
 
 

1 
 

Supplementary Information: Nanomechanical 
Spectroscopy of 2D Materials 

 

  

 

Jan N. Kirchhof1*, Yuefeng Yu1, Gabriel Antheaume1, Georgy Goardeev1, Denis Yagodkin1, 

Peter Elliott2, Sangeeta Sharma2, Stephanie Reich1 and Kirill I. Bolotin1* 

1 Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany 

2 Max-Born Institute for Nonlinear Optics and Short Pulse Spectroscopy,  

Max-Born-Strasse 2A, 12489 Berlin Germany 

 

*jan.kirchhof@fu-berlin.de    *kirill.bolotin@fu-berlin.de 

 

 

  



 
 

2 
 

1. Finite element method (FEM) simulations 

For the FEM modelling we use the structural mechanics module of COMSOL Multiphysics Version 

5.5. We build a model around the suspended area partially including the silicon support (Fig. S1a) and 

use a swept mesh for the thin layers with high density around for TMD flake and SiN window (Fig. 

S1b). To determine the resonance frequency and mode shape (Fig. S1c) we conduct a prestressed 

eigenfrequency study. To include the effect of laser heating, we add a study step to implement a 

Gaussian heat source (Fig. S1d, 30.4% absorption and 30 µW laser power – comp. Fig. 3a main paper) 

and calculate the heat profile upon laser heating of the center of the suspended TMD (Fig. S1e). This 

allows us to determine the conversion factor, which captures the tuning of the fundamental mode with 

laser power, following Eq. 1 from the main paper. The conversion factor slightly depends on wavelength 

of the heating laser because the laser spot size varies with wavelength, what results in a slightly different 

heat profile in the suspended TMD. To account for this, we measure the spot size of heating laser at 

different wavelengths and use this as input for our simulations. In Fig. S1f we plot the conversion factor 

for device #1 (3L WSe2). For device #2 (4L MoS2), we obtain a conversion factor in the range of 461 

to 476 Hz/µW showing comparable scaling with wavelength as device #1. The difference between 

devices here is due to different thermal conductivities, hole sizes and layer thickness between devices. 
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Figure S1 FEM simulations of SiN-TMD hybrid devices a) Model geometry with a thin layer of TMD (blue) placed on the SiN 
window b) Corresponding mesh, all thin layers are meshed as swept layers with high density c) Simulated fundamental mode 
of the hybrid system d) Heat input in the shape of a gaussian beam to simulate the effect of laser heating e) Resulting heat 
profile upon 30 µW incident laser power and 30.4 % absorption (corresponds to a photon energy of 2.92 eV for the 3L WSe2 
sample) f) Obtained conversion factor for Device #1 (3L WSe2).  

 

In order to optimize the dimensions of the SiN window, we simulate the driven mechanical resonances 

in the frequency domain. We start by simulating a circular TMD-only drum resonator (diameter 10 µm) 

as reference and adjust the isotropic damping to match the experimental Q for such resonators (~100). 

We then simulate the entire hybrid device (including SiN and gold). In Fig. S2a we plot the simulated 

displacement vs. frequency for the hybrid device probed on the SiN area, 2 µm away from the suspended 

TMD area. Again, we adjust the isotropic damping in SiN and gold to match experimental values. We 

now vary the SiN window size and extract the amplitude of motion at constant drive (signal strength, 

plotted in Fig. S2b). As expected, larger devices oscillate at large amplitudes providing more signal. 

Nevertheless, while oscillating at a higher amplitude, larger devices are less responsive to heating. 

Indeed, in Fig. S2c we plot the relative responsivity (change of resonance frequency for a constant laser 

heating) vs. window size. Combining the insights from Fig. S2b,c we choose a window size of 20 µm 

as a reasonable compromise between high vibrational amplitude and high responsivity. 



