
Methods for control strategy
identification in Boolean networks

Dissertation

zur Erlangung des Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

am Fachbereich Mathematik und Informatik

der Freien Universität Berlin

vorgelegt von

Laura Cifuentes Fontanals

Berlin, 2022

1. Gutachter:
Prof. Dr. Heike Siebert
Freie Universität Berlin

2. Gutachter:
Prof. Dr. Claudine Chaouiya
Aix-Marseille University

Tag der Disputation:
15. Dezember 2022

Contents

1 Introduction 3

2 Boolean networks and control 8

2.1 Boolean networks and dynamics . 8

2.1.1 Value percolation . 12

2.2 Controlled function and control strategies 16

3 Control via trap spaces 24

3.1 Permanent control strategies . 25

3.2 Transient control strategies . 29

3.3 Implementation . 30

3.3.1 Basic introduction to Answer Set Programming 31

3.3.2 Problem encoding . 32

3.3.3 Main algorithm . 39

3.3.4 Further considerations: minimality and running times 40

3.4 Application . 42

3.4.1 Target: apoptotic phenotype . 43

3.4.2 Target: minimal trap spaces . 46

3.4.3 Running times . 47

3.4.4 Other updates . 48

3.5 Discussion . 49

4 Exhaustive approach 50

4.1 Control by completeness . 51

4.2 Introduction to model checking . 52

1

2 Contents

4.3 Control with model checking . 54

4.4 Implementation . 57

4.4.1 Main algorithm . 57

4.4.2 Reduction methods . 60

4.5 Application . 64

4.5.1 Target: apoptotic phenotype . 65

4.5.2 Target: minimal trap spaces . 66

4.6 Discussion . 67

5 Application 68

5.1 Case study: EMT network . 68

5.1.1 Attractor control: steady states . 71

5.1.2 Target control: phenotypes . 73

5.1.3 Subset control: avoidance of hybrid phenotypes 76

5.2 Comparison of methods . 81

5.2.1 Attractor control . 83

5.2.2 Target control . 85

6 Discussion 88

Bibliography 91

Summary 99

Zusammenfassung 100

Erklärung 101

Chapter 1

Introduction

Understanding control mechanisms in biological processes plays a crucial role in the de-
velopment of potential applications in the fields of bioengineering and medicine. The
identification of drug targets for disease treatments or the reprogramming of cancer cells
to induce apoptosis are some examples of its practical applications [FBR+15]. Exhaustive
experimental approaches are too costly and time-consuming to be used for identification
of potential control targets. Mathematical modeling helps to address this problem by pro-
viding a formal framework to predict potential successful candidate interventions in silico
[PAM22].

Boolean networks were introduced by Kauffman [Kau91, GK73] to study the modeling
of gene regulatory networks. The modeling of biological systems is often hindered by the
lack of information about reaction parameters. Boolean modeling stands out among other
modeling frameworks for its ability to capture the qualitative behavior of the system using
coarse representations of the interactions between the different components. These com-
ponents are represented by discrete variables, admitting only two activity levels, 0 and 1,
representing for instance the activity of a gene in a gene regulatory network or if the con-
centration of a protein or compound is above or below a certain threshold. The activation
and inhibition relations between the different components are described by logical regula-
tory functions. Boolean models are able to capture the relevant behaviors of many gene
regulatory networks and signaling networks [FNCT06, ZSY+08] and have proven useful to
study how different perturbations might affect their dynamics [FBR+15, CTF+10]. They
have also been widely used to predict or design therapeutic treatments [MBT+22, PAM22].

Multiple dynamics can be defined from the same Boolean network depending on the
type of update chosen for the regulatory functions. The synchronous dynamics updates
simultaneously all components, whereas the asynchronous dynamics aims at capturing more
realistically the different (possibly unknown) time scales that might coexist in a biological
system, by updating only one component at each time step. The long-term dynamics of

3

4

the modeled system is captured by the attractors. Attractors are sets of states where the
system stabilizes. Attractors that consist of only one state (steady states) can be identified
with different cell types or cell fates in biological systems, whereas attractors consisting
of more than one state (complex attractors) might be associated with different oscillating
processes.

Despite the apparent simplicity of Boolean networks, the brute-force exploration of the
state space is usually not feasible since it grows exponentially with the size of the network.
Consequently, problems such as attractor identification or controllability are non-trivial
[Aku18]. Attempts to relate dynamical properties from patterns in the interaction network,
such as Thomas conjectures [Tho81], have produced results that are too general to be useful
when applied to specific biological networks. Other approaches have studied the prime-
implicant hypergraph [KBS15] or extended network [ZA13], a network with two nodes for
each component that encodes the regulatory functions in terms of implications between
these nodes, to deduce dynamical properties of the system. In recent years, multiple
methods have been developed aiming at a more efficient attractor identification [DT11,
BAFRM17, RZG+21].

