildings because it has 
been demonstrated their accuracy in modeling complex no-linear re-
lationships [31]. In order to improve the building energy use, using the 
DL predictions, an IEMS has also been considered, whereby energy 
trade-off is made according to the needs of the building with the Deep RL 
method. Usually, storage management methods have been applied 
separately to prediction of electricity demand [32,33] or renewable 
energy production [34,35]. Nevertheless, since the energy supply 
management is one of the pillars to obtain the sustainable development 
goals established by the United Nations [36], it is necessary to study 
synergies and establish prediction techniques coordinated with a man-
agement system to obtain an accurate and efficient building model. 

The current global energy crisis makes the energy management of 
buildings of great interest in current studies. The characteristics of the 
free-decision models proposed by the advances in AI technology are in 
line with trends towards automatization. Thus, current research ad-
dresses this trouble by applying this type of technique [33,34]. In this 
manuscript, the free-decision model employed is the Deep RL. As with 
DL forecasting, the appropriate configuration is selected using the 
optimal values of a set of hyperparameters, such as exploration/ 
exploitation rate, discount factor, number of episodes, and rewards 
used. In this way, the energy management of a building that includes PV 
production is sought to minimize the energy costs and maximize self- 
consumption, improving its energy efficiency. 

The novelty of this paper lies in the application of AI techniques to 
predict electricity demand and distributed generation to trade off the 
battery. The proposed methodology can make predictions with high 
reliability, with DL, to establish the best action to be taken by the storage 
system, with Deep RL, to improve building performance. The AI archi-
tectures selection for building energy management are optimal through 
a set of values used for hyperparameters tunning process, i.e., number of 
hidden layers number of hidden units, activation functions, kernel 
initialization, and learning rate, for forecasting PV power and electricity 
consumption using DL techniques, and exploration/exploitation rate, 
discount rate, number of episodes, and rewards, in the IEMS by means of 
modeling with Deep RL. This allows the correct extraction of patterns 
from the IEMS proposed to improve the energy management of a real 
building, maximizing the use of energy produced in situ by PV panels, 
and minimizing energy costs considering a tariff with hourly 
discrimination. 

The content of this paper is organized as follows: the techniques 
developed for DL prediction and Deep RL control are explained in Sec-
tion 2; the studied building, and the DL and the Deep RL models specific 
to the real-life situation are presented in Section 3; the evaluation of the 
IEMS trade-off is discussed in Section 4; and the conclusions are outlined 
in Section 5. 

2. Models and methods 

This section presents the mathematical approach used for IEMS 
trade-off in buildings. In the first part, the methodology for DL pre-
dictions is shown. Subsequently, the validations used for error assess-
ment of the predicted variables are presented. Finally, the methodology 
for energy management trade-off through Deep RL is introduced. 

2.1. Deep Learning predictions 

One of the most common DL models is the Standard Neural Network 
(SNN) due to its good fittings with tabular data [37]. The layered 
connection is based on the weight structure (kernel, w, and bias, b), 
whose values are those that represent the extraction capacity of the SNN 
[38]. The information given by the input variables is passed through the 
layers by means of activation functions in each of the nodes. This process 
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is known as forward propagation and is presented in eq. 1. Rectified 
Linear Unit (ReLU), linear, hyperbolic tangent (tanh) and sigmoid are 
the most used activation functions in DL problems [39]. 

z =
∑n

i=1
wi • g(zi) + bi (1)  

where z is the node equation, i corresponds to the previous layer neuron, 
n corresponds to the number of nodes of the layer i, and g(zi) is the 
activation function of node equation of the previous layer. 

The SNN training process is divided in three stages: forward propa-
gation, backward propagation and weights update. In forward propa-
gation, presented above in Eq. 1, weights initialization is needed. The 
initial values should be randomly selected to avoid entrapment in the 
information extraction. They must also be as close as possible to zero, in 
order to obtain the optimal solution with a reduced number of iterations. 
On one hand, the most kernel initializations used are random normal, 
glorot normal and He normal [40]. These initializations depend on the 
activation function used, so He normal optimizes the use of ReLU acti-
vations, glorot normal, tanh activations, and random normal, sigmoid 
and linear activations [41,42]. On the other hand, bias initialization is 
not a critical process during the algorithm, so zero initialization is 
generally chosen. 

In backpropagation, the information provided with the SNN con-
nections to the output layer is evaluated against the target variable. This 
evaluation is carried out with some metric as those presented in Section 
2.2. Once the distance between real and predicted variables is recog-
nized, the uncertainty is transferred to the input layer via the chain rule 
[37]. Eq. 2 presents the backpropagation in the layer equation. The 
backpropagation equations for weights, either kernel and bias, is given 
in Eq. 3 and Eq. 4 respectively. 

