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Abstract—Powerline communication is a promising technology
for connecting Internet of Things (IoT) applications, where
devices have strict limitations regarding available installation
space and power dissipation. Especially the wiring of these devices
benefits from not having additional cables for network connection.
Thus, saving costs and additional installation effort. In this paper
a very resource-efficient implementation of a HomePlug 1.0.1
[5] compatible powerline MAC layer, which is used to control
the data flow and link status of a powerline connection, is
presented. The MAC layer is implemented in two variants, using
state machines and softcore processors. A comparison of the
two approaches shows that the softcore design used up to 78 %
less FPGA ressources and is superior in terms of flexibility and
maintainability.
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I. INTRODUCTION

The ubiquitousness of smart, connected devices, often
called “Internet of Things (IoT)”, gained a lot of attraction
in the last decade. These devices can be found in many
different places like households, industry or public spaces.
The interconnections of these devices is often realised with
wireless technologies, such as WiFi, Bluetooth or ZigBee [2]–
[4]. This allows, in conjunctions with a battery as the power
supply, flexible placing of the devices. For applications like
smart light bulbs, which are connected to the power grid,
Powerline communication is another promising technology
to realize the interconnection of different devices. The idea
of using the existing power network for communication of
domestic appliances has been proposed in [1].

For such devices small and energy-efficient powerline
modems are required. Since 1990 various different powerline
standard have emerged, among them HomePlug, HomePNA,
Panasonic AV and the proposed unification IEEE 1901 [8].
This work will focus on the HomePlug standard, which is
the dominant standard in Europe and Nothern America. The
HomePlug Alliance has published four different standards,
namely HomePlug 1.0 from 2001 [5], HomePlug AV from
2005 [8] and HomePlug AV2 from 2012 [6], as well as a
reduced version of HomePlug AV for vehicle-to-grid commu-
nication, called HomePlug Green PHY in 2012 [7]. The later
standards feature higher data rates, at the cost of increased
complexity. As IoT applications typically do not need high data
rates this work concentrates on the HomePlug 1.0.1 standard.

The HomePlug specification splits the system architecture
in two layers, called Media Access Layer (MAC) and Physical
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Fig. 1: HomePlug 1.0.1 layer architecture consisting of Link
Level Connection (LLC), Media Access (MAC) and Physical
Layer (PHY) [5].

Layer (PHY), in analogy to the well-known OSI model [17].
As shown in Fig. 1, the PHY layer handles the physical
connection to the power line. It features OFDM (de)modulators
and includes mechanisms for forward errror correction. The
PHY layer is controlled completely by the MAC. This layer
tracks the channel state and uses the PHY to send and receive
data on the channel. The MAC layer connects to the Link
Level Connection layer (LLC, not shown) to handle incoming
and outgoing data. Other tasks of the MAC layer include the
segmentation and reassembly of frames which are to large to
be transmitted at once, and handling of collisions and other
transmission errors. Furter details on the HomePlug protocol
can be found in [9].

In this work, a complete implementation of the Home-
Plug 1.0.1 MAC layer on an FPGA is presented. The PYH
layer is not part of this work. Our goal was to evaluate,
if using softcores processors could make the design more
resource-efficient. The remainder of the this paper is organized
as follows. Section II evaluates different softcore processors.
Section III describes the HomePlug MAC layer, Section IV
gives details of the implemented design. In Section V the
designs are evaluated and Section VI gives a conclusion.

II. SOFTCORE PROCESSORS

Softcore processors are microprocessors that are described
in a hardware description language and can be synthesized
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Fig. 2: HomePlug 1.0.1 segement structure [5].

TABLE I: Key characteristics of different softcores. Results
for an Xilinx Virtex 6 FPGA with LUT-6.

