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1. Abstract (English)  

 

Background: Major Depressive Disorder (MDD) is still regarded as often difficult to treat 

due to its large variety in symptoms. Ketamine has demonstrated rapid antidepressant effects, 

already 24 h after a single subanaesthetic infusion, but is still lacking effective predictors for a 

positive treatment response. 

 

Objectives: The primary goal of this dissertation project was to investigate ketamine’s 

effect on distinct MDD symptom dimensions (i.e. cognitive, affective and somatic). Furthermore, 

by applying a working memory (WM) related functional Magnetic Resonance Imaging (fMRI) 

paradigm, this project focused on the detection of MDD symptom specific response predictors.  

 

Methods: We implemented a symptom-based approach by utilizing a three-factor solution 

of the Beck Depression Inventory (BDI) in a sample of 47 MDD patients 24 hours pre- and post- 

a single ketamine infusion. Subsequently, we accessed functional activity at baseline in 

correlation with MDD symptom improvements 24 h post-treatment in a subsample of 16 patients. 

Since aberrant functional activation in the default mode network (DMN) and the dorsolateral 

prefrontal cortex (DLPFC) has been associated with dysfunctional cognition-emotion interaction 

in MDD, we focused on the examination of these brain regions. 

 

Results: On the behavioral level our results indicated that ketamine influences MDD 

symptom dimensions to a different extent, whereby predominantly affecting the cognitive domain.  

On the neural level, we found evidence that a decreased DMN deactivation and elevated DLPFC 

activation predicts ketamine’s enhanced effect on cognitive symptoms. 

 

Conclusion: Taken together, these findings suggest that ketamine’s antidepressant 

efficacy is driven by a “pro-cognitive mechanism” that might be substantiated by an elevated 

capability for “adaptive adjustment” in the described functional networks. 
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2. Abstract (German)   

 

 Hintergrund: Die Major Depression (MDD) gilt aufgrund ihrer großen Symptomvielfalt 

noch immer als häufig schwer zu behandeln. Ketamin zeigt bereits 24 h nach einer einzelnen 

subanästhetischen Infusion eine schnelle antidepressive Wirkung, wobei es weiterhin an 

wirksamen Prädiktoren für ein positives Ansprechen auf die Behandlung mangelt. 

 

 Ziel: Das primäre Ziel dieses Dissertationsprojekts bestand darin, die Wirkung von 

Ketamin auf verschiedene MDD-Symptomdimensionen (d.h. kognitiv, affektiv und somatisch) zu 

untersuchen. Überdies lag der Fokus des Projektes darauf, durch die Anwendung eines 

Arbeitsgedächtnis-assoziierten funktionellen Magnetresonanztomographie (fMRT) Paradigmas 

MDD symptomspezifische Prädiktoren zu ermitteln. 

 

Methoden: Wir implementierten einen symptombasierten Ansatz, indem wir eine Drei-

Faktoren-Lösung des Beck Depression Inventory (BDI) in einer Stichprobe von 47 MDD-

Patienten 24 h prä und post einer einzelnen Ketamin Infusion anwendeten. Anschließend wurde 

die funktionelle Aktivität zu Studienbeginn im Zusammenhang mit MDD Symptomverbesserungen 

24 h nach der Behandlung in einer Teilstichprobe von 16 Patienten untersucht. Weil funktionelle 

Abweichungen im Default Mode Network (DMN), sowie im Dorsolateralen Präfrontalen Cortex 

(DLPFC) mit dysfunktionalen Kognitions-Emotions Interaktionen in der Depression assoziiert 

werden, lag der Fokus unserer Untersuchungen auf diesen Regionen. 

 

 Ergebnisse: Auf der Verhaltensebene deuten unsere Ergebnisse darauf hin, dass 

Ketamin MDD-Symptome in unterschiedlichem Ausmaß beeinflusst, wobei es hauptsächlich den 

kognitiven Bereich betrifft. 

Auf neuronaler Ebene fanden wir Hinweise darauf, dass eine verringerte DMN Deaktivierung und 

eine erhöhte DLPFC Aktivierung die verstärkte Wirkung von Ketamin auf kognitive Symptome 

prädiziert. 

 

 Schlussfolgerung: Zusammengenommen lassen diese Ergebnisse darauf schliessen, 

dass die antidepressive Wirkung von Ketamin durch einen „prokognitiven Mechanismus“ 

getrieben wird, der durch eine erhöhte Fähigkeit zur „adaptiven Anpassung“ in den beschriebenen 

funktionellen Netzwerken zustande kommen könnte. 
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Ketamine Specifically Reduces Cognitive Symptoms in Depressed Patients: An 

Investigation of Associated Neural Activation Patterns 

 

3. Introduction 

 

As one in six adults experiences Major depressive disorder at least once in their lifetime, 

this mental disorder is classified as one of the most widespread public health concerns (Friedrich, 

2017). Furthermore, with focus on ‘years lived with disability’ it is the second leading contributor 

to global disease burden (Otte et al., 2016). With an average worldwide increase of 49.86% 

between 1990 and 2017, depression rates are surging significantly in most countries (Liu et al., 

2020). Furthermore, depression is linked to other comorbidities such as cardiovascular diseases 

posing additional financial and health consequences (Seligman and Nemeroff, 2015). 

Depression associated impairments result in poor psychosocial functioning and an increased risk 

for suicide that is almost 20 fold higher than of the average population (Chesney et al., 2014).  

 

Risk factors for depression include stressful life events, demographic factors such as 

gender and age but also personality traits such as neuroticism (Kendler et al., 2005). 

Nevertheless, it has been found that risk factors for depression differ markedly for distinct 

symptoms (Lux and Kendler, 2010).  

 

Core symptoms of MDD as defined by the Diagnostic and Statistical Manual of Mental 

Disorders (DSM-5) are depressed mood, anhedonia, increased or decreased appetite, insomnia 

or hypersomnia, psychomotor agitation or retardation and decreased ability to think or 

concentrate (APA, 2013). As a substantial proportion of the involved symptoms include additional 

bidirectional sub-symptoms such as increase or decrease, MDD exhibits a large symptom 

heterogeneity that has even called into question if the disorder deserves the status of a “consistent 

syndrome”. Consequently, two patients who receive an MDD diagnosis do not necessarily have 

a single symptom in common (Fried and Nesse, 2015a). This aggravates the identification of 

appropriate treatment strategies for the individual patient. 
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Antidepressant treatment approaches are still primarily based on “trial and error” and often 

result in symptom improvements, but not in complete remission. Unfortunately, there is very little 

evidence-based reliable clinical practice for choosing the “right” treatment (Voegeli et al., 2017).  

Treatment guidelines recommend that an initial antidepressant treatment is given for at least 4 to 

6 weeks to determine a patient's response. 30% of MDD patients do not respond adequately even 

after multiple treatment attempts, which represents a frequent and difficult challenge for 

psychiatric institutions (Bauer et al., 2013). Furthermore, this complex phenomenon dramatically 

increases the suffering of those affected, with each failed treatment attempt. Problematically, 

treatment failures do not only contribute to an increase of disease burden but are also related to 

an enhanced risk for suicide (Reutfors et al., 2019). It is also known that each MDD episode 

increases the likelihood that the patient will suffer from a further depressive episode (Solomon et 

al., 2000).  