∂z =
∑n

j=1
wj • ∂zj • g′

(z) (2)  

where ∂z is the derivative of the node equation, j corresponds to the next 
layer neuron, n corresponds to the number of nodes of the layer j, and g′

(z) is the derivative of the activation function of node equation. 

∂w =
∑n

i=1
[∂z • g(zi) ]

/

N (3)  

where ∂w is the derivative of the kernel weight, and N is the sample 
length. 

∂b =
∑

∂z
/

N (4)  

where, ∂b is the derivative of the bias weight. 
The training process is carried out through mini-batch gradient 

descent using the Adam optimizer [43]. This avoids the typical problems 
that arise with weight updates in the classical gradient descent optimi-
zation, such as standstill at a local minimum and low level of conver-
gence. In this way, the weights updates performed by means of average 
update, known as batch learning, in each epoch, that is, times the 
training process go across the training sample. Eq. 5 and Eq. 6 show the 
weights update, kernel and bias respectively, considering mini-batch 

gradient descent with Adam optimizer training process. 

w←w − α •
β1 • v∂w + (1 − β1) • ∂w

1 − βt
1

/ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
β2 • s∂w + (1 − β2) • ∂w2

1 − βt
2

+ ε

√

(5)  

where α is the learning rate, β1 is the first moment of the exponential 
decay rate, typically initialized to 0.9, β2 is the second moment of the 
exponential decay rate, typically initialized to 0.999, v∂w and s∂w are 
Adam optimizer kernel weights, and ε is a small number to prevent zero 
division. 

b←b − α •
β1 • v∂b + (1 − β1) • ∂b

1 − βt
1

/ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
β2 • s∂b + (1 − β2) • ∂b2

1 − βt
2

+ ε

√

(6)  

where v∂b and s∂b are Adam optimizer bias weights. 

2.2. Error assessment validation 

The error metrics used to measure the accuracy of the DL model are 
normalized Mean Bias Error (nMBE), and normalized Root Mean 
Squared Error (nRMSE). Both, nMBE and nRMSE, are normalized metric, 
which make the errors comparable. One the hand, the nMBE provides a 
measurement of the general bias of a given variable, Eq. 7. Positive and 
negative values mean the underprediction or overprediction 
respectively. 

nMBE =
∑N

k=1

Ŷ k − Yk

N

/

Ymax (7)  

where, Ŷk is the DL predicted value at time k, Yk is the objective variable 
at time k, and Ymax is the maximum value of the objective variable. 

On the other hand, the nRMSE indicates the ability of the model to 
predict the overall load shape that is reflected in the dataset, Eq. 8. Its 
use is very common, and it is considered an excellent general purpose 
error metric for numerical predictions. 

nRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

k=1

(Ŷ k − Yk)
2

N

√ /

Ymax (8)  

2.3. Deep Reinforcement Learning control 

RL models have a common trend, to obtain the best model that fits to 
an optimal policy. Nevertheless, there are several agents that can 
perform this optimization. The used agent depends on the specific 
problem to carry out. Essentially, it is needed to consider a breakdown of 
what is looking to reproduce. To do this, it is necessary to evaluate 
whether actions are continuous or discrete, whether you want to learn 
during the episode or at the end of the episode, or whether it is a control 
problem. The learning method must also be considered, there are mainly 
two: on-policy methods and off-policy methods [29,44]. On one hand, 
on-policy methods estimate the value of a policy while using it for 
control. On the other hand, in off-policy methods, the policy used to 
generate the behavior may be unrelated to the policy that is evaluated 
and improved. 

The basis of the IEMS trade-off is to obtain the best charging and 
discharging periods of the storage system to maximize the potential of 
distributed energy generation, thus minimizing energy costs. In this 
way, the IEMS is a control problem with discrete actions. Furthermore, 
to improve the behavior throughout the process and in order to respond 
quickly to the needs of the building, the considered problem should be 
actualized in each time step, i.e., during the whole episode. Finally, 
because it is possible that there are random actions through the day that 
make consumption or production not always the same, an off-policy 
method is selected. The agent that best fits the needs presented is Q- 
learning. Furthermore, to provide intelligence to the system, reducing Fig. 1. Basic operation of a Reinforcement Learning problem.  

M. Cordeiro-Costas et al.                                                                                                                                                                                                                      



Journal of Energy Storage 61 (2023) 106784

4

the randomness in action selection, a DL method is used to select the 
action that best adapts to the state of the environment in each time step. 
The basis of the DL method is presented in the previous section. 