NEO430 openMSP PauloBlaze AVR Core

Architecture 16 bit 16 bit 8 bit 8 bit
Extensibility high high medium low

LUT-6 849 1579 366 ≈ 4651

Register 652 594 74 -

for an FPGA. They can then be programmed like a hardware
processor (“hardcore”) using regular programming languages
like C. Their main advantage over dedicated hardware pro-
cessors is the possibility to change or adapt the processor to
suit the needs of the applications. The possible modifications
include additional instructions, optimized register files and
memories or hardware accelerators for special computations.

For this work four different softcore processors were eval-
uated for resource requirements and extensibility. The four
candidates are NEO430, openMSP, PauloBlaze and AVR Core
[10]–[13]. Table I shows a summary of the evaluation. The
NEO430 and the openMSP use a 16 bit architecture, the
PauloBlaze and AVR Core a 8 bit architecture.

The NEO430 [10] and the openMSP [12] are both re-
implementations of the MSP430 instruction set architecture
(ISA) from Texas Instruments. Due to this, the existing
MSP430 compiler toolchain can be used to program these
softcores in C or C++. The MSP430 ISA uses a 16-bit address-
ing scheme and features a rich instruction set that allows for
compact code. All I/O devices are mapped into a single, unified
memory space. Since only roughly 75 % of the available
memory address space is used in the default configuration
(depending on the size of the implemented instruction and data
memory), there are enough free addresses in the address space
for custom I/O extension. In both cores, all communication
with peripherals is carried out though a bus system. This allows
for easy extension with custom modules.

The MSP430 ISA is a mult-cycle architecture, i.e. every
instruction takes multiple cycles to execute. There is no
pipelining implemented. The openMSP instruction timing very
much resembles the original, with every instruction taking
1–6 cycles. The NEO430 requires about 2 to 3 times more
cycles for a single instruction due to a different implementa-
tion. On the other hand the NEO430 requires about half the
FPGA resources compared to the openMSP (cf. Table I) and
allows for higher clock frequencies. As our main focus was
a resource-efficient implementation, the NEO430 was chosen
for this work.

1optimistic estimation: 1860 LUT-4 divided by 4

The AVR Core [13] and the PauloBlaze [12] are both 8-
bit architectures which implement different instructions sets.
The AVR Core is compatible to the ATmega103 from Mi-
crochip/Atmel. There is a wide range of C and C++ compilers
for this architecture. All I/O happens through a special 64-byte
I/O area in the memory space. For the ATmega103 this area is
completely filled with internal peripherals. Custom extensions
would therefore require the removal of some of the default
peripherals and are limited in the number of available I/O
addresses.

The PauloBlaze is a re-implementation of the PicoBlaze
ISA from Xilinx. This ISA is very limited and, to the best
of our knowledge, there is no working C compiler for this
architecture. All programming has to be done in assembler.
Since the PauloBlaze implements the same instruction set as
the PicoBlaze, the different available assemblers can be used
without modification. The processors architecture includes up
to 256 Byte of data memory and can address up to 4096
instructions. Connectivity to I/O devices is archived by 256
different byte-wide input and output ports. Every instruction
of the PauloBlaze is executed in two cycles. Due to this
the timing of the executed program is very deterministic. As
the PauloBlaze has a higher extensibility and requires less
resources (cf. Table I) than the AVR Core it was chosen for
this project.

III. HOMEPLUG MAC LAYER

The MAC layer in the HomePlug 1.0.1 standard is the
interface between the LLC and PHY layer [5]. It prepares
outgoing frames for transmission on the channel and handles
retransmission in the event of transmission errors. Incoming
frames are received, reassembled and acknowledged by the
MAC layer. If a frame contains MAC management informa-
tion, this data is processed by the MAC layer itself. All other
payload data is forwarded to the LLC.