 
 

4 
 

 

Figure S2 Finding ideal device parameters a) Simulated mechanical motion of the hydride with Q matching experimental 
results b) Simulated amplitude (signal strength) vs. SiN window size b) Relative responsivity to laser heating vs. SiN window 
size. We choose a window size of 20 µm (orange spot) as a compromise between high responsivity and sufficient amplitude 
amplification  

All material properties used in our simulations are summarized in table 1. For quantities that show a 

large spread in the literature values (values for the TMD materials in particular) we used average values. 

In general, we preferably choose experimental references for suspended samples of the suitable layer 

thickness.  

Material Quantity  Value Reference 

MoS2 Young’s modulus 𝐸 330 GPa 1 in agreement with our AFM 

force-indentation 

measurements. 

 Poisson’s ratio 𝜈 0.125 1 

 Density𝜌 5060 kg/m³ 2 

 Thermal conductivity 𝜅 60.3 W/(m·K) 
 

3–6 

 Thermal expansion coefficient 𝛼 7.6 · 10-6 1/K 
 

7 

8 

 Heat capacity at constant pressure 𝑐௣ 397 J/(kg·K)) 9,10 

 Built-in tension 𝜎଴ 44.7 MPa = 

0.11 N/m 

Force-indetantion AFM  

 Layer thickness d 0.615 nm 11 
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WSe2 Young’s modulus 𝐸 167.3 GPa 12 In agreement with our AFM 

force-indentation 

measurements (shown below) 

 Poisson’s ratio 𝜈 0.19 13 

 Density𝜌 9320 kg/m³ 14 

 Thermal conductivity 𝜅 26.5 W/(m·K) 15 

 

 Thermal expansion coefficient 𝛼 7 · 10-6  1/K 7 

 Heat capacity at constant pressure 𝑐௣ 188 J/(kg·K) 9 

 Built-in tension 𝜎଴ 46.2 MPa = 

0.09 N/m 

AFM force indentation 

 Layer thickness d 0.651 nm 11 

Au Young’s modulus 𝐸 78.5 GPa 16 

 Poisson’s ratio 𝜈 0.42 16 

 Density 𝜌 19300 kg/m³ 16 

 Thermal conductivity 𝜅 312 W/(m·K) 16 

 Thermal expansion coefficient 𝛼 14· 10-6 1/K 16 

 Heat capacity at constant pressure 𝑐௣ 130 J/(kg·K) 16 

 Pre-stress 160 MPa 17 

SiN Young’s modulus 𝐸 232 GPa 18 

 Poisson’s ratio 𝜈 0.23 18 

 Density𝜌 2810 kg/m³ 19 

 Thermal conductivity 𝜅 31 W/(m·K) 18 

 Thermal expansion coefficient 𝛼 2.55· 10-6 1/K 18 

 Heat capacity at constant pressure 𝑐௣ 887 J/(kg·K) 18 

 Pre-stress  240 MPa Norcada (manufacturer) 
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Si Young’s modulus 𝐸 160 GPa 20 

 Poisson’s ratio 𝜈 0.27 20 

 Density 𝜌 2330 kg/m³ 20 

 Thermal conductivity 𝜅 160 W/(m·K) 20 

 Thermal expansion coefficient 𝛼 3 · 10-6 1/K 20 

 Heat capacity at constant pressure 𝑐௣ 692 J/(kg·K) 20 

 Pretension  0  Irrelevant for simulations 

 

2. AFM force indentation 

One crucial parameter, which is known to vary from device to device is the built-in tension and 2D 

elastic modulus. To eliminate this uncertainty in our simulations, we perform force indentation 

measurements in the centre of the membrane (following Ref. 21) and extract the built-in tension and 

2D elastic modulus for each sample. We use cantilevers of intermediate stiffness (k~3 N/m) and only 

apply small loads (150 nN) to avoid damaging the sample. In Fig. S3a we show a force-displacement-

curve for device #1. We account for cantilever bending and deformation of the SiN membrane. We fit 

a curve following: 

𝐹 = 𝜋𝜎𝑑 + 𝑞³
ாమವ

௔²
𝑑ଷ    (S1) 