 

For these reasons, it is of great importance for clinical research to develop a deeper 

understanding of the dynamics of different antidepressant treatments. To date, little research has 

been conducted about the effects of antidepressants on symptom subdimensions. This type of 

approach provides an opportunity to examine factors associated with treatment response that 

may be related to specific symptom groups and therefore more likely to be successful for a 

particular subset of patients.  

 

In addition, the identification of predictive biomarkers for treatment response could be a 

key contributor to individualized treatment strategies. Functional neuroimaging may allow for the 

identification of biomarkers suited for assessing the response to a specific antidepressant 

treatment. If symptom subdimensions are included in the analyses, biomarkers could provide 

information not only on treatment success but also on the suitability for different patient groups 

with regard to symptomatology.  
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3.1 Ketamine’s antidepressant efficacy 

 

Originally known as an anesthetic, the N-methyl-D-aspartate glutamate receptor (NMDA-

R) antagonist ketamine has proven to be an effective treatment for major depressive disorder 

(MDD). It generally shows rapid effects and high response rates, even in patients who otherwise 

do not respond to standard treatments. Ketamine exerts its antidepressant effects through its 

glutamatergic mechanism of action, which distinguishes it from most established treatments. 

Standard antidepressants such as SSRIs, SNRIs, TCAs, and MAO inhibitors usually exert their 

effects through the aminergic system and often have a delayed onset of action with several weeks 

to months to reach their full potential (Hillhouse and Porter, 2015).  

For this reason, more rapid acting therapeutic agents, with antidepressant effects 

occurring within hours or days, are urgently needed. Antidepressant pharmacotherapies that 

primarily target the glutamatergic system are thought to provide more rapid therapeutic benefits. 

Subanesthetic doses of ketamine have been shown to produce fast antidepressant effects within 

24 hours of a single intravenous infusion in up to 50% of patients who are otherwise considered 

treatment-resistant (Ionescu et al., 2018). The effect targets various MDD symptoms and is 

usually stable for up to one week (Shin and Kim, 2020). All of this makes ketamine a valuable 

research tool to develop the next generation of fast-acting antidepressants. Nevertheless, its 

symptom specificity and precise neurobiological mechanisms remain unclear (Shin and Kim, 

2020). Thus, a better understanding of the mechanisms associated with these rapid 

antidepressant effects and the identification of symptom-specific biomarkers of treatment 

response contribute substantially to clinical research. 
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3.2 Symptom dimensions of major depressive disorder  

 

Distinct MDD symptoms differ in fundamental aspects such as associated biological 

factors, the impact on functional impairments, or the underlying risk factors. Furthermore, a 

marked heterogeneity exists with regard to the distribution of symptom profiles. This implies that 

the use of sum scores as an estimate of depression severity may not be appropriate. They may 

provide an estimate of overall psychopathological load, wherein it needs to be incorporated that 

different symptom profiles carry differential impairment in psychosocial functioning (Fried et al., 

2014)  (Fried and Nesse, 2014; Tweed, 1993). This means that individuals with similar sum scores 

may have very different syndromes, and that depression can be very severe even when only a 

few symptoms are present (Fried and Nesse, 2015a) 

 

The predominant use of sum scores in depression research has even been suspected as 

a major reason why there has been scarcely any progress in characterizing new antidepressant 

therapeutics or effective biomarkers (Fried and Nesse, 2015b). Observations on many levels of 

research suggest that the analysis of symptom dimensions is of increased efficiency in MDD 

research. For instance, against the majority of common hypothesis, a recent endocrinological 

study indicated that less than half of diagnosed MDD patients show increased levels of 

inflammation (Raison and Miller, 2011), whereby somatic symptoms such as problems with 

appetite or sleep were shown as significantly linked to inflammatory markers (Duivis et al., 2013). 

These observations suggest a symptom specificity that would remain unrevealed by the use of 

standard sum score analyses.  

 

Risk factor studies based on sum scores have indicated that female medical residents 

have a greater tendency to develop depression. In contrast, analysis of individual symptoms 

reveal that male medical residents under stress have increased suicidal ideation, while female 

study participants were more likely to develop difficulties to concentrate or problems with appetite 

or sleep (Fried et al., 2014). An examination of disturbed emotion regulation strategies as risk 

factors for MDD has shown that frequent repetitive negative thinking and infrequent positive 

reappraisal are associated differentially with affective, cognitive, and somatic symptoms (Everaert 

and Joormann, 2019). Moreover, genetic research has implied that depressive symptoms are 

associated, to varying degrees, with specific genetic polymorphisms (Myung et al., 2012). 

Taken together, these studies provide evidence that symptom-level approaches involving MDD 

subdimensions might help to gain a more sophisticated understanding on the mechanisms of 

depression and on how they are affected by different psychotherapeutic treatments. 
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In this context, the Beck Depression Inventory-II (BDI-II) in combination with Osman’s 

factor structure model appear as a promising design striving after the exploration of MDD 

symptom specific treatment response (Osman et al., 1997; Wang et al., 2013). The BDI as one 

of the most prevalent patient-rated measures of depression severity assesses a large number of 

aspects of depressive symptomatology (i.e. 21 items) with high reliability (Cusin et al., 2010). The 

three-dimensional factor model of Osman has demonstrated good fit for clinical samples and was 

evidenced as one of the best suited instruments for the investigation of depressive symptom 

dimensions. It offers the rare advantage of unidimensionality, referring to the fact that each BDI 

item loads onto a single subdimension (i.e. cognitive, affective or somatic) (Osman et al., 1997; 

Vanheule et al., 2008). This type of approach allows for a more finetuned measurement of 

symptom dimensions and may have greater utility in understanding the mechanisms of MDD and 

pathophysiologic biomarkers, which could contribute to increased efficacy of existing treatment 

interventions. 
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3.3 Ketamine’s impact on cognitive outcome in MDD 

 

Two-thirds of MDD patients experience cognitive dysfunctions, which often persist after 

other MDD symptoms have resolved (Semkovska et al., 2019). In addition, depression research 

has implicated that cognitive impairment is associated with disturbed emotion regulation and, 

thus, poses an increased risk for treatment resistance or even suicide (Averill et al., 2016). 

 

Furthermore, disrupted cognition-emotion interaction is thought to result in working 

memory (WM) deficits referring to the ability to maintain or manipulate information over a short 

period of time. As these processes are required in all day-to-day activities, their impairments 

crucially reduce quality of life and functional capacity (LeMoult and Gotlib, 2019). It has previously 

been suggested that the antisuicidal effect of ketamine is primarily due to its influence on the 

cognitive domain and related brain networks (Lee et al., 2016). Other studies have supported this 

hypothesis by observing how cognitive impairment decreased in a group of bipolar patients after 

a single ketamine administration (Permoda-Osip et al., 2015) and likewise after multiple 

administrations in unipolar depressed patients (Basso et al., 2020). 