Control of dynamical systems has been another important research field in systems
biology in the last years. Many approaches focus on the structure and topology of the
network, for example by considering feedback loops [ZYA17] or stable motifs [ZA15], and
several studies discuss the complexity and characteristics of such problems [KPC13, LSB11,
Aku18]. Other works analyze the characteristics of the control sets by studying its average
size [BD21] or the properties of nodes that are part of them [WIS+22].

Moreover, control of biological systems encompasses a great variety of scenarios and
goals. Numerous approaches focus on leading the system to a specific attractor of inter-
est from a particular initial state (source-target control) [MSH+19, BPSS21] or from any
possible initial state (full-network control) [ZA15]. This type of control problem is known
as attractor control. We can find an example of such control problem in the context of a
cell-fate decision network with two attractors representing two possible cell fates: survival
or apoptosis. Identifying control strategies to induce the apoptotic attractor in cancer
cells might help the development of potential treatments that would lead the system to-
wards the elimination of the unhealthy cells. In other scenarios, it is sufficient to focus
on a set of relevant components defining the state of the system rather than specific at-
tractors. This might be the case for biological systems with multiple attractors that are
grouped in different phenotypes. Biological phenotypes are often defined by the values of
a set of observable components or biomarkers, which capture relevant characteristics of
biological processes. Many approaches have been developed for this type of control, known
as target control, which targets a set of relevant variables instead of a specific attractor
[SKK10, YGTZA18, BD19].

Chapter 1. Introduction 5

Another relevant aspect when defining a control problem is the type of perturbations
considered. A usual approach is the use of control interventions that fix the state of a
component to a certain value (0 or 1). This type of intervention, called node intervention
or node control, can represent for instance the knockout or sustained activation of a gene in
a gene-regulatory network. A great variety of approaches have been developed to deal with
node control [SPP19, ZA15, YGTZA18]. One of the potential limitations of node control
is that fixing the value of a specific node directly affects all the components regulated by
this node. In the context of biological systems, the regulated node might play a potentially
crucial role in other processes that should not be disrupted. In such cases, it is useful to
consider a more focused perturbation, for instance an edge intervention. An edge interven-
tion targets a specific interaction between two components, leaving the rest of the nodes
and interactions unaltered. Edge perturbations have been shown to play a relevant role in
the understanding of control mechanisms in biological processes [ZSL+09, CZD+11]. Con-
sequently, many approaches for control strategy identification using edge control have been
developed [MVCAL16, BD19, CA19]. Control interventions can also be classified depend-
ing on their duration. We talk about permanent perturbations when they are maintained
indefinitely and temporary perturbations if they are released after a certain amount of time
[SPP19]. Moreover, interventions can be applied all at once (one-step control) [SKK10] or
at different time steps (sequential control) [MSH+19].

The main goal of this thesis is the development of efficient and complete approaches for
control strategy identification. To do so, we first focus on value percolation. At the core
of many control approaches, it uses the propagation of fixed values through the network
to determine whether a set of initial control interventions is sufficient to induce the tar-
get state [SKK10]. Approaches based on value percolation can be implemented efficiently
[KSSV13] but they usually miss many control strategies. The first part of this work aims at
increasing the number of identified control strategies while keeping the efficiency of value
percolation. With this goal, we propose the use of trap spaces, subspaces of the state space
that are closed with respect to the dynamics. By definition, trap spaces contain at least
one attractor. In fact, minimal trap spaces are often good approximations of attractors
in biological systems [KS15] and can be efficiently computed for relatively large networks
[KBS15]. The main idea behind the method is to broaden the final target region in order
to detect sets of interventions that, despite not percolating directly to the target, percolate
to the so-called selected trap spaces. Selected trap spaces are trap spaces containing only
attractors included in the target. This condition allows us to guarantee that, if the system
percolates to a selected trap space, its long-term dynamics will be the desired one. This
idea, control via trap spaces, lead us to an approach for control strategy identification,
published in [CFTS20, CFTS22c], using both node and edge interventions. The implemen-
tation of the method can be found in [CFa]. In Chapter 3, we present this work and extend
the idea of the selected trap spaces to extend the method to deal with transient control.