Here a is the radius of the drum, and  𝑞 =
ଵ

ଵ.଴ହ – ଴.ଵହఔି଴.ଵ଺ఔమ is a dimensional factor dependent on the 

Poisson’s ratio 𝜈 (𝑞 = 0.98  for WSe2 and q = 0.97 for MoS2). For a range of samples, we find a 

linear dependence on tension with layer thickness (Fig. S3b). We attribute the observed homogeneity 

to the cleanliness and uniformity in our samples after annealing (comp. Fig. S4). 
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Figure S3 AFM force indentation to determine pre-tension. a) Force vs. displacement as well as a fit to Eq. S1. We extract a 
pretension of roughly 0.1 N/m for most our devices b) Statistics on pre-tension vs. thickness. We find a linear relation 
between pre-tension and layer thickness in our devices.  

 

3. Sample overview 

We fabricate and measure multiple samples. Microscope images and AFM topography scans for 

device #1-3 are shown in Fig. S4a,b,d,e,g,h. For all samples (Fig. S4c,f,i), we find a high Q 

fundamental mode of almost constant (except device #3, which has a thicker gold layer). There are 

some variations in frequency, because the hole size and gold thickness are different for the devices. 

Our simulations (grey dashed lines) describe the measured frequencies well (Fig. S4c,f,i). 



 
 

8 
 

 

Figure S4 Sample overview. Microscope images (a,d,g) and AFM topography (b,e,h) of device #1-3. The samples are uniform 
and well attached to the substrate c,f,i) Displacement (amplitude) vs. frequency for device #1-3. We find a dominant high-Q 
fundamental mode for all samples. The resonance frequencies match with simulated values (grey dashed lines).  

 

4. Details on interferometric motion detection 

The interferometric setup is shown in detail in Fig. S5a. Along the beam path of the probe laser, we 

first implement an optical isolator to avoid back reflected light into the laser, which can cause 

instabilities and power fluctuations. The beam is then expanded to completely fill the objective (40x 

0.6NA). In a first beam splitter we add light from the excitation laser and in a second beam splitter, 

we guide half the light towards the reference arm and half through the objective onto the sample in a 

vacuum chamber. The relative position of the reference arm to the sample determines the amplitude of 

the interferometric signal. We use a piezo electric element to control this distance and stabilize the 

system using a PID-loop locked to a small reference signal at 941 Hz sourced by Lock-In amplifier 

(Zurich Instruments MLFI). The sample in the vacuum chamber is clamped upside down onto our 

sample holder and with a spacing of roughly 40 µm, we place our grounded gate electrode. Electrical 

driving is realized by mixing a DC voltage (210 V, supplied by a Keithley source meter) with an AC 

component (typically -5 dBm) from our vector network analyzer (VNA, Agilent E5071C) in a high 
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voltage Bias T (Particulars BT-01) and applying it to the gold layer of the sample, which contacts the 

TMD flake. For smaller frequency ranges and phase-locked-loop (PLL) measurement, we use a lock-

in amplifier (Zurich Instruments MFLI). In Fig. S5b we show the power spectra of our excitation laser 

source (measured at the sample position) with different neutral density filters (ND) implemented, 

which are used to calculate the relative frequency shifts 
୼௙

୼௉
. We perform a small linear correction 

(order of Hz) to account for temperature changes in the room during measurements of the maps (Fig. 

2 a,c). In the PLL-configuration (25 kHz bandwidth) we can measure the heating induced frequency 

shifts Δ𝑓 quickly and with high sensitivity even at low laser powers (raw data for ND 1.5 in Fig. S5c).  

 

Figure S5 Setup details and PLL-data a) Detailed sketch of setup and b) Measured output of the tunable excitation laser at 
the sample position vs. wavelength. This data is used to normalize the frequency shift. c) PLL measurements of device #1, 
using the laser power plotted in b). 