 

Accumulating evidence implies a neurocognitive predictor of ketamine response, as poor 

neurocognitive performance prior to treatment was associated with successful therapy (Shiroma 

et al., 2014). Moreover, immediate decrease in cognitive performance post-administration 

predicted subsequently reduced response rates (Murrough et al., 2013).  

 

On a neurobiological level, NMDA-Rs are known to play an important role regarding the 

interaction between cognition and emotion, whereby ketamine as an NMDA-Rs antagonist is 

considered to positively influence WM through its impact on this interaction (Scheidegger et al., 

2016a). Its beneficial effect on cognitive functioning has been considered to originate from 

increased prefrontal control resulting from large scale network configurations (Gärtner et al., 

2019).  
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3.4 fMRI during WM or emotional stimulation  

 

At the level of activity and connectivity, neuroimaging research is providing increasingly 

deep insights into the interplay of different brain structures at different stages of information 

processing, from encoding all the way to retrieval (LaBar and Cabeza, 2006). During these 

processes, our complex dynamic behavior is controlled by reciprocal influences between emotion 

and cognition. Areas in the prefrontal cortex for instance are considered to be mainly responsible 

for cognitive processes, whereas areas in the limbic system such as the amygdala are regarded 

as preliminary involved in affective processes (Dolcos et al., 2011). Meanwhile, converging 

evidence suggests that cognition and emotion, which have previously been considered as located 

in separate neural systems, appear to be integrated in networks that exhibit a high degree of 

connectivity and interaction (Pessoa, 2008). The lateral prefrontal cortex is one example of a brain 

region in which cognition and emotion are conjointly integrated. This was demonstrated in a study 

in which participants were asked to solve a working memory task after watching short, emotionally 

challenging videos, whereupon activity in this region reflected both emotional and working 

memory components (Gray et al., 2002).  

The n-back task is a widely used working memory paradigm in which participants must 

decide whether a currently presented stimulus matches the one shown n trials earlier. This is 

intended to trigger numerous processes regarding working memory including monitoring, 

updating, and manipulating previously remembered information (Owen et al., 2005). When 

studying WM associated emotion stimulation, a major challenge is to elicit emotions in a controlled 

manner. Herein, a common method is to use emotionally valenced words to study how emotional 

stimuli affect activity in the brain (Grimm et al., 2012). After stimulus presentation, brain reactivity 

is measured and responses to emotionally valenced stimuli are compared to neutral control 

material. In contrast, WM reactivity is measured by comparing brain activation during positive, 

negative, or neutral stimuli with those during a fixation condition. 

 

 
 
 
 
 

Figure 1: Illustration of the n-back task paradigm 
conducted during fMRI measurement.  
Positive, negative or neutral valenced word 
stimuli are presented for 500 ms with an 
interstimulus interval (ISI) of 1500 ms, each 
followed by a fixation trial (10–14 s). 

 

(Reprinted from Grimm et al., 2012 with permission) 
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Negative mood has been shown to reduce performance in working memory tasks (Aoki et 

al., 2011). In addition, MDD is known to be frequently associated with profound working memory 

dysfunctions, which can be observed in related brain regions (Gärtner et al., 2018). Overall, 

psychiatric research is starting to recognize that most psychiatric disorders are not only marked 

by alterations in emotional processing, but also by cognitive disturbances (Millan et al., 2012). On 

these grounds, in depression research we consider the analysis of prediction of therapeutic 

responses during WM or emotional stimulation as more promising than during the resting state, 

because those brain areas are engaged which play a role in mental disorders.  
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3.5 Neural activation patterns associated with major depressive disorder 

 

Various alterations in regional brain functions have been associated with MDD, whereby 

no distinct functional aberration can explain all aspects of the disease. Nevertheless, particular 

functional networks have been repeatedly associated with depression and the disturbed 

interaction of cognition and emotions: the default mode network (DMN) (Zhou et al., 2020) as well 

as the cognitive and the affective control network (Wang et al., 2016). 

 

The DMN consists of a subset of brain areas including the pregenual anterior cingulate 

cortex (pgACC), the posterior cingulate cortex (PCC) and the dorsomedial prefrontal cortex 

(DMPFC). They exhibit functional activity correlations when a person is engaged in self-referential 

processing such as thinking about the self or others, reflecting about the past or contemplating 

about the future. During the performance of emotional-cognitive tasks demanding external focus, 

healthy subjects typically exhibit suppressed DMN activity (Buckner et al., 2008; Fox and Raichle, 

2007). Contrarily, MDD patients show a lack of deactivation during externally focused tasks next 

to an increased activation during rest (LeMoult and Gotlib, 2019). This is supposed to result in 

cognitive risk factors for depression such as rumination and emotion related cognitive biases in 

terms of mood congruent interpretation, working memory and attention (Grimm et al., 2011, 2009; 

Korgaonkar et al., 2013; Nixon et al., 2013; Sheline et al., 2009). 

The DMPFC has been described as potential predictor for antidepressant treatment response. Its 

WM-related activation was linked to treatment induced amelioration of MDD symptoms and 

recovery from WM deficits (Meyer et al., 2019). Moreover, DMPFC activation during negative 

emotion perception was associated with treatment success in pharmacological responders 

(Samson et al., 2011). 

 

The cognitive control network (CCN) consists of lateral-prefrontal and parietal brain 

regions and includes the DLPFC. It plays a central role in the top down control of emotions and 

in suppressing task-irrelevant information. The cognitive control network is typically under-

engaged in MDD which is thought to result in poor concentration, disrupted cognitive processing, 

reduced inhibition of irrelevant negative stimuli and poor ability to generate novel strategies 

(Rayner et al., 2016). Underlining research reports increased frontal task-related activation in 

MDD patients that do not suffer from WM impairments, which was interpreted in terms of 

hyperfrontality as a compensating effect for impaired deactivation of the DMN (Gärtner et al., 

2018). 
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The affective network (AN) mainly consists of limbic structures such as hippocampus, 

amygdala and subgenual anterior cingulate cortex (sgACC) and is responsible for emotional 

processing and the mediation of mood states. Neuroimaging evidence has indicated that 

missbalanced prefrontal-limbic neuronal activation is linked to aberrant cognition-emotion 

interaction (Gärtner et al., 2018; Rayner et al., 2016). 

 

Overall, the dysfunctional interaction between the circumscribed neural networks is 

supposed to be closely linked to MDD pathology influencing various features of the disease. 

Accordingly, it was shown that during an emotional-cognitive task, MDD patients show elevated 

DLPFC activation and reduced deactivation in DMN regions (Gärtner et al., 2018; LeMoult and 

Gotlib, 2019). In this context, prior studies show that WM-related activity in these regions differs 

significantly between MDD patients and healthy controls. A multivoxel pattern classification 

approach further indicated that healthy controls and MDD patients can be distinguished with a 

high degree of accuracy (Gärtner et al., 2018). 
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3.6 Neural activation patterns associated with ketamine’s antidepressant efficacy 

 

Evidence from a functional connectivity study indicates that the dorsal nexus as an 

interconnecting brain hub between DMN and limbic-prefrontal regions demonstrates ketamine 

induced connectivity reductions to the aforementioned brain areas (Scheidegger et al., 2012). 