The HomePlug standard differentiates between frames and
segments. Frames can be up to 1609 bytes long and typically
encapsulate a complete Ethernet frame in the payload. They
are constructed by the MAC layer with information from the
LLC. For tranmission on the medium, a single frame is split up
in multiple segments by the MAC layer. The size of a segment
is specified by the number of transmitted OFDM symbols.
A segment can contain up to 160 symbols. As HomePlug is
using a variable modulation scheme based on channel quality,
the number of bytes in an OFDM symbol is not fixed. As a
consequence of this, the number of bytes in a segment can
vary between 38 and 2076. Fig. 2 show the structure of a
segment. The first 17 bytes contain header information, like
the segment number and the MAC address of the source (SA)
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Fig. 3: Overview of the system architecture. The system
consists of two softcores and interconnecting memories.

and destination (DA). This header is followed by the payload,
a portion of the frame to be segmented. For segmentation, the
complete frame is treated as an uniform byte sequence. The
remaining bytes contain padding bytes to fill up multiples of 20
OFDM symbols. The segment ends with two bytes containing
a CRC16 checksum.

Another important task of the MAC layer is the tracking
of the so-called “Virtual Carrier Sense”. For this, virtual
states are assigned to the channel. The state tracking relies
on synchronisation information called “FrameControl” as well
as time keeping. Due to this channel occupation tracking, a
collision on the channel is mostly avoided.

IV. IMPLEMENTATION

In this section, our design will be explained. The design
subdivides in multiple softcore, hardware modules and mem-
ories. A general overview of the implementation is shown in
Fig. 3. It can be seen that the system contains a total of two
softcores, called “Top” and “Bottom”. Each softcore handles
the communication with one interface of the MAC layer. The
Top Softcore communicates with the LLC through the LLC
memory. This link is not time critical, but includes a complex
control flow. The Bottom Softcore connects to the PHY. As all
time keeping on the channel is done by the MAC layer, this
connection has real-time requirements. On the other hand, the
control flow of this interface is very simple. The usage of two
softcores in the system allows us to combine this conflicting
requirements in a single system, while still using simple and
therefore resource-efficient softcores.

The interconnection of the softcores is implemented using
two memories for incoming and outgoing frames, called Re-
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Fig. 4: Interconnection of the two softcores with the memories,
using four “Streams”

assembly Memory (ReasMem) and Local Frame Buffer (LFB),
respectively. The general data flow is as follows. When the
LLC provides new data to transmit, a MAC frame with
header, payload, padding and checksum is generated by the
Top Softcore and placed in the LFB. The Bottom Softcore
is then notified that a new frame is ready for transmission.
When the channel state tracking indicates that a transmission
is now possible, the Bottom Softcore instructs the PHY to send
out the frame, segment by segment. The necessary segment
framing is generated on the fly (see below). The incoming data
segments received from the PHY are place in the ReasMem
by the Bottom Softcore. Special handling of memory addresses
makes sure that the segments are written in a way that
complete frames are reassembled in the ReasMem, even if
the segments are received out of order or intermixed from
different transmission (see below). When the last segment of
a frame was received, the Top Softcore is notified, which will
then read the frame from the ReasMem. All contained headers
are evaluated and the payload is forwarded to the LLC.

As shown in Fig. 4 the ReasMem and LFB are not
directly connected to the softcores, but through dedicated
hardware modules, called “Streams”. These hardware modules
present the underlying memory as a pseudo-FIFO interface to
the softcores. During reading or writing, different operations
are performed on-the-fly. These operations include encryp-
tion/decryption2, multiplexing and calcuation of checksums.

As an example, a more detailed view of the Segment
Stream, connecting the PHY to the LFB, is shown in Fig. 5.
The Segment Stream consists of a four-way multiplexer and a
small state-machine-based control unit that is connected to the
Top Softcore. When a new segment is transmitted, the multi-
plexer selects the HeaderMem, containig the segment header.

2Encryption is optional in the HomePlug standard. Our current implemen-
tation does not contain support for encryption or decryption, but the streams
included interfaces for this.