5. Consideration of dynamical back-action effects 

In nanomechanical resonators also dynamic optomechanical back-action (in contrast to static heating) 

effects can alter the resonance frequency (𝑓) and its FWHM (𝑓ிௐுெ) especially at large laser 

powers.22–24 This occurs e.g. in cavity interferometers, where the laser power, which the oscillating 

membrane is exposed to, varies significantly over a short spatial distance.22,23 For this a reflective 

surface close to the moving membrane is needed.22,23 The effects furthermore only occur when the 
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spatial symmetry is broken due to deforming the membrane out of plane.22,23 In our system the gate is 

non-reflective and far away from the membrane (~ 40 µm). Additionally, the applied electrostatic 

pressure by the gate voltage is relatively small and SiN-TMD hybrid system rather stiff, so there is no 

breaking of symmetry in out of plane direction. Considering all the points above, we can exclude 

cavity related back-action effects in our system. 

Also, strain-induced shifts in absorption in the material itself can cause dynamic back-action effects.24 

Here again a breaking of symmetry, large laser powers and soft systems (small spring constant) are 

needed. We therefore also exclude material related back-action effects. 

To verify this experimentally we extract 𝑓ிௐுெ, whilst illuminating the sample at different 

wavelengths (Fig. S6a,b). If there were any dynamic back-action effects influencing the system, the 

𝑓ிௐுெ should show significant variations.22–24 We do not observe such variations and thereby 

experimentally confirm the absence of dynamic back-action effects.  

 

Figure S6 Reference measurements check for dynamic back-action effects. a,b) FWHM vs. wavelength for device #1 (WSe2) 
and #2 (MoS2) and photoluminescence measurements as reference for the excitonic resonances. We observe a constant 
FWHM over the entire wavelength range and thereby experimentally exclude dynamic optomechanical back action effects. 

6. Laser induced frequency shifting (derivation of Eq.1) 

We model the TMD-SiN-hybrid device as two 1D-springs in series, one representing the suspended 

TMD area and another the SiN window. The total spring constant is then given by: 

𝑘௧௢௧௔௟ =
ଵ

భ

ೖೄ೔ಿ
ା

భ

ೖ೅ಾವ 

        (S2) 

The fundamental resonance frequency of the system is then: 
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𝑓଴ =
ଵ

ඥ௠೐೑೑

ଵ

ට
భ

ೖೄ೔ಿ
ା

భ

ೖ೅ಾವ 
)
 ,   (S3) 

where 𝑚௘௙௙ denotes the effective mass of the mode. With the heating laser turned on, light is 

absorbed and the TMD area heats up and thus 𝑘்ெ஽ gets reduced by Δ𝑘. The resonances frequency 

with laser heating can be expressed as: 

𝑓(𝑘்ெ஽ − Δ𝑘) =
ଵ

ඥ௠೐೑೑

ଵ

ඨ
భ

ೖೄ೔ಿ
ା

భ
భ

ೖ೅ಾವ
(భష

౴ೖ
ೖ೅ಾವ

) 

   (S4) 

We now expand the term to first order for 
୼௞

௞೅ಾವ
≪ 1 and obtain 

𝑓(𝑘்ெ஽ − Δ𝑘) ≈ 𝑓଴ −
ଵ

ඥ௠೐೑೑

൬
ೖೄ೔ಿೖ೅ಾವ

ೖೄ೔ಿశೖ೅ಾವ
൰

య
మ

ଶ௞ೄ೔ಿ

୼௞

௞೅ಾವ
   (S5) 

We subtract 𝑓଴, and obtain the frequency shift induced upon laser heating Δ𝑓 = 𝑓(𝑘்ெ஽ − Δ𝑘) − 𝑓଴: 

Δ𝑓 =
ଵ

ඥ௠೐೑೑

൬
ೖೄ೔ಿೖ೅ಾವ

ೖ೅ಾವశೖೄ೔ಿ
൰

య
మ

ଶ௞ೄ೔ಿ

୼௞

௞೅ಾವ
   (S6) 

For the “TMD-spring”, we can relate the change in spring constant to a change in built-in tension: 

୼௞

௞೅ಾವ
=

୼ఙ

ఙబ
      (S7) 