Further, ketamine is supposed to disrupt depression related hyperconnectivity within prefrontal 

and subcortical networks involved in the ability to switch from an internal self-referential to an 

external goal-oriented mode (Ionescu et al., 2018).  

 

A previous neuroimaging study involving an emotional WM task demonstrated that 

ketamine reduces negative emotional interference with cognitive processing mechanisms. It was 

stated that ketamine’s beneficial effect on MDD might result from restoration of functional 

interactions between regions of cognitive control and the DMN (Scheidegger et al., 2012). 

Accordingly, during emotional as well as attentional processing, MDD patients have demonstrated 

activity normalization in fronto-parietal regions following ketamine administration (Reed et al., 

2019, 2018). Additionally, ketamine was shown to attenuate emotion-related activation in the AN 

(Scheidegger et al., 2016b).  

 

Altogether, the normalization of brain activation in these areas is regarded as crucial to 

ketamine’s antidepressant efficacy. However, the majority of neuroimaging studies striving to 

uncover the related mechanisms has been compiled during rest in samples of healthy 

participants, which allows no direct conclusion about the association of WM related activation with 

the antidepressant effect. The rare amount of existing task-based ketamine studies have mostly 

focused on emotion stimulation rather than emotional WM tasks (Ionescu et al., 2018). As 

functional aberrations in emotion-cognition related brain areas have been described as potential 

predictors for successful ketamine treatment, we consider the investigation of their WM related 

BOLD reactivity as a promising strategy concerning the exploration of symptom specific treatment 

response in MDD (Grimm et al., 2012).  
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4. Material and Methodsa 

 

4.1 Subjects 

 

A total sample of 47 male and female patients diagnosed with MDD according to DSM 5 

criteria (mean age 47.15 ± 12.58 years (SD); 23 males and 24 females) were recruited at 

the Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich 

(UZH, n = 14) and the Department of Psychiatry, Charité Universitätsmedizin Berlin 

(CHAR, n = 33). A subsample of 16 patients (mean age 44.19 ± 14.92 years (SD); 6 males 

and 10 females) underwent fMRI scanning (see Table 1). General exclusion criteria were: 

Cardiovascular diseases, recent heart or head surgery, current pregnancy, relevant 

psychiatric or neurological diseases in particular dementia, epileptic seizures, 

schizophrenia, psychosis, or acute suicidality, presence or history of substance abuse or 

dependence, and treatment with electroconvulsive therapy in the previous six months. We 

included patients currently taking psychopharmacological medication in terms of 

monotherapy, augmentation, or adjunctive therapies in the study. Current medication 

intake was documented as shown in the results section. For the fMRI subsample additional 

MR standard exclusion criteria were applied. The study was conducted according to the 

latest version of the Declaration of Helsinki. The full procedure and purpose of the study 

were explained to each subject in detail as approved by the institutional review boards and 

Ethics Committee of the CHAR and UZH before they gave written informed consent (Stippl 

et al., 2021). 

 

 

 

 

 

 

 

 

a Adapted  with permission from my previously published original article, in which I am the sole first author: Stippl, A., 
Scheidegger, M., Aust, S., Herrera, A., Bajbouj, M., Gärtner, M., Grimm, S., 2021. Ketamine specifically Reduces 
cognitive symptoms in depressed patients: An investigation of associated Neural activation patterns. Journal of 
Psychiatric Research 136, 402–408.https://doi.org/10.1016/j.jpsychires. 2021.02.028 
All referenced tables and figures appear in the original paper. According to Elsevier´s published guidelines on using 

copyrighted work an author can, include the article in full or in part in a thesis or dissertation. 

See also: https://www.elsevier.com/about/policies/copyright/permissions 

https://www.elsevier.com/about/policies/copyright/permissions
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(Reprinted from Stippl et al., 2021 with permission) 

 

 

 

  

Table 1. 

Demographic, clinical, and behavioral data at baseline 

 Total sample (N=47) FMRI subsample (N=16) 

Age (M,SD) 47.15 ± 12.58 44.19 ± 14.92 

Sex (m/f) 24/23 6/10 

BDI (M,SD) 32.43 ± 10.76 30.19 ± 11.51 

MADRSa (M,SD) 25.64 ± 5.93 26.00 ± 6.34 

Intake of antidepressantsb 32 (of n=43)c 15 

SSRI’s 11 (of n=43)c 6 

SSNRI’s 13 (of n=43)c 8 

Tricyclics 10 (of n=43)c 2 

Anticonvulsants 9 (of n=43)c 4 

Benzodiazepines 8 (of n=43)c 5 

Neuroleptics 14 (of n=43)c 6 

Number of depressive episodes 5.19 ± 4.11 (of n=27)c - 

Duration of current episode in months 29.37 ± 19.77 (of n=27)c - 

BDI Beck Depression Inventory, MADRS Montgomery Asberg Depression Rating Scale, a Summarized MADRS scores 
for subjects at CHAR and converted HAMD scores for subjects at UZH,  b Number of patients taking antidepressants 
during the study, c Proportion of the overall sample with complete information on the subject, SSRI’s Selective serotonin 
reuptake inhibitors, SSNRI’s Selective noradrenaline reuptake inhibitors 
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4.2 Experimental design 

 

Following a naturalistic clinical study design, all subjects received a single dose of 

ketamine intraveneously over 40 min administered by psychiatrists and anaesthesiologists 

of the respective clinic. Subjects from UZH received 0.25 mg/kg S-ketamine (Ketanest® 

S, Pfizer, Zurich, Switzerland) and subjects from Berlin received 0.5 mg/kg racemic 

ketamine (R/S, enantiomer ratio of 1:1). Because S-ketamine exerts a 3–4 times higher 

potency or receptor affinity than racemic ketamine, doses are typically reduced by 50% 

(Hashimoto, 2019; Sinner and Graf, 2008). 

For clinician-rated assessment of depression severity at baseline, the Montgomery Asberg 

Depression Rating Scale was used at CHAR (MADRS; Montgomery and Asberg, 1979) 

and the Hamilton Depression Rating Scale at UZH (HAM-D; Hamilton, 1980). For 

symptom self-assessment 24 h pre- and post-intervention each participant completed the 

Beck Depression Inventory (BDI). The 24h follow-up time point for the BDI assessment 

was based on the observation that ketamine’s antidepressant effect is most pronounced 

one day post administration (Zarate et al., 2006). All subjects in the subsample additionally 

completed a task-related fMRI session, 24 h prior to a single sub-anesthetic dose of 

ketamine (Stippl et al., 2021). 