RL is a trial-and-error method that seeks the optimal policy from the 
iteration for each time step in episodes. In every time step, the agent 
interacts with the environment and selects one action to advance to the 
next time step. A reward is given to the agent in every action it takes. The 
better the action, the higher the reward, and vice versa. The goal is to get 
the maximum total reward when the episode ends. The RL operation is 
summarized in Fig. 1. 

In a RL, the agent performs actions randomly at each step. While the 
agent interacts with the environment, this method maps the ways ac-
cording to the reward obtained, known as path reward. In Deep RL, 
actions are taken using DL, similar to those expressed in Section 2.1. 
Thus, this technique learns the most appropriate action to the state in the 
current conditions thanks to the ability of neural networks to generalize 
states. In this manuscript, Deep RL has been employed since the decision 
process is more robust to the variations that are generated in the elec-
trical consumption of a building, which allows a better understanding 
and application by the agent to the actions that the IEMS have to carry 
out. 

To obtain a good, accumulated reward, the agent must exploit, 
whether the reward is high, or explore, whether the reward is low, the 
different actions to improve the goal achieved. The used agent, Q- 
Learning, performs the search for the optimal policy through the value 
iteration applied to Bellman’s optimality equation [45], as presented in 
Eq. 9. 

Q(S, A)←Q(S, A) + α • [R(S, A, S′

) + γ • maxA′ Q(S′

, A′

) − Q(S, A) ] (9)  

where, Q(•) is the learned action-value function, S is the current state, A 
is the current action, α is the step-size parameter, R(S,A,S′) is the 
reward, γ is the discount rate, S’ is the selected state, and A′ is the action 
taken. 

By means of the Q-Learning agent, typical in RL models, the value of 
Q(•) is estimated from the search in a table, known as Q-table. Thus, the 
state-action space that is represented in the Q-table must be small 
enough to be manageable, which only allows for a discrete range of 
states. The use of neural networks in taking actions in Deep RL methods, 
through the Deep Q-Learning agent, allows the agent to use the expe-
rience for the reproducibility of actions taken. In this way, the robust-
ness of Deep Q-Learning agent allows to prevent the divergence of the 
outputs and to use a continuous state, in which the state of charge of the 

IEMS can be simulated effectively [46]. The update formula carried out 
by the Deep Q-Learning agent is presented in Eq. 10. 

θ←θ + α • [R(S, A, S′

) + γ • maxA′ T(S′

, A′

) − Q(S, A; θ) ] • ∇θQ(S, A; θ)

(10)  

where θ are the parameters, T(•) represent the objective network, and 
∇θQ(•) is the gradient of the Q-function. Because batch-learning is used 
in neural networks, the eq. 11 must be imposed. 

totalsteps mod C = 0, T←Q (11)  

where totalsteps is the total number of updates applied to the Q-function 
in the current time, mod represents the concept of modify, and C is the 
learning step. 

Proper action learning in the Deep RL algorithm is highly influenced 
by the imposition of the rewards. So, following Eq. 9, the update of the 
current state (Q(S,A)) is influenced by a second term in the summatory 
that considers the reward (R), the discount rate (γ) and a maximum 
(maxaQ(S′,a)). The reward is the compensation earned by the agent in 
the transition from the current state to the one the agent proposes, the 
discount rate determines the importance of this reward in the current 
action compared to the immediate rewards, and the maximum is the 
action that is expected to give a maximum total reward based on the 
actions previously learnt by the agent because of the imposition of the 
neural networks in the selection of actions. In this way, if the rewards/ 
punishments are very close, the agent may not understand the difference 
between a good target and a bad one. On the contrary, if there is a big 
difference between punishment and reward values, convergence to the 
desired objective is not ensured since the agent may not understand 
clearly what the objective is [29,44]. 

3. Case study 

The aim of this study is to obtain a prediction model of PV production 
and electricity consumption of buildings with high accuracy from DL 
technique. The building trade-off is managed with a battery system 
applying Deep RL techniques. In this way, with the combination of these 
techniques, it is possible to improve the building energy use and, 
therefore, its energy efficiency. The architecture of the proposed system 
is shown in Fig. 2. 

Fig. 2. Topology diagram of the studied IEMS.  
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3.1. Building characteristics 

The validation of the models presented is carried out through the 
study of data obtained in the School of Mining and Energy Engineering 
located on the Campus of the University of Vigo. The building is divided 
into 4 floors: the first is the reception and the dining room, the second is 
the school service and the library, and the third and fourth are the of-
fices, laboratories and classrooms. The roof has a PV installation with 
296 PV modules of 410 Wp divided into 18 branches connected in series. 
The PV connection to the grid is made through 2 inverters of 50 kW, 
from which a three-phase signal of 100 kW of nominal power is ob-
tained. The combined losses of the PV system are 29.56 %. The actual 
supply modality is that of individual self-consumption with surpluses 
receiving financial compensation. 

