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sacoglossan sea slug found across the limits of the European At- 
lantic, ranging from Scandinavia to the British Isles and the Iberian 

Peninsula ( Jensen, 2007 ). Although it is commonly classified as an 

LtR species, E. viridis has a wide range of kleptoplast retention times 
depending on the algal plastid source ( Christa et al ., 2014a ; Rauch 

et al ., 2018 ). Our transcriptomic sequence data and assembly are 
made publicly available under the NCBI BioProject accession num- 
ber PRJNA549923. Here, we address two issues: (1) the character- 
ization of proteins involved in chloroplast recognition and (2) the 
characterization of proteins related to kleptoplast retention in E. 
viridis and of orthologs in StR and LtR species. 

We followed a custom de novo transcriptome assembly and an- 
notation pipeline based on others used for nonmodel organisms 
( Conesa et al. , 2016 ; Raghavan et al. , 2022 ); these are described 
in detail in the GitHub repository manuelsmendoza/elvira (DOI: 
10.5281/zenodo.7243344). The resulting transcriptome of E. viridis 
comprised 12,884 protein-coding sequences (CDSs; lengths ranged 
from 261 to 8,766 bp) and had a total length of 9.3 Mbp (Sup- 
plementary Material Fig. S2 and Table S4). We analysed these 
CDSs and annotated 9,422 different proteins, with the best hits 
mainly from two genera, Elysia (87.2%) and Plakobranchus (11.0%) 
(Supplementary Material Fig. S2A); the remaining 2.3% comprise 
multiple genera of sea slugs and snails (Tectipleura) ( Kano et al ., 
2016 ). Our functional annotations, which were based on Gene 
Ontology (GO; http://geneontology.org/ ) corresponded to 9,333 
CDSs: 4,755 associated with 2,583 biological processes; 5,466 
with 683 cellular components; and 6,693 with 1,606 molecular 
functions. 

Melo Clavijo et al . (2020) proposed the recognition of kleptoplasts 
by the SRs and CTLRs, both mediated by thrombospondin type 
1 repeat (TSR) superfamily proteins; this parallels the theory pro- 
posed by Neubauer et al . (2017) for the recognition of algae sym- 
bionts by Cnidaria. Based on the results obtained in the analysis of 
the PRRs present in the transcriptome of E. viridis , we suggest in- 
cluding the Toll-like receptors (TLR) in the group of PRRs involved 
in the kleptoplastic process ( Fig. 1 ). In our analysis, we identified 19 
CDSs from the TSR superfamily (Supplementary Material Fig. S3) 
and multiple PRR families ( Li & Wu, 2021 ) (Supplementary Mate- 
rial Figs S5–S7). Though we detected the presence of SR domains 
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Certain sacoglossan sea slugs sequester photosynthetic-active
chloroplasts from their algal prey. After ingestion, these chloro-
plasts are recognized through pattern-recognition receptors (PRRs)
( Melo Clavijo et al ., 2020 ) and induce modifications in the tran-
scriptional landscape of the host, increasing the expression of spe-
cific genes, such as reactive oxygen species (ROS) quenching genes
( Chan et al ., 2018 ; Melo Clavijo et al ., 2020 ). These chloroplasts (also
called kleptoplasts) are kept inside the epithelial cells of the host’s
digestive tubules ( de Vries, Christa & Gould, 2014 ). The time klep-
toplasts remain functional and active is species-dependent, vary-
ing from a few days (short-term retainers; StR) to over 1 month
(long-term retainers; LtR) ( Händeler et al ., 2009 ; Melo Clavijo et al .,
2020 ). From the beginning of their life in the host, kleptoplasts are
challenged by the host’s innate immune system, the first line of de-
fence against foreign molecules or potential pathogens. The result-
ing immune response is triggered by recognizing evolutionarily con-
served pathogen-associated molecules mediated by different types
of PRRs ( Cao, 2016 ). Two of these PRRs, the scavenger receptor
(SR) and C-type lectin receptor (CTLR), may play a crucial role at
the beginning of kleptoplasty ( Melo Clavijo et al ., 2020 ). Once in
the digestive tubules, the stolen plastids play a dual role as starch-
storage devices and a nutrient source during periods of food scarcity
( Cartaxana et al ., 2017 ; Laetz et al ., 2017 ), even though the plas-
tid photosynthates are not essential for the slug’s nutrition dur-
ing starvation ( Christa et al ., 2014b ). During this period, dam-
aged photosynthesis-related proteins can generate abundant ROS
( Maeda et al ., 2021 ). To protect itself from ROS molecules that can
damage proteins and organelles, the host triggers an autophagy sig-
nal to reduce the resulting oxidative damage ( Scherz-Shouval &
Elazar, 2011 ). Moreover, based on the ROS-quenching response
of sea slugs during starvation, de Vries et al . (2015) proposed a new
classification of the photosynthetic sea slugs based on their abil-
ity to suppress the ROS stress (i.e. classifying them as starvation-
intolerant and starvation-tolerant species). 