 

4.3 Self-rated depression severity 

 

In order to examine whether a single ketamine infusion differentially affects depressive 

symptom dimensions (cognitive, affective, somatic) measured by the BDI, we applied a 

three-factor solution (Osman et al., 1997; Buckley et al., 2001). Accordingly, each of the 

21 BDI items was ascribed to one of the symptom dimensions and the respective scores 

were calculated. To acquire a measure for the change in symptom dimensions, a Percent 

Change to Baseline (PCB) response value was calculated for each subject between pre- 

and post-intervention with the following formula: ((baseline - follow-up) / baseline) * 100 

(Stippl et al., 2021). 

 

4.4 Working memory task 

 

During fMRI measurements, subjects performed an emotional n-back task using verbal 

stimuli selected from the Berlin Affective Word List (BAWL (Võ et al., 2009)). In 

concordance with the BAWL norms, stimuli were categorized as positive, negative or 

neutral and matched according to the number of letters, imageability, frequency of 



 
19 

 
 

appearance and emotional arousal level. Stimuli were presented in 15 blocks, 5 of each 

valence category (positive, negative or neutral) separated by fixation trials of 10–14 s. 

Each block contained 15 words presented for 500ms with  

an interstimulus interval of 1500 ms. Subjects were required to monitor a series of words 

and to respond whenever a word was presented that was the same as the one presented 

2 trials previously. This task has been proven to elicit blood oxygenation level-dependent 

(BOLD) responses in emotion and WM related brain regions (Grimm et al., 2012; 

Scheidegger et al., 2016a). Stimuli were generated by Presentation® (Neurobehavioral 

Systems, Inc., Albany, CA, USA) and presented via video goggles (VisuaStim digital, 

Resonance Technology, Inc., Los Angeles, CA, USA). Participants responded by pushing 

a fiber-optic light sensitive key press. WM performance was assessed by calculating an 

accuracy score (hits – false alarms / target * 100) and reaction times to the stimuli (Stippl 

et al., 2021). 

 

4.5 fMRI data acquisition and analysis 

 

Functional magnetic resonance imaging data was acquired on a Philips Achieva 3T 

scanner (UZH), and a Siemens Trio 3T (CHAR) applying standard echo planar imaging 

sequences (Grimm et al., 2012; Scheidegger et al., 2016). In short, functional images were 

recorded in runs of 10 min with 331 volumes. At UZH sequence parameters were set to 

32 contiguous axial slices of 4 mm (TE = 35 ms; field of view = 22 cm; voxel size = 2.75 x 

2.75 x 4 mm, TR 3000 ms, flip angle 82°). Sequence parameters at CHAR were set to 37 

oblique axial slices of 3 mm (TE = 30 ms; field of view = 192 mm, voxel size 3×3x3 mm, 

TR 2000 ms, flip angle 70°). FMRI data were analyzed using MATLAB 2012b (The 

Mathworks Inc.,Natick, MA, USA) and SPM12 (Statistical parametric mapping software, 

SPM; Wellcome Department of Imaging Neuroscience, London, UK; 

http://www.fil.ion.ucl.ac.uk). Functional images were realigned according to the first 

volume and corrected for motion artifacts. Normalization was adjusted to a standard 

stereotactic space template from the Montreal Neurological Institute (MNI) and spatial 

Smoothing was processed using a 6 mm FWHM Gaussian kernel. The time series were 

high-pass filtered to eliminate low-frequency components (filter width 128 s) and adjusted 

for systematic differences across trials. Statistical analysis on the subject level was 

performed by modeling the different conditions convolved with a hemodynamic response 

function as explanatory variables within the context of the general linear model on a voxel-

by-voxel basis. Realignment parameters were included as additional regressors in the 

statistical model. A fixed-effect model was performed to create images of parameter 
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estimates, which were then entered into a second-level random-effects analysis. For each 

subject, the following contrast images of parameter estimates were calculated: 1. All WM 

conditions versus fixation condition (WM>Fixation); 2. Emotional WM conditions versus 

neutral WM condition (Emo>Neutral). 

Regions-of-interest (ROIs) were defined to examine WM related brain activations at 

baseline. Specifically, the following ROIs that have been previously linked to WM  

(dys-)function and aberrant emotional processing in depression were selected 

(abbreviation and MNI coordinates in brackets): the bilateral dorsolateral prefrontal cortex 

(lDLPFC; ±40 36 32), the posterior cingulate cortex (PCC; 0 -48 26); dorsomedial 

prefrontal cortex (DMPFC; 0 52 36), the bilateral amygdala (±24 -2 -20) , the bilateral 

anterior Insula (±34 20 0) and the pregenual anterior cingulate cortex (pgACC; 0 42 2) 

(see Fig.2). Spherical ROI templates were built with automated term-based meta-analyses 

on neurosynth.org and our own previous work. The mean activity level of each was 

extracted using the REX Toolbox (https://www.nitrc.org/projects/rex/) (Stippl et al., 2021).  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2: Selected Regions-of-interest (ROIs) spheres 
 
 

Spherical ROIs defined to examine WM related brain 
activation at baseline, PCC posterior cingulate cortex, 
pgACC pregenual anterior cingulate cortex,  
DMPFC Dorsomedial prefrontal cortex, AInsula anterior 
Insula, DLPFC dorsolateral prefrontal cortex.  
 

(This figure appears only in this dissertation framework, its author holds the copyright.  
It has not previously been published)  

https://www.nitrc.org/projects/rex/
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4.6 Statistical group analysis 

 

For the analysis of ketamine effects on BDI subdimensions a one-way ANCOVA with the 

3-level factor BDI dimension (cognitive, affective, somatic) was calculated. Planned paired 

post hoc comparisons were calculated in case of a significant main effect. To rule out 

biasing effects of overall depression severity, the total BDI score at baseline was entered 

as a covariate. 

The main fMRI group analysis was conducted on average brain activations in predefined 

ROIs. WM related baseline activity in these ROIs was correlated with the percentage of 

symptom reduction after ketamine using Pearson’s correlation coefficient. Bonferroni 

correction was applied to correct for multiple testing. Uncorrected results are reported as 

exploratory findings. Statistical analyses on clinical and ROI data were carried out using 

PASW (Predictive Analysis SoftWare, version 25.0, Chicago: SPSS Inc., Illinois, USA). 

Additionally, a multiple regression model was applied on the whole-brain level to identify 

clusters of activation correlating with symptom reduction. Statistical thresholds were set to 

p < 0.001 (uncorrected) at the single voxel level and to p < 0.05 (FDR corrected) at the 

cluster level. However, because of the small sample size, uncorrected results are reported 

and marked as exploratory findings. The statistical whole brain group analyses were 

conducted in SPM (Stippl et al., 2021). 
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5. Resultsb 

 

5.1 Clinical results 

 

On average, patients had a total BDI score of 32.43 (SD 10.76) at baseline. HAMD scores 

of subjects at UZH were converted into MADRS scores to fit rating scales of subjects at 

CHAR (Leucht et al., 2018). On this basis an overall depression score of 25.64 (SD 5.93) 

was calculated at baseline. Twenty-four hours after ketamine administration, the average 

total BDI score was 24.55 (11.57). The average symptom reduction after ketamine was 

21.97 (SD 27.9) %. Cognitive symptoms were reduced by 27.53 (SD 34.89) % after 

ketamine, affective symptoms by 19.8 (SD 40.11) %, and somatic symptoms by 15.81 

(33.42) % (see Table 2 and Fig.3). The ANCOVA calculated for differences in symptom 

reduction between BDI dimensions revealed a significant main effect (F(2,45) = 3.28, p = 

0.042). Paired comparisons showed that cognitive symptoms were stronger reduced than 

somatic symptoms (p = 0.01). No difference was observed for the other post hoc 

comparisons. On a descriptive level the strongest symptom reduction was observed for 

the cognitive dimension (see Fig.3) (Stippl et al., 2021). 