The monitoring of electricity consumption and PV production is 
carried out with the direct data exchange functionality offered by the 
inverter system. The data collection period corresponds to 2021 and 
goes from February 18 at 12 a.m. to September 30 at 11:50 p.m. with a 
frequency of ten minutes. With the purpose of determine the quality of 
the data, a filtering process is performed using a data acceptance crite-
rion. The energy balances presented in Eq. 12 and Eq. 13 are also 
considered in order to ensure the validity of the data, removing the rows 
with a decompensation >0.01 kW. Through these data analyses, the 
sample quality is obtained, this is shown in Table 1. 

Pcons = PSelf −cons + Pgrid,cons (12)  

where Pcons is the power consumed in the building, PSelf−cons, is the self- 
consumed power in the building, and Pgrid, cons, is the power consumed 
from the grid. 

PPV = PSelf −cons + Pgrid,inj (13)  

where PPV is the PV power produced, and Pgrid, inj, is the power injected 
in the grid. 

As can be seen in Table 1, the quality of the sample is excellent, with 
total errors of 2.28 % in the worst case, in self-consumption and grid 
injection, and 1.09 % in the best case, in building consumption and grid 
consumption. The worst month monitored is April, with errors >2.75 % 
in all of variables, and the best is September, with errors <0.70 % in all 
variables. 

The PV production system can supply 63.26 % of the building con-
sumption, however, the current autarky coefficient is 41.39 %. Thus, 
65.44 % of PV production is self-consumed, injecting the remaining 
34.43 % into the grid. 59.56 % of the energy that the building needs 
comes from the grid. The storage system proposed in this paper is ex-
pected to improve the autarky, reducing the building energy costs. 
Furthermore, because of the prediction of electricity consumption and 
PV production through DL technique, it is possible to forecast future 
electricity consumptions and PV productions. In this way, it is possible 
to make a trade-off with the best charging and discharging periods of the 
storage system that could be selected according to the most convenient 
moments, p.eg., where energy costs are lower or where there is 

renewable production, reducing building energy costs. 
The self-consumption with surpluses receiving financial compensa-

tion is the selected electricity costs scenario. There are 2 energy 
branches, defined by the existence or not of solar incidence. This solar 
incidence goes from 7 a.m. to 4 p.m. GMT in summer schedule and from 
9 a.m. to 4 p.m. GMT in winter schedule. Furthermore, compensation for 
injection on the grid is also considered. Peak hours and valley hours 
differ in the power term. Valley hours are 10 p.m. to 6 a.m. GMT in 
weekdays and 24 h a day on holidays and weekends. The rest of the time 
corresponds to peak hours. The considered power terms are 100 kW in 
peak hours and 75 kW in valley hours. The associated costs with this 
scenario are presented in Table 2. 

3.2. Deep Learning predictions 

The electricity consumption of the building and the PV production 
prediction is carried out with DL technique through temporal variables 
and weather data. On one hand, the temporal variables used are the hour 
of the day, the day of the week and the day of the year. On the other 
hand, the weather data used are relative humidity, temperature and 
solar irradiation. The weather variables used are selected from the 
meteorological station located on the Campus of Vigo of the University 
of Vigo, a few meters from the analyzed building. The quality of this data 
is excellent, without errors in the period studied. 

To accomplish DL predictions, the dataset is divided in two groups: 
training and testing. On one hand, training is where the model predicts 
the variables. This prediction is done using a 10-fold cross-validation 
method with a batch of 64 and 5000 of epochs, where training is 
divided into a train set and a validation set. With the use of this tech-
nique, the reliability of the model generated in the train set is ensured in 
the validation set. The training process stops when the model’s perfor-
mance does not improve. The selected threshold to stop the model is 100 
iterations. On the other hand, after the cross-validation training, the 
model is tested. Both training and testing processes allows periods 
without data, i.e., NaN values. 

The DL models have been made in order to obtain the best config-
uration using a seed and considering the following hyperparameters:  

- Training sample: 96 % dataset, of which 96 % corresponds to 
training set and 4 %, to validation set.  

- Testing sample: 4 % dataset.  
- Hidden layers: {1; 2; 3}. 

Table 1 
Analysis of the sample quality.   