The change in tension due to thermal expansion is given by: 

Δ𝜎 =
ఈாమವ

ଵିఔ
Δ𝑇,   (S8) 

Where 𝛼 is the thermal expansion coefficient, 𝐸ଶ஽ is the 2D elastic modulus and 𝜈 is the Poisson’s 

ratio of the TMD. The change in temperature Δ𝑇 is proportional to the amount of absorbed laser 

power: 

Δ𝑇 =
ఉ஺௕௦(ఒ)

௛఑
Δ𝑃,   (S9) 
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where 𝜅 is the thermal conductivity, ℎ is the thickness of the membrane and 𝛽 is a pre-factor 

determined by the temperature profile in the membrane. Combining Eq. S6-9 we obtain Eq. 1 from 

the main text: 

                                 
୼௙

୼௉
(𝜆) =

ଵ

ඥ௠೐೑೑

൬
ೖೄ೔ಿೖ೅ಾವ

ೖ೅ಾವశೖೄ೔ಿ
൰

య
మ

ଶ௞ೄ೔ಿ
 

ఉ ఈாమವ

ଶ௛఑ఙబ(ଵିఔ)
𝐴𝑏𝑠(𝜆),       (S10) 

7. Reflection measurements 

The setup presented in the main text also allows us to perform reflection measurements. We block the 

reference arm, turn off the probe laser and then and use our tunable excitation light source to sweep the 

wavelength whilst recording the reflected signal off our sample using a chopper (920Hz) and the lock-

in amplifier (Fig. S7a, green). We then subtract spectra from that from an empty hole as shown in Fig. 

S8a (Fig. S7a, blue) and normalize the data by dividing by a “100% reflection reference”, which we 

obtain measuring reflection of a silver mirror (Fig. S7a, red) with known reflection properties (Thorlabs 

PF10-03-P01). The resulting reflection data is shown in Fig. S7b. 

 

Figure S7 Optical reflection measurements a) Reflection of device #1 (3L WSe2), a silver mirror, corresponding to our 100% 
reflection reference and an empty hole b) Resulting reflection data for the TMD material.       

8. Obtaining the dielectric function 

Reflection and transmission of electromagnetic waves was computed with the transfer matrix 

formalism. Two types of matrices are required: a propagation matrix P and a boundary matrix 

T. The propagation matrix contains elements responsible for phase change inside a material  
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𝑃(𝜆, 𝑛, 𝑑) = ൬𝑒ଶగ௜௡ௗ/ఒ 0
0 𝑒ିଶగ௜௡ /ఒ

൰,   (S11) 

where 𝑛 is complex refractive index of the material, 𝜆 wavelength of light, 𝑑 is the thickness 

of the material. Whereas the boundary matrix depends on the refractive indices on both sides 

of the boundary 𝑛ଵ and 𝑛ଶ: 

𝑇(𝑛ଵ, 𝑛ଶ) =
ଵ

௧భమ
൬

1 𝑟ଵଶ

𝑟ଵଶ 1
൰.      (S12) 

The 𝑡ଵଶ =
ଶ௡భ

௡భା௡మ
 is a Frensel transmission coefficient for oblique incidence and the 𝑟ଵଶ is a 

reflection coefficient 
௡భି௡మ

௡భା௡మ
. The overall transfer matrix 𝑀 of vacuum suspended TMDC 

yields 

𝑀 = 𝑇(𝑛௩௔௖௨௨௠, 𝑛்ெ஽஼). 𝑃(𝜆, 𝑛்ெ஽஼ , 𝑑). 𝑇(𝑛்ெ஽஼ , 𝑛௩௔௖௨௨௠).   (S13) 

For each wavelength, we compute the refractive index 𝑛்ெ஽஼ = 𝑛 + 𝐼𝑘 using matrix 

elements. The system of two equations is solved for two variables 𝑛, 𝑘. 