 

 

 

 

 

 

 

 

 

 

 

 

 

b Adapted with permission from Stippl, A., Scheidegger, M., Aust, S., Herrera, A., Bajbouj, M., Gärtner, M., Grimm, S., 
2021. Ketamine Specifically Reduces cognitive symptoms in depressed patients: An investigation of associated neural 
Activation patterns. Journal of Psychiatric Research 136, 402–408.https://doi.org/10.1016/j.jpsychires.2021.02.028.  
All referenced tables and figures appear in the original paper. According to Elsevier´s published guidelines on using 

copyrighted work an author can, include the article in full or in part in a thesis or dissertation. 

See also: https://www.elsevier.com/about/policies/copyright/permissions 

https://www.elsevier.com/about/policies/copyright/permissions
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Table 2.  

Clinical data for BDI overall symptom score or subdimensions. 

Total BDI score and values of cognitive, affective and somatic BDI subdimensions at 

baseline, 24 h post- a single sub-anesthetic ketamine infusion, and resulting Percent 

Change to Baseline values (N=47). 

 

 Baseline post 24 hrs. PCB (%) P-value 

BDI total (M,SD) 32.43 (10.76) 24.55 (11.57) 21.97 (27.90) < 0.001 

BDI cognitive (M,SD) 11.06 (4.89) 8.00 (5.20) 27.53 (34.89) < 0.001 

BDI affective (M,SD) 7.85 (2.64) 5.98 (3.12) 19.80 (40.11) < 0.001 

BDI somatic (M,SD) 12.04 (4.21) 9.51 (4.36) 15.81 (33.42) < 0.001 

BDI Beck Depression inventory, M Mean, SD Standard Deviation, PCB Percent Change to Baseline 

 
(Reprinted from Stippl et al., 2021 with permission) 
 
 

 

 

(Reprinted from Stippl et al., 2021 with permission) 

 

Figure 3: Symptom reduction in BDI subdimensions (Mean ± SEM) 

Percent Change to Baseline in cognitive, affective and somatic symptom subdimensions of the 

BDI 24 h between pre- and post- a single sub-anesthetic ketamine infusion (N=47). 
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Table 3.  

Responders for total BDI score and symptom subdimensions. 

Number of responders and partial responders regarding the Percent Change to Baseline 

values 24 h pre- and post- ketamine infusion for the total BDI score and for cognitive, 

affective and somatic BDI subdimensions (N=47). 

 % Mean PCB (SD) Responder (n) Partial Responder (n) 

BDI total (M,SD) 21.97 (27.90) 8 17 

BDI cognitive (M,SD) 27.53 (34.89) 13 22 

BDI affective (M,SD) 19.80 (40.11) 11 19 

BDI somatic (M,SD) 15.81 (33.42) 10 19 

 

BDI Beck Depression inventory, SD Standard Deviation, M Mean, Responders defined as 50% reduction of 
symptoms,  Partial Responders defined as 25% reduction of symptoms 
 

 
(This table appears only in this dissertation framework, its author holds the copyright. It has not previously been 
published)  
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5.2 fMRI results 

 

The ROI analysis showed a highly significant association between WM-related baseline 

activity in the DMPFC and the reduction of cognitive symptoms after ketamine (r(14) = -

0.72, p = 0.0018; see Fig.4). Additional uncorrected results are shown in Table 4 (Stippl 

et al., 2021). 

 

(Reprinted from Stippl et al., 2021 with permission) 

(c and d were added to this figure in this dissertation, its author holds the copyright. They have not previously 

been published ) 

 

Figure 4: WM related DMPFC BOLD reactivity at baseline correlates negatively with cognitive symptom 

change 24h after ketamine infusion  

 

a) Whole Brain DMPFC cluster with peak activation at [6, 38, 40] related to cognitive symptom change. b) 

Visualization of association between WM related single subject activation in marked whole brain DMPFC 

cluster at baseline and cognitive symptom reduction after ketamine. Abbreviations: WM working memory, 

DMPFC dorsomedial prefrontal cortex, BOLD blood oxygen level dependent. c) Association between WM 

related single subject activation in marked whole brain DMPFC cluster at baseline and affective symptom 

reduction after ketamine d) Association between WM related single subject activation in marked whole brain 

DMPFC cluster at baseline and somatic symptom reduction after ketamine 
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Table 4.  

ROI results for WM related brain activations linked to symptom reduction 

ROI Cognitive Affective Somatic 

 r p r p r p 

DMPFC -0.72 0.0018* -0.49 - -0.46 - 

PCC -0.61 0.013 -0.18 - -0.13 - 

Left AInsula -0.45 - -0.62 0.01 -0.29 - 

Left AM -0.5 0.049 -0.52 0.038 -0.44 - 

Left DLPFC 0.51 0.043 0.14 - 0.11 - 

pgACC -0.33 - -0.44 - -0.1 - 

Right AInsula -0.24 - -0.33 - -0.31 - 

Right AM -0.3 - -0.24 - -0.21 - 

Right DLPFC 0.47 - 0.23 - 0.3 - 

Notes. * corresponding p-value of p<=0.05 (uncorr),  DMPFC dorsomedial prefrontal cortex, PCC posterior 
cingulate cortex, AInsula anterior Insula, AM amygdala, DLPFC dorsolateral prefrontal cortex, pgACC 
pregenual anterior cingulate cortex 

 
(Reprinted from Stippl et al., 2021 with permission) 
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The analysis of associations between emotion processing during the WM task and 

symptom reduction revealed no significant Bonferroni corrected correlations. On an 

uncorrected level there were two positive correlations between symptom reduction in the 

cognitive dimension and the right amygdala (r = 0.53, p = 0.03), and the pgACC (r = 0.64; 

p= 0.008), respectively (see Fig.5). No correlations were observed for the other two 

dimensions (Stippl et al., 2021). 

  
(This figure appears only in this dissertation framework, its author holds the copyright. It has not previously 
been published) 
 
Figure 5: DMPFC BOLD reactivity during emotion processing at baseline correlates positively 

with cognitive symptom change 24h after ketamine infusion  

a) Uncorrected results for activation in right amygdala ROI sphere of 5 mm [24 -2 -20] during emotion 

processing related to cognitive symptom change. b) Uncorrected results for activation in pregenual anterior 

cingulate cortex ROI sphere of 5 mm [0 42 2] during emotion processing related to cognitive symptom change. 
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The whole-brain fMRI analysis showed no significant results after FDR correction on the 

cluster level. However, exploratory analysis (cluster alpha < 0.05, uncorrected) revealed 

several brain areas associated with symptom reduction in distinct BDI dimensions. Only 

negative associations were observed, with lower levels of baseline activation 

corresponding to higher levels of symptom reduction 24 hours after ketamine (Table 5) 

(Stippl et al., 2021).  