PV production Self-consumption Grid injection Building consumption Grid consumption 

Valid NaN Valid NaN Valid NaN Valid NaN Valid NaN 

Feb  100.00 %  0.00 %  98.30 %  1.70 %  98.30 %  1.70 %  95.33 %  4.67 %  95.33 %  4.67 % 
Mar  97.54 %  2.46 %  97.54 %  2.46 %  97.54 %  2.46 %  99.33 %  0.67 %  99.33 %  0.67 % 
Apr  97.25 %  2.75 %  97.25 %  2.75 %  97.25 %  2.75 %  97.22 %  2.78 %  97.22 %  2.78 % 
May  97.98 %  2.02 %  97.92 %  2.08 %  97.92 %  2.08 %  98.81 %  1.19 %  98.81 %  1.19 % 
Jun  97.50 %  2.50 %  97.48 %  2.52 %  97.48 %  2.52 %  99.98 %  0.02 %  99.98 %  0.02 % 
Jul  97.69 %  2.31 %  97.65 %  2.35 %  97.65 %  2.35 %  99.89 %  0.11 %  99.89 %  0.11 % 
Aug  96.89 %  3.11 %  96.73 %  3.27 %  96.73 %  3.27 %  98.50 %  1.50 %  98.50 %  1.50 % 
Sep  99.42 %  0.58 %  99.33 %  0.67 %  99.33 %  0.67 %  99.91 %  0.09 %  99.91 %  0.09 % 
Total  97.86 %  2.14 %  97.72 %  2.28 %  97.72 %  2.28 %  98.91 %  1.09 %  98.91 %  1.09 %  

Table 2 
Electricity costs in the self-consumption with surpluses receiving financial 
compensation scenario.   

Power term (€/kW) Energy term (€/kWh)  

Peak 
hours 

Valley 
hours 

No solar 
incidence 

Solar 
incidence 

Grid injection 
compensation 

Cost 3.662947 0.956834 0.203603 0.343179 0.060802  
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- Hidden units: {0; 25; 50; 75; 100}.  
- Activations: {linear; ReLU; tanh; sigmoid}.  
- Kernel initialization: {glorot normal; He normal; random normal} in 

function of the activation used.  
- Bias initialization: zeros.  
- Optimizer: Adam, whose learning rate could be {0.001; 0.005; 0.010; 

0.020; 0.040; 0.080; 0.160}. 

The prediction of electricity consumption is made through temporal 
variables, i.e., hour of the day, day of the week, and day of the year, 
weather data, i.e., irradiation, relative humidity and temperature, and 
consumption in the previous time step. By iterating the hyperparameters 
presented above and fitting the parameters by the DL model, the optimal 
structure is presented in Fig. 3. 

As can be seen in Fig. 3, the optimal prediction of electricity con-
sumption has 3 hidden layers with 75, 100, and 50 neurons. The acti-
vations are tanh, ReLU and ReLU for the first, second and third hidden 
layer respectively, and tanh for the output layer. So, the kernel initial-
izations are glorot normal, He normal, He normal, and glorot normal 
respectively. The optimal learning rate is 0.001. Table 3 shows the 
averaged k-fold errors obtained in this structure with the metrics 
presented. 

As presented in Section 2.2, the prediction deviation has been 
calculated dividing by the maximum value. In the evaluated building, 
the maximum of the electricity consumption is 146.37 kW. As can be 
seen in Table 3, the model is accurate, with mean nRMSE errors in the 
10 k-fold <5 % in the validation process, under 6 % in the training and in 
the whole dataset, and over 9 % in the testing set. This indicates that the 
presented DL structure can model the building consumption with a de-
viation of 8.67 kW in the complete dataset, with mean errors of 8.63 kW 
in the training set, 6.88 kW in the validation set, and 13.22 kW in the test 
set. The nMBE errors are also reduced, with a deviation around 0.50 % 
from zero. The nMBE indicates that there are an underprediction in the 
complete sample, also in the training and testing samples. Nevertheless, 
the cross validated sample is overpredicted. 

The prediction of PV production is made through temporal variables, 
i.e., hour of the day, day of the week, and day of the year, weather data, 
i.e., irradiation, relative humidity and temperature, and production in 
the previous time step. By iterating the hyperparameters presented 
above and fitting the parameters by the DL model, the optimal structure 
is presented in Fig. 4. 

As can be seen in Fig. 4, the optimal prediction of PV production has 
3 hidden layers with 100, 100, and 25 neurons. The activations are 
ReLU, ReLU and linear for the first, second and third hidden layer 

Fig. 3. Optimal DL structure to predict electricity consumption.  

Table 3 
Averaged k-fold errors in the optimal structure to predict electricity 
consumption.   

Train set Validation set Test set Whole dataset 

nMBE  0.40 %  −0.50 %  0.08 %  0.37 % 
nRMSE  5.90 %  4.70 %  9.03 %  5.92 %  

Fig. 4. Optimal DL structure to predict PV production.  

Table 4 
Averaged k-fold errors in the optimal structure to predict photovoltaic 
production.   