To shed more light on the mechanisms behind the kleptoplasty,
we describe here for the first time the transcriptomic landscape
of the photosynthetic sea slug Elysia viridis (Montagu, 1804) by
assembling a de novo reference transcriptome from a pool of ten
individuals. This species is a facultative Ulvophyceae-feeder LtR
© The Author(s) 2023. Published by Oxford University Press on behalf of The Malacological Society of London. This is an Open Access article distributed under the terms of the 
Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the 
original work is properly cited. 
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Figure 1. Graphical summary of the domain architecture of proteins found in the transcriptome of Elysia viridis and possibly related to the mechanism of 
acquiring and maintaining kleptoplasts. These include pattern-recognition receptors (CLEC6 and TLR4) and proteins involved in cell communication and 
tissue development, such as the TSR1 thrombospondin 1 receptor (TSR1) superfamily. The full set of sequences related to these families, as found in the Elysia 
viridis transcriptome, are reported in Supplementary Material Figures S3–S7. CLEC6 and TLR4 are two receptor families that induce a pro-inflammatory 
response after recognizing mannose and lipopolysaccharides, respectively. Abbreviations for other proteins: ADAMTS, a disintegrin and metalloproteinase 
with thrombospondin motifs; SEMA5, semaphorin-5; TRAP, thrombin receptor-activating peptides. Protein domains are as follows: TSP1, thrombospondin 
type-1 domain; PLAC, protease and lacunin domain; SEMA, semaphorin domain; PSI, plexin–semaphorin–integrin domain; VWA, von Willebrand factor 
type A domain; LRR, leucine-rich repeat domain; TIR, toll-interleukin-1 receptor domain; CTLD, C-type lectin-like domain; and ShKT, Stichodactyla 
toxin domain. 
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n multiple CDSs, none of them had the complete coding sequence
i.e. they lacked the transmembrane domain; Supplementary Mate-
ial Fig. S5). Interestingly, we also found two CDSs of semaphorin 5
SEMA5) ( Fig. 1 , Supplementary Material Figs S1 and S4), a TSR
uperfamily protein characteristic of vertebrates ( Goodman et al .,
999 ; Pasterkamp, 2012 ), but also described from different inverte-
rates (Supplementary Material Fig. S4) ( Gerdol et al ., 2020 ; Melo
lavijo et al ., 2020 ; Maeda et al ., 2021 ). We note that a recent hy-
othesis suggests that the SEMA5 family originated in a common
ncestor of Placozoa, Cnidaria and Bilateria (it is, however, absent
n Nematodea) ( Junqueira Alves et al ., 2019 ). 

To reduce the damage produced by ROS, sea slugs have a
epertoire of transcripts with damage control-related functions. We
dentified 201 CDSs related to response to stress (GO:0006950)
nd 10 CDSs associated with the regulation of response to stress
GO:0080134). We also found ROS-quenching-related functions:
4 CDSs related to oxidoreductase complex (GO:1990204) and
60 annotated as showing oxidoreductase activity (GO:0016491)
n a large number of donors (e.g. CH-OH, CH = O, C = O,
H and CH2). In addition, we identified 39 CDSs with
ntioxidant activity (GO:00162099) and other CDSs with
unctions that reduce oxidative stress; these are superoxide dismu-
ase (GO:0004784), peroxidase (GO:0004601), glutathione oxi-
oreductase (GO:0097573), glutathione peroxidase (GO:0004602)
nd thioredoxin peroxidase (GO:0008379). Furthermore, we found
ight CDSs related to the symbiont response (GO:0140546) and
ine related to the pattern recognition receptor signalling pathway