൜
𝑇𝑟𝑎𝑛𝑠 = 1 − 𝐴𝑏𝑠 − 𝑅𝑒𝑓𝑙 = 1/|𝑀ଵଵ|ଶ

𝑅𝑒𝑓𝑙 = |𝑀ଶଵ|ଶ/|𝑀ଵଵ|ଶ ,      (S14) 

𝐴𝑏𝑠, 𝑅𝑒𝑓𝑙 are experimentally obtained absorption and reflection, respectively. The dielectric 

function 𝜀 is obtained using relation 𝜀 = 𝑛ଶ.  

9. RPA and BSE calculations 

To determine the theoretical response function the ground-state of the material was first calculated using 

density functional theory (DFT). Within DFT, the exchange-correlation energy was approximated by 

the local density approximation (LDA), which is well known for underestimating the bandgap of 

insulators and semiconductors. In order to estimate the experimental direct bandgap G0W0 calculations25 

were performed and the DFT band-structure was then corrected by the scissor operator to obtain the 

correct direct bandgap.  



 
 

14 
 

This corrected band-structure was then used to determine the response function of the material. In order 

to account for excitonic effects the Bethe Salpeter equation (BSE) was solved26. Solving the BSE is 

computationally very demanding and hence the BSE Hamiltonian was diagonalized in a restricted active 

space of a few bands around the Fermi level. However, the consequence of this restriction is that the 

response function is only determined in a limited low energy window around the band-gap.  In order to 

obtain the response function at higher energies, where excitonic effects are negligible, we use the so-

called random-phase approximation (RPA) within linear response time-dependent density functional 

theory (TDDFT).27,28 This procedure does not account for excitonic effects, but bands up to 100 eV 

above the Fermi energy are included and is an accurate method for determination of response function 

away from the band-gap energies. 

Computational parameters: Spin-orbit coupling was included for all calculations. For the DFT 

calculations the in-plane lattice parameter for WSe2 (MoS2) was 3.28 Å (3.16 Å) with an interlayer 

spacing of 6.48 Å (6.15 Å), a distance of 3.34 Å (3.17 Å) between the chalcogens in each layer, and 

vacuum spacing between top and bottom layers of at least 12 Å for both the tri- and tetra-layer 

calculations. A k-point grid of 30x30x1 was used in all cases. The BSE hamiltonian was diagonalized 

in the restricted active space of 8 valence and 8 conduction states around the Fermi level.  In order to 

account for many-body effects we have performed a single shot, finite temperature (a temperature of 

500 K was used), all electron, spin-polarized GW calculations, where the spectral function on the real 

axis is constructed using a Pade approximation. Spin-orbit coupling was included in the GW 

calculations and a Matsubara cut-off of 12 Ha was used. All calculations were performed using state-

of-the-art, all-electron, full-potential code Elk.29 

10. Determination of sensitivity via Allan deviation: 

The Allan deviation is defined as:30 

𝜎஺
ଶ(𝑡) =

ଵ

ଶ(ேିଵ)௙బ²
∑ (𝑓௜ − 𝑓௜ିଵ)²ே

௜ୀଶ      (S15) 

where 𝑓௜ is the average frequency measured over the ith time interval of length 𝑡. We perform time 

stability measurements (Fig. 5b, main paper) of the resonance frequency with the heating laser turned 
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off using a PLL with a bandwidth BW = 2.5 kHz. We extract 𝜎஺ and find 𝜎஺ < 5∙10-7 over a broad range 

(Fig. 5c, main paper). Plugging  
୼௙

୼௉
=  792 Hz/µW, 𝑓଴ = 4.6702 MHz and an optimal 𝜎஺ = 2.426 ∙10-7 

at a sampling period of t = 4 ms into equation S16, we calculate = 90 
௣ௐ

√ு௭
 . The measurement fulfils 

the condition of 𝑡 ≫
ଵ

஻ௐ
. 

                                              𝜂 =
ఙ೑√௧

௙బቀ
౴೑

೑బ౴ು
ቁ

=
ఙಲ√௧௙బ

౴೑

౴ು

,  (S16) 
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