Train set Validation set Test set Whole dataset 

nMBE  −0.21 %  0.08 %  0.04 %  −0.19 % 
nRMSE  7.15 %  2.38 %  4.24 %  6.93 %  
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respectively, and tanh for the output layer. So, the kernel initializations 
are He normal, He normal, random normal, and glorot normal respec-
tively. The optimal learning rate is 0.001. Table 4 shows the averaged k- 
fold errors obtained in this structure with the metrics presented. 

As commented above, the prediction deviation has been normalized 
using equations presented in Section 2.2 dividing by the maximum. The 
maximum of the PV production in the studied building is 100 kW. As can 
be seen in Table 4, the model is accurate, with mean nRMSE errors in the 
k-fold around 7 % in the training and in the whole dataset, and over 2 % 
and 4 % in validation and test processes respectively. This indicates that 
this DL structure can model the PV production with a deviation of 6.93 
kW in the complete dataset, with mean errors of 7.15 kW in the training 
set, 2.38 kW in the validation set, and 4.24 kW in the test set. The nMBE 
errors also are reduced with a deviation around 0.20 % respect to zero. 
The nMBE indicates an overprediction in the whole dataset and in the 
training sample. On the other hand, the test and validation samples are 
underpredicted. 

3.3. Deep Reinforcement Learning modeling 

The storage system trade-off is carried out with Deep RL, where, 
through the predicted variables, i.e., electricity consumption and PV 
production, the temporal variables, as hour of the day and day of the 
week, and the electricity costs, the storage system is managed. The 
boundary conditions utilized are given by physical limits, i.e., the charge 
level must be between 0 % and 100 %, and theoretical limits, since the 
battery should have a charge level over than 10 % to increase its life 
cycle. The initial battery state of charge (SoC) is 100 %. The data used to 
simulate the storage system is a charge and discharge power of 31 kW, a 
capacity of 42 kWh and an efficiency of 96 %. 

The action selection in every time step is done through a DL 
modeling in order to maximize the consumption from PV production. 
The activation function in the output layer must be sigmoid, because we 

are looking for the most probable bivariate action. In this model, the 
cross-validation technique is not considered, so data is divided in 
training and testing samples, where the training sample corresponds to a 
mean week, and the testing sample, to the whole dataset. As a period of 
one week is considered for training, the batch size is 32. In contrast, in 
the testing the batch size is 64 for considering the whole dataset. The rest 
of the DL modeling considerations are those presented above. The Deep 
RL hyperparameters presented below have been selected in order to 
obtain the highest possible objective by using a seed.  

- Agent: Deep Q-Learning.  
- Exploration/exploitation trade-off: Epsilon-Greedy model, whose 

values could be {0.05; 0.10; 0.15; 0.20; 0.25}.  
- Discount rate: {0.80; 0.85; 0.90; 0.95; 0.99}  
- Episodes: {50; 100; 250; 500}  
- Episode length: an average week with the mean values at each time 

step of the predicted variables.  
- Warm-up: 2 episodes.  
- States: in every time step, the combination of the period of the day 

(peak hours, and valley hours with solar incidence or not), the SoC, 
the predicted PV power production, and the predicted power con-
sumption of the building. 

Actions: discharge (Pch = 0 & Pgrid, inj ≥ 0); charge (0 < Pch ≤ Pch, max 
& Pgrid, inj ≥ 0).  

- Rewards/punishments: +5 or − 5 whether action is discharge or 
charge in the states. These values have been selected in a testing 
process considering ±1, ± 5, ± 10, ± 20, with the presented values 
(±5) being those with the greatest stability in the management of the 
storage system. Table 5 summarizes the considered rewards. 

The rewards have been considered taking into account the following 
rules:  

- In the case of peak hours, the discharge is prioritized unless there is a 
PV surplus. Thus, the reward is positive if the IEMS prioritizes the 
surplus of the PV resource for charging the battery instead of injec-
tion into the grid, i.e., that the action taken is charge. The reward is 
negative in the opposite case, that the IEMS prioritizes the injection 
to the grid instead of charging the battery, i.e., that the action taken 

Table 5 
Rewards and punishments considerations in Deep Reinforcement Learning 
modeling regardless of solar incidence.   

Peak hours Valley hours  

PPV ≤ Pcons PPV > Pcons PPV ≤ Pcons PPV > Pcons 

discharge +5 −5 −5 −5 
charge −5 +5 +5 +5  

Fig. 5. Learning process of the Deep Q-learning agent through the episodes.  
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is discharge. If there is no PV surplus, the reward is positive if the 
action is discharge and negative if it is charge.  