 

Table 5:  

Whole-brain results for WM related brain activations linked to symptom reduction in 

cognitive, affective and somatic BDI subdimensions 

BDI dim Cluster K-Size p (unc.) x y z 

cognitive left Amygdala 14 0.026 -27 -4 -26 

cognitive left VMPFC 17 0.016 -30 41 22 

cognitive right PostCG 11 0.045 45 -25 34 

cognitive DMPFC 14 0.026 6 38 40 

cognitive PCC 12 0.037 0 -40 22 

cognitive PCC 18 0.013 3 -46 10 

affective DMPFC 19 0.012 -3 14 64 

affective left Insula 11 0.046 -33 5 -5 

somatic right ITG 31 0.002 54 -49 -8 

somatic right PostCG 27 0.003 42 -25 40 

somatic ACC 13 0.031 -6 20 31 

somatic left PreCG 16 0.018 -51 -13 34 

somatic left IPL 11 0.045 -36 -34 40 

BDI dim Beck Depression Inventory dimension, VMPFC ventromedial prefrontal cortex, 
PostCG postcentral gyrus, DMPFC dorsomedial prefrontal cortex, PCC posterior 
cingulate cortex, ITG inferior temporal gyrus, ACC anterior cingulate cortex, PreCG 
precentral gyrus, IPL inferior parietal lobule 

 
(Reprinted from Stippl et al., 2021 with permission) 
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6. Discussion 

 

The investigation of mechanisms underlying ketamine’s attenuating effect on MDD 

symptomatology is hindered by the heterogeneity of depression related clinical profiles (Bauer et 

al., 2013; Fried and Nesse, 2015a). Due to this fact, current research indicates that models 

categorizing rating scale items into distinct subdimensions may have bigger benefit than 

established sum score analysis which allow no sensitive detection of symptom specific changes 

(Chekroud et al., 2017; Fried and Nesse, 2015a). To promote our understanding of depression, 

the diversity of underlying symptom profiles and their adequate treatment, we focused on the 

examination of the effects of a single sub-anesthetic ketamine infusion on distinct MDD symptom 

dimensions.  

Aiming to identify treatment- and symptom specific response predictors, we additionally 

accessed WM related BOLD reactivity at baseline associated with symptom change in cognitive, 

affective and somatic dimensions following ketamine administration in a subgroup of patients. 

Only a sparse amount of clinical neuroimaging studies has analyzed functional activation patterns 

as biomarkers for successful ketamine treatment and none has yet focused on the prediction of 

symptom specific treatment response. Functional aberrations in emotion-cognition related brain 

areas such as the default mode network (DMN) or prefrontal regions have been described as 

potential predictors for successful ketamine treatment. However, the predictive values of those 

brain areas regarding specific symptom improvement remain unexplored.  

In line with our hypotheses, the behavioral results in this study demonstrate that ketamine 

affects symptoms of MDD to varying degrees, with the greatest reduction in the cognitive domain 

(Stippl et al., 2021). These findings corroborate a previously mentioned theory in which the acute 

effects of ketamine on cognition and associated neural circuitry are described as mediating factors 

in terms of its antidepressant efficacy (Lee et al., 2016). Other studies have been able to confirm 

this theory of a procognitive mechanism by observing cognitive improvements in depressive 

patients after single or repeated administration of ketamine (Basso et al., 2020; Chen et al., 2018; 

Permoda-Osip et al., 2015). Additionally, neurocognitive performance prior and right after 

ketamine administration has been associated with a subsequent antidepressant response, 

suggesting a potential neurocognitive predictor (Murrough et al., 2013; Shiroma et al., 2014) that 

might coincide with our observation of ketamine’s effect on cognitive deficits.  

However, to the best of our knowledge, our findings provide first evidence that ketamine’s effect 

on cognitive symptoms is more pronounced than on affective or somatic symptoms. This is 

illustrated both with regard to improvement of cognitive, affective and somatic symptoms as 

measured by the BDI (see Fig.3) as well as regarding the number of responders and partial 

responders with respect to these symptom dimensions (see Table 3).  
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Here, it might be noted that the amount of responders does not vary greatly across the 

different dimensions, but the magnitude of the effect is substantially increased with respect to the 

cognitive symptoms. Furthermore, it might be remarked that the total reduction in depression 

severity in our study appears to be rather low compared to previous examinations, where 

response rates ranged from about 25% to 85% 24 hours after ketamine administration, depending 

on the study (Abdallah et al., 2015).  The response rates of our sample are at the lower end of 

this range, which might be explained by the fact that typically most of our patients were recruited 

from clinical departments specialized in the treatment of chronic and severe affective disorders. 

Therefore, many of these patients are considered highly treatment-resistant and might therefore 

differ from the "average" MDD patient population in terms of their response rates to ketamine. 

 

Our neuroimaging data indicated that the described marked effect of ketamine on 

cognitive symptoms is associated with lower WM-related DMPFC deactivation and higher DLPFC 

activation prior to treatment (see Table 4) (Stippl et al., 2021). The significant association of 

baseline DMPFC activation with cognitive symptom change 24 h after ketamine administration is 

illustrated in Fig.4 a. While, brain activation within the same extracted DMPFC cluster showed no 

significant correlation with affective or cognitive symptom change as illustrated in Fig. 4 b and c. 

This might be explained by the previously described fact that the DMPFC is part of the DMN, a 

network of brain areas exhibiting deactivation during emotional–cognitive tasks and enhanced 

activation during the resting state (Buckner et al., 2008; Fox and Raichle, 2007). Accumulating 

evidence indicates that MDD patients show disruptions in their ability to regulate activation in 

these areas, which results in depression related cognitive deficits (Grimm et al., 2011, 2009; 

Korgaonkar et al., 2013; Nixon et al., 2013; Sheline et al., 2009). Further, WM related activation 

patterns in DMN regions were proven as distinguishable between MDD patients and healthy 

controls by showing less deactivation in the depressed brain (Gärtner et al., 2018). Even in 

healthy subjects, malfunctioning deactivation of the DMN during external processing was shown 

to result in aberrant cognitive functioning (Bonnelle et al., 2011).  

In contrary, the DLPFC as part of the CCN is supposed to regulate activation in regions of 

the DMN and thus conrol for cognition-emotion interaction (Rayner et al., 2016). MDD related 

interference of maladaptive emotion processing with cognitive functioning might be due to the 

dysfunctional interaction of these regions (Grimm et al., 2012; LeMoult and Gotlib, 2019). 