Subsequent reads by the PHY will now yield bytes from the
segment header. After 17 bytes—the size of the header—the
control unit automatically switches the multiplexer to the LFB.
This occurs independent from the softcores. All following
reads will now output bytes from the LFB in advance. The
start and stop address in the LFB had to be configured by
the Top Softcore to exactly include the part of the frame that
is contained in the current segment. When the preconfigured
number of bytes has been read from the LFB, the control unit
switches the multiplexer to a source generating zero-bytes for
padding. During the whole process, all read bytes are send
to the CRC module, which generates a CRC16 checksum. At
the end of the transmission, the multiplexer is switched to the
CRC module to include the checksum of the transmitted data
as the last two bytes of the segment.

Another architecture detail, the Reassembly Stream, is
shown in Fig. 6. It connects the PHY to the ReasMem.
Incoming data from the PHY is written to a FIFO. After
17 bytes—the segment header—have been received, the Top
Softcore is notified via an interrupt. It reads out the header from
the FIFO and computes the start address of the remaining bytes
in the ReasMem. This address is send to a hardware write-
back unit (shown as multiplexer in Fig. 6), which automatically
flushes the FIFO to the ReasMem. The ReasMem address is
chosen in a special way to automatically reassemble incoming
frames in memory. This is shown in Fig. 7. The first segment
is written to memory as-is. The header has already been read
from FIFO, so only the payload, padding and CRC are written
to memory. The second segment is slightly overlapping the
first, overwriting the padding and checksum from the first.
Using this technique, the payload can be later found in a
continuous memory region.

The other three streams are implemented in a similar
fashion. The CRC Stream RX and CRC Stream TX, connecting
the Top Softcore to the LFB and ReasMem, encrypt/decrypt
transmitted data and calculate the CRC32 checksum of it. The
Reassembly Stream—connecting the PHY to the ReasMem—
coordinates the writing of incoming segments to the ReasMem,
so that whole frames are placed in order in the memory, even
if the segments are received out of order.

V. EVALUATION

Two version of the system described in Section IV were
implemented. Both contain a NEO430 as the Top Softcore, but
the Bottom Softcore was implemented with either a second
NEO430 or a PauloBlaze. The whole design was synthe-
sised using Vivado 2017.2 and then mapped to a Kintex
7 XC7K410T FPGA. Table II shows the mapping results.
Additionally, as a baseline reference, a version without soft-
cores was implemented. In that version, the whole MAC layer
logic was implemented with state machines as given in the
HomePlug standard.

As presented in Table II, the pure state-machine im-
plementation requires 7845 LUTs and 5718 registers. The
implementation with two NEO430 requires 1941 LUTs and
1401 registers, a significant reduction by 75 %. This can be
explained by the fact that softcores consume a fixed amount
of resources, regardless of the implemented function. Due to
the complex control flow at the LLC interface, the hardware
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TABLE II: Key characteristics of the different implementa-
tions. Mapping was done using Vivado 2017.2, targeting a
Xilinx Kintex XC7K410T FPGA

Variant LUT-6 Register BlockRAM

Reference 7845 5718 21
2xNEO 1941 −75 % 1401 −75 % 10,5 −50 %

1xNEO+1xPauloBlaze 1730 −78 % 1198 −79 % 9.5 −55 %

implementation of the corresponding state machine consists
of a great amount of states, consuming large amounts of
resources. Replacing the Bottom Softcore with a PauloBlaze
further reduces the resource requirements by about 200 LUTs
and registers. This implementation then requires 1730 LUTs
and 1198 registers, 78 % less than the reference version. The
amount of required BlockRAM is also reduced from 21 to
10.5 or 9.5, respectively. This is because the state machine
based design does not implement the optimisation of the
segmentation process described in Section IV, but stores every
segment separatly. It should be noted that both softcore-based
designs contain induvidual instruction and data memories for
the softcores, which is not present in the state machine version.
Our target clock frequency was 50 MHz, which is the sampling
rate of the analog fronted of our HomePlug system. All design
variants reach this target. Evaluation of the critical path showed
that all three variants could even be run with a 100 MHz clock
without violating timing constraints.