- In the case of valley hours, charging is always prioritized, regardless 
of the photovoltaic resource, since this period occurs mostly at night, 
i.e., when PV production is zero. Thus, the reward is positive if the 
action is charge and negative if it is discharge. 

Through train and error trade-off, the agent learns the best situations 
to charge or discharge the storage system. The optimal action selection is 
obtained considering 250 episodes with an Epsilon-Greedy of 0.05, and 
a discount rate of 0.99. This optimal model has 3 hidden layers with 50, 
25 and 25 neurons. The activations are linear, linear and ReLU for the 
first, second and third hidden layer, and sigmoid for the output layer. So, 
the kernel initializations are random normal, random normal, He 
normal and random normal respectively. The optimal learning rate is 

0.001. In contrast to DL models, Deep RL is a trial and error method, so 
the performance is extracted from the interaction with the environment. 
The agent learning process during the episodes is shown in Fig. 5. 

The Fig. 5 shows Deep RL learning behavior. Starting with no idea 
what action to take, the agent can achieve the optimal policy based on 
experience. The learning process begins with exploring what actions to 
take. When the reward of some action is good, the agent exploits that 
path. On the contrary, if the action is not good enough, the agent con-
tinues to exploit. The fact that from several episodes the mean reward is 
not constant is because the agent continues to explore in order to obtain 
a better policy with frequency given by the Epsilon-Greedy model. 

4. Results 

DL predictions allows an accurate and smart energy management. 

Fig. 6. Comparison between real and predicted with Deep Learning electricity power consumption, where: (a) Training sample; (b) Testing sample.  
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With these models, the IEMS can decide quickly the best moments to 
charge the storage system in current or even later states from previous 
information. Thus, there is a high level of comfort in the building while 
improving energy efficiency and minimizing energy costs. The com-
parison of the building consumption is presented in Fig. 6 and the one of 
the PV production, in Fig. 7. 

As can be seen in Fig. 6, the DL k-fold model presents accurate pre-
dictions of electricity power consumption. The model fits very well the 
variations in both samples, training and testing. This can represent the 
variations that occur on weekdays and weekends, and even holidays. 
Also differentiate between day and night behavior. Analyzing this 
figure, together with metrics presented in Table 3, it can be exposed that 
the training sample predictions are more accurate than those of the 

testing sample. The model has a light underprediction in both cases. 
Therefore, it can be determined that this DL structure is capable of 
modeling and predicting accurately the electricity power consumption 
of the studied building. 

Fig. 7 shows that the presented PV power production model is a good 
predictor since fits successfully the variation either in training and 
testing samples. The predicted solar PV production is high in central 
hours of the day and zero at night, as occurs in the real data. As previ-
ously deduced in Table 4, the training set has better results than testing 
set. Nevertheless, both cases have a slight variation respect to reality. 

As has been discussed above, those DL models accurately fit the 
electricity demand and PV production. This provide intelligence to the 
IEMS since subsequent actions can be predicted with certainty. The 

Fig. 7. Comparison between real and predicted with Deep Learning photovoltaic power generation, where: (a) Training sample; (b) Testing sample.  
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trade-off can be improved learning the optimal policy with Deep RL. In 
this way, it is possible to adapt quickly to energy fluctuations or future 
actions while learning from current states. Improving the building en-
ergy management. Fig. 8 shows the energy management using this 
combined methodology. 

In the study of energy modeling with Deep RL, the periods marked by 
the vertical lines in Fig. 8 have been set, the peak hours (black lines), 
established from 6 a.m. to 10 p.m. As can be seen in Figs. 8, 2 periods can 
be distinguished, weekdays and weekends. On the one hand, on week-
days, the IEMS decreases the energy consumption of the grid (red line) 
when peak hours begin. At this moment, the Deep RL model sends a 
trigger to the battery (purple line) to support grid power and ensure the 
building’s power needs. At the time the hours with solar incidence 
appear, i.e., 9 a.m. according to the selected tariff, the grid continues to 
deliver a little energy to support the PV production (orange line) and 
charge the battery meanwhile the building needs are fulfilled. Just as the 
model predicts that the state of charge of the battery is enough, the grid 
consumption reaches 0. In this way, in the subsequent hours, when the 
PV production is declining, the battery has sufficient charge to support 
the grid once again in the building necessities. When valley hours come, 
the battery is fully charged using the grid. On the other hand, during the 
weekends, due to valley hours are established and the building only has 
residual demands, the battery does not come into operation and remains 
totally charged, i.e., the building demand is completely from grid and 
PV. Therefore, it can be confirmed that the IEMS is able to recognize 
hours with lower electricity costs, i.e., nights and weekends. Fig. 9 
shows the origin of the energy consumed by the building to analyze the 
differences exhibited by the proposed IEMS with respect to the model 
without AI. 