GO:0002221). 
Although the kleptoplastic phenomenon has probably had
ultiple independent origins across the tree of life ( Christa et al .,

015 ), kleptoplastic sea slug species probably have common mech-
nisms for stealing the plastids from their algal prey; these mecha-
isms are likely to be absent in nonkleptoplastic species. Thus, we
tudied the orthogroups in sea slugs based on their ability to keep
he plastids alive in LtR and StR species to find the mechanisms
ehind this classification. Information about the different species

Supplementary Material Table S5) and the assembly statistics (Sup-
lementary Material Table S6) and analysis pipeline used are de-
cribed in Supplementary Material Appendices S1 and S2. We de-
ected that 16,997 orthogroups made up 96% of total CDSs. A total
2

f 311 orthogroups were species-specific, while 1,947 were common
o all the species ( Fig. 2 ); 37% of orthogroups contain, on average,
ne or more genes per species. A total of 573 orthogroups were
pecific to and found in all kleptoplastic species, with 109 being
xclusive to StR species and 4 being exclusive to LtR slugs ( sensu
ato ) (Supplementary Material Table S7). On analysing the GO en-
ichment associated with the different orthogroups, we found that
he different kleptoplastic slugs have developed an important burst

echanism to regulate the pH by using iron ions (GO:0006885,
O:0006879, GO:0008199 and GO:0004,322) and other enzy-
atic pathways (GO:0016491, GO:0016788 and GO:0016817).

ocusing on the LtR species, we found enrichment of gene ontolo-
ies related to immune response (GO:0006955) mediated by the tu-
our necrosis factor (GO:0005164 and GO:0016021) and G pro-

eins (GO:0004930, GO:0016021 and GO:0007186). 
In summary, the longevity of kleptoplasts and sea slugs during

tarvation may be mediated by multiple factors, including the
ecognition of the plastids during feeding by multiple receptors
e.g. PRRs, CTLRs and SRs) and ROS-quenching proteins us-
ng enzymatic and nonenzymatic mechanisms. In particular,
n the transcriptome of E. viridis we found that the presence of
DSs corresponds to multiple PRRs that may be involved in the
lastid-recognition process; this is despite the fact that this species
as a low receptor richness in comparison with other elysoids
 Melo Clavijo et al ., 2020 ). In addition, we also detected multiple
nzymatic families involved in the ROS-quenching response. In
ontrast, the production of antioxidant compounds may contribute
n only a minor way to the control of oxidative stress. A further
nriched GO category in species that sequester chloroplasts corre-
ponded to G protein-coupled receptors, which suggests that these
eceptors may be required for plastid recognition in Sacoglossan
ea slugs, paralleling their role in other symbioses, such as the mu-
ualism between cnidarians and dinoflagellates ( Rosset et al ., 2020 ).
acoglossan sea slugs may also require the presence of iron ions
o reduce the oxidative stress generated after plastid acquisition.
ll this evidence, derived from the transcriptome analysis of E.

iridis , sheds interesting new light on the possible mechanisms used
y sea slugs to recognize and establish kleptoplasts within their
odies. 
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Figure 2. Orthogroup detection and phylogeny. A. The number of CDSs assigned to the different orthogroups and the number of species where they 
are present. B. Visual representation of the number of orthogroups shared between the different species; in red is the number of orthogroups shared 
between Elysia viridis and the other slugs. C. A maximum likelihood phylogenetic species tree was inferred using RAxML from the concatenated alignment 
of 1,380 orthologs that were predicted by OrthoFinder from the set of complete transcripts obtained after removal of potential biological contamination 
(Supplementary Material Table S8). The tree was inferred using the JTT + FC + I + R4 nucleotide substitution model (estimated using ProtTest3) and 
10,000 bootstrap replicates (percentage bootstrap support values are shown on branches). 
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SUPPLEMENTARY MATERIAL 

Supplementary material is available at Journal of Molluscan Studies
online. 
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