In a further analysis, the active time of the Bottom Softcore
in the 26 µs long Response Interframe Space (RIFS) period was
evaluated. This is the time after the end of a data transmission
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Fig. 8: Active time of the Softcores in the RIFS period
compared to the 26 µs limit.
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Fig. 9: Plot of the measured latency in Table III

TABLE III: Measured latency in the MAC layer

Packet size (Byte) LLC→PHY (µs) PHY→LLC (µs)

2 620 465
200 667 515
500 732 573

1500 957 830

Lin. Regression (R2 > 0, 99) 0, 2243x + 620 0, 2437x + 461

until the receiving station has to decide whether to send either a
positive or negative acknowledgement. When the CPU requires
less than 26 µs for this decision there is more room for possible
adaptions and changes in the future. As shown in Fig. 8 this
is the case for the PauloBlaze implementation. The NEO430
variant requires 16 µs, which is closer to the maximum. As
the NEO430 is programmed in C, and the generated assembler
code has shown to be suboptimal from time to time, further
adaptions to the source code always require a close analysis
of the resulting timing.

In a last step we evaluated the end-to-end throughput of the
whole HomePlug system. For this experiment, two identical
MAC layers were used. For the interconnection a simple PHY
simulator was build that simulates an optimal, error-free chan-
nel. To measure the throughput, the time to send eight packages
with 1.5 kB payload each was recorded. The transmission of
the 12 kB needs 11.89 ms, which correspondents to a data rate
of 8.07 Mbit/s. This value is comparable with the theoretical
maximum of 8.4 Mbit/s and very close to simulations and
experiments from other researchers, which measured a data
rate of 8.08 Mbit/s [16].

The transmission rate on the channel is fixed by the
HomePlug standard. Therefore, only the internal delays of
the MAC layer limit the data throughput. To evaluate this
latency, we measured two different delays: The time from
packet availability on the LLC interface until the send request
on the PHY interface (LLC→PHY) for the sender side and the
delay from the first received byte on the PHY interface until



the notification of the LLC (PHY→LLC) on the receiver side.
Fig. 9 and Table III show these times for different package
sizes. A linear trend is clearly visible. The slope of both graphs
is about 0.23 µs/Byte, which is exactly the transfer rate of an
internal copy loop in our software. This loop is used to copy
packages from the LLC memory to the LFB (for the sender) or
from the ReasMem to the LLC memory (for the receiver). The
axis offset of 620 µs (LLC→PHY) and 461 µs (PHY→LLC)
can be explained by the fixed amount of processing required
for each package.

To reduce the linear part of the latency, the data transfer
between the memories could be speed up using a dedicated
DMA unit. Such a unit could possibly copy one byte per
clock cycle, which results in a transfer rate of 20 ns/Byte for
a 50 MHz clock. This would reduce the LLC→PHY delay
for 1500 byte packages from 957 µs to 650 µs (-32.0 %). To
reduce the static processing time, software optimisation might
be possible. Another option is to run the CPU at a higher
clock rate. Running at 100 MHz would cut the required time
for processing the package in half, reducing the delay from
957 µs to 478.5 µs (-50 %).

VI. CONCLUSION

In this work we implemented a HomePlug 1.0.1 MAC layer
for a Kintex 7 FPGA. We evaluated, if incorporating softcores
in the design could lead to a more resource efficient solution.
To take care of the special requirements of the MAC layer, two
softcores were used in the design. One handles the complex
communication with the LLC, the other one implements the
real-time protocol of the PHY. Our analysis showed, that
the implementation with softcores can be implemented with
78 % less FPGA resources compared to a pure FSM based
implementation.

Measurements yield an end-to-end throughput of
8.07 Mbit/s, which is close to the theoretical maximum
of 8.4 Mbit/s. Evaluation of the latency inside the MAC
layer indicate that the current bottleneck is the data transfer
between the LLC and the Local Frame Buffer. Using a DMA
could reduce the required time by 32 %. Alternatively, the
design could be run at an increased clock rate of 100 MHz,
which would cut the latency by half.

To summarise, using softcores can make certain FPGA
designs more resource-efficient while also increasing maintain-
ability and flexibility.
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