Observing Fig. 9, the grid consumption (red line) has a similar 
behavior in the current case (a) and the case with AI (b) at the start of the 
day and during weekends. When the peak hours commence, i.e., 6 a.m., 
consumption in the current case continues the trend marked by the 
previous hours, nevertheless, the AI model, has an abrupt reduction. At 
the moment that the PV (orange line) has a certain production, i.e., 

around 10 kW, the consumption begins to be reduced in the system 
without AI, on the contrary, the IEMS has a variable consumption. The 
minimum grid consumption is 0 in the AI model and this value is 
maintained for a few hours. This reduction is not obtained in the current 
system, and the minimum reached is occasional. At the end of the hours 
of sun marked by the tariff, i.e., 4 p.m., an increasing trend is observed in 
the model without AI and a variable consumption in the IEMS. When the 
peak hours end, i.e., 10 p.m., the AI system has a higher power need, and 
this is maintained until the battery is fully charged. The use of solar 
energy is greater in the IEMS, where, contrary to what happens in the 
current case, practically all the energy supplied by the PV source is self- 
consumed (green line). 

The IEMS presented allows a better use of energy and a lower 
dependence on the grid. Thus, there is an improvement in the autarky 
coefficient of the building, going from 41.39 % to 52.95 % due to an 
increase in the energy produced by the PV panels. The self-consumption 
increases 14.83 points, from 65.44 % to 80.27 %. This improvement in 
energy efficiency in the building also has a great impact on electricity 
costs. Thus, the grid consumption is reduced by 10.63 points, from 
59.56 % to 48.93 % of the building demand. Table 6 summarize the 
presented results. 

As can be seen in Table 6, the proposed IEMS improves sustainability 
in the building studied. Observing the grid consumption column, this 
improvement causes the building to increase the degree of energy effi-
ciency from grade B, established in the range of 55–75 % of consump-
tion, to grade A, established in the range 42–55 %. Since the energy mix 
in Spain has an emission of 259 g CO2 eq/kWh, the increase in the self- 
consumption reduces the equivalent carbon footprint by 8.56 kg CO2 eq. 
These contributions represent a saving of 16.67 % in the annual elec-
tricity cost of the building, reducing the electricity bills by around 
25,000 €/year. 

5. Conclusions 

Buildings constantly generate new information through sensors or 

Fig. 8. Load balance obtained with the Deep RL method in an average week, where vertical lines are the changes in electricity prices. The negative values in the 
battery indicate the energy discharged and the positive, the charged one. 
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smart meters. To know how to manage this type of information to in-
crease the building performance is key to achieving the emission 
reduction targets set by the United Nations. Therefore, the development 
of new techniques with methods that allow to obtain accurate results 

efficiently with constant new information, such as AI, is of vital 
importance. This paper presents a methodology to increase the building 
performance by means of an IEMS. The energy trade-off is carried out 
with Deep RL, with the Deep Q-Learning agent. This method, based on 
predictions of distributed energy and consumption with DL, selects the 
optimal action in each period. This combination of techniques allows 
energy management that considers actual and future demands. 
Furthermore, as the time increases, the information also increases, 
allowing the presented method to learn and fit more accurately to 
possible energy fluctuations. 

Results shows that the proposed techniques for IEMS can reduce 
energy costs by improving energy efficiency of buildings. On one hand, 

Fig. 9. Distinction of the source of consumption in the building, where: (a) current case; (b) IEMS case.  

Table 6 
Percentage of energy use in the studied systems.   

Autarky coefficient Self-consumption Grid consumption 

Current system  41.39 %  65.44 %  59.56 % 
Proposed IEMS  52.92 %  80.27 %  48.93 %  
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DL allows accurate modeling of electricity consumption and PV pro-
duction, with average k-fold errors computed with nRMSE around 6 % 
and 7 % respectively. The prediction deviation obtained with nMBE is 
also reduced in both cases, being 0.5 % in electricity consumption and 
0.2 % in PV production. The presented DL models have a slight under-
prediction in electricity consumption and a slight overprediction in PV 
production. 

On the other hand, Deep RL can take advantage of this predictions to 
manage the storage system, selecting the optimal actions to increase the 
building performance. With the combination of AI techniques, the 
studied building with IEMS increases its autarky coefficient, improving 
the self-consumption by 22.65 %, thus reducing the grid dependence by 
17.85 %. Therefore, this IEMS supposes an increase in energy efficiency 
of the building, scaling from grade B to grade A, a reduction in the 
carbon footprint of 8.56 kg CO2 eq and a savings on the electricity bills 
for a value of around 25,000 €/year. 
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