On these grounds, our observation of the association between decreased pretreatment WM 

related DMPFC deactivation and increased DLPFC activation with post treatment cognitive 

improvements might indicate a generally elevated potential for the adaptive adjustment in these 

neurocircuits (Diener et al., 2012), which in turn predicts a more pronounced effect of ketamine 

on cognitive symptoms (Stippl et al., 2021).  
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This might be explained by ketamine’s glutamatergic mechanism that stimulates 

intracellular signaling pathways substantially contributing to synaptic plasticity. Through its NMDA 

receptor antagonism ketamine causes a drastic elevation of glutamate levels, eventuating in an 

increased release of neurotrophic growth factors such as BDNF (brain-derived neurotrophic 

factor). Because of the essential role of these molecules in terms of synapse formation and 

maturation, this mechanism is considered as closely linked to ketamine’s rapid antidepressant 

efficacy (Duman et al., 2016). Moreover, previous results indicate that the attenuating effect on 

cognitive symptoms might result from an enhanced prefrontal control obtained through rapid 

synaptogenesis (Gärtner et al., 2019). Along that line, our results indicate that pretreatment 

prefrontal brain activation is associated to cognitive symptom response following ketamine 

infusion. 

 

Furthermore, our neuroimaging results showed no significant effects that survived 

Bonferroni correction concerning any other symptom dimension (i.e. affective or somatic). 

Nevertheless, uncorrected results indicated a reduced activation in the left amygdala and anterior 

insula prior ketamine as related to stronger reduction in affective symptoms 24 h post 

administration (see Table 4).  

In addition, with specific focus on emotion processing during the WM task, on an 

uncorrected level, we found two regions positively correlating with cognitive symptom reduction: 

the right amygdala as well as the pgACC as illustrated in Fig.5. Again, no correlations were 

observed for the other two dimensions. 

The amygdala as part of the limbic system is implicated in emotion regulation and 

important for the detection and response to emotional stimuli, next to the generation of negative 

mood states (Groenewold et al., 2013; Ma, 2015). MDD patients typically exhibit amygdala 

hyperactivation which is thought to result in rumination as a risk factor for depression and 

treatment resistance (Mandell et al., 2014). Furthermore, the amygdala is strongly interconnected 

with the prefrontal cortex and was shown to influence cognitive processing through emotional 

interference (Phelps, 2006). Congruently, our results indicate amygdala activation prior ketamine 

as associated with change following administration in either cognitive or affective symptoms 

depending on the focus of stimulation (i.e. WM or emotion processing). 

The insula plays an important role in the processing of affective experiences (Craig, 2009) 

and is often hyperactive in depressive patients (Diener et al., 2012; Fitzgerald et al., 2008). 

On this basis, our study results may thus indicate that lower activation in the left amygdala and 

insula in MDD patients at baseline not only indicates less deviant emotional processing but also 

predicts greater improvement in affective symptoms (Stippl et al., 2021). 
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The pgACC is also considered essential for emotion processing and regulation and is 

often hyperactive in MDD patients during rest (Jing et al., 2020). Previous evidence indicates that 

its task related activation might serve as potential response predictor for different kind of 

antidepressant treatments (Pizzagalli, 2011). Consistently, our findings might indicate that a 

pronounced beneficial effect of ketamine on cognitive symptoms is predicted by increased pgACC 

activation during emotion processing in the WM task. 

 

At the whole brain level, no significant results were found that survived FDR correction. 

However, it is still worth noting that exploratory analysis at the uncorrected cluster level revealed 

several brain areas associated with symptom reduction in different BDI dimensions. Thereby, only 

negative associations were observed, with a lower level of baseline activation corresponding to a 

higher level of symptom reduction 24 hours after ketamine (see Table 5).  

 

As this is the first study examining the effects of ketamine on BDI symptom clusters 

subsequently aiming to characterize predictors for symptom specific responses, we are confident 

that our findings substantially contribute to the state of the art research about ketamine’s 

antidepressant efficacy. However, there are some limitations that merit consideration. 

Because this study is based on a naturalistic design, it does not include a placebo condition. 

Thus, it could be criticized that the results do not provide direct evidence of an effect that is 

specific to ketamine. Yet, it is known that ketamine has relatively strong psychotomimetic 

properties, potentially invalidating the benefits of a placebo condition (Short et al., 2018).  

Furthermore, because we wanted to investigate the effect of ketamine on different symptom 

dimensions, we state that the results can be successfully interpreted even without a placebo 

condition (Stippl et al., 2021). Because ketamine is pre-eminently given to severely depressed 

patients that have experienced treatment failure to at least one or more antidepressant therapies, 

no full restriction concerning psychopharmacological medication intake could be established. 

However, samples as such might give a more naturalistic clinical reflection and thus allow for an 

enhanced clinical utility than those of untreated patients. 

Regardless of different affinities to the NMDA receptor and controversies about varying 

antidepressant efficacies, existing investigations differ with respect to the use of ketamine’s R- 

and S-enantiomers (Andrade, 2017). The majority of studies thus far have been conducted with 

racemic ketamine, while in our sample some patients received S-ketamine. Nevertheless, the S-

enantiomer has also proven good effect sizes in previous examinations (Singh et al., 2016).  
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Moreover, it could be considered that the subjective state assessed by the BDI, which is 

related to aberrant thoughts, is somewhat different than that related to neuropsychological 

performance. Nonetheless, previous studies provide evidence that in MDD, neuropsychological 

dysfunction is related to the "negative cognitive set" (Austin et al., 2001; Gupta et al., 2013), which 

is represented in BDI cognitive items such as self-criticism, self-rejection, and pessimism (Elliott 

et al., 1997). 

Other findings in MDD patients indicate that negative feedback is associated with aberrant 

cognitive performance, suggesting an increased negative response bias to negative feedback. In 

this context, studies examining the impact of stimulus valence on cognitive performance have 

indicated that increased focus on negative stimuli is caused by aberrant information processing 

and emotional bias (Matt et al., 1992; Chamberlain and Sahakian, 2006; Murrough et al., 2011). 

In order to draw conclusions about the effect of ketamine on different symptom groups, our study 

includes a sufficiently large sample (N=47). fMRI scans, however, were obtained in a subsample 

of only 16 patients. Here, we examined BOLD reactivity before ketamine treatment in relation to 

a reduction in MDD symptoms. This experimental design has provided some insight into specific 

neuronal activation patterns that may be used to predict the effect of ketamine on specific 

symptoms. However, these outcomes need to be validated in a large independent patient sample. 

 

With the inclusion of the aforementioned limitations, our accumulated results provide 

evidence that a single subanesthetic ketamine infusion has differential effects on MDD symptom 

dimensions, with the greatest reduction in symptom severity in the cognitive domain. Further, 

decreased deactivation of the DMN and increased activation of the DLPFC during a WM task at 

baseline might predict the predominant effect of ketamine on cognitive symptoms. These results 

not only indicate that a pro-cognitive mechanism might underlie the antidepressant effects of 

ketamine, but moreover suggest that this mechanism may be mediated by an increased potential 

for adaptive adjustments in the referred brain regions (Stippl et al., 2021). 
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