Despite providing an efficient and more complete approach than just direct percolation,

6

the approach via-trap-spaces is still not able to identify all possible control strategies for a
given target. With the aim of a more exhaustive identification, recent works have dealt with
attractor control using basins of attraction [SPP19, MSH+19]. However, these methods
are still limited to attractor control and lack the flexibility to adapt to more complex
targets such as groups of attractors or attractor avoidance. The second part of this work
deals with control focusing on exhaustivity and flexibility, aiming to develop a control
strategy identification method that is able to obtain all the minimal control strategies
for a given arbitrary target. Providing a complete solution set of minimal controls is
a complex problem [Aku18] that might require the exploration of large regions of the
state space. We deal with this type of exploration problems by using model checking
techniques. Model checking is a formal verification method that allows us to determine
if a given transition system satisfies a specific property. Model checking techniques have
been successfully applied to analyze biological networks [CGR12] and also widely used in
the context of Boolean networks, for instance in the verification of reachability properties
[MAJTC14], basin computation [KHNS18] or attractor approximation [KS15]. One of the
main advantages of model checking is the use of symbolic representation, which allows us
to work with transition systems with a large amount of states, like the state transition
graph. However, dealing with a wider and more complex control problem naturally implies
higher computational costs since most of the usual reduction methods might not apply.
Consequently, we also develop alternative and more tailored preprocessing methods to
reduce the computational costs of the exhaustive exploration. These include, for instance,
the reduction of the region of the state space that needs to be searched or the amount
of control candidates to verify. This exhaustive approach based on model checking is
published in [CFTS22b] and is presented Chapter 4, explaining in more detail some of the
reduction methods developed for it. Its implementation can be found in [CFb].

We show the applicability of the developed approaches by analyzing a network modeling
the epithelial-to-mesenchymal transition [SCP+20]. We consider different control targets
(attractor, target and phenotype avoidance) and use both node and edge interventions. We
analyze the different control strategies obtained in each case and explore their relevance
in the biological context. Additionally, we compare our approaches to current control
methods for attractor and target control considering different dynamics in multiple Boolean
networks. We show that the percolation and trap-space approaches are significantly faster
than the rest of the methods, while the exhaustive approach can identify many control
strategies missed by the other control methods.

The thesis is organized as follows. We start by giving a general introduction to Boolean
networks and their dynamics in Chapter 2, recalling the concept of value percolation and
deducing relevant dynamical properties that are used in the following chapters. We also
formalize the effect that the node and edge interventions have in the controlled dynamics
and define the concept of control strategy that is used throughout this work. In Chapter 3,
we introduce our first method for control strategy identification, which is based on value

Chapter 1. Introduction 7

percolation and uses trap spaces to uncover new control strategies. First, we provide a
theoretical explanation of our approach (Section 3.1) and its extension to also deal with
transient control (Section 3.2). We then describe its implementation using Answer Set
Programming, discussing the factors affecting the efficiency of the approach (Section 3.3).
We finish by showing its applicability to a biological case study (Section 3.4). In Chapter 4
we introduce our second method for control strategy identification, which consists of an
exhaustive approach based on model checking that is able to identify all the minimal control
strategies for a given arbitrary target. We start this chapter by introducing an approach
based on the completeness of the network (Section 4.1) followed by a brief introduction to
model checking (Section 4.2). We then describe our exhaustive approach in Section 4.3 and
present the details of its implementation and the reduction methods that can be used to
diminish the computational time in Section 4.4.1. We finish with the continuation of the
biological case study from the previous chapter (Section 4.5). Lastly, Chapter 5 explores
more exhaustively the applicability of our approaches in a biological case study modeling
the epithelial-to-mesenchymal transition (Section 5.1). We also perform a comparison of
our methods to other existing approaches (Section 5.2).

Chapter 2

Boolean networks and control

In this chapter, we introduce the main concepts regarding Boolean networks and control
that are used through this work. We start by defining a Boolean network and its dynam-
ics, including attractors and trap spaces. We continue by recalling the concept of value
percolation and deducing useful dynamical properties related to percolated subspaces. In
the second part, we define the control interventions that are considered in this work and
their effect on the dynamics of a Boolean network. The notation and definitions related
to control interventions, controlled function and control strategy correspond to the ones
introduced in [CFTS22c]. We finish the chapter by giving a rough overview of the different
types of control and defining the control problem tackled in this work.

2.1 Boolean networks and dynamics

We define a Boolean network on n variables as a function f = (f1, . . . , fn) : Bn → Bn, with
B = {0, 1}. The set of variables or components {0, . . . n} is denoted by V . Bn is the state
space of a Boolean function and every x = (x1, . . . , xn) ∈ Bn is a state of the state space.
Given x ∈ Bn, c ∈ B and I ⊆ V , we define x̄i = 1 − xi, c̄ = 1 − c and x̄I as x̄Ii = xi for
i ∈ V \I and x̄Ii = 1− xi for i ∈ I. If I = {i}, x̄I is written as x̄i.

The interaction graph of a Boolean network f is defined as the labeled multi-digraph
(V,E) with E ⊆ V × V × {+,−}, admitting an edge from i to j if there exists x ∈ Bn,
such that s = (fj(x̄

i)− fj(x))(x̄ii − xi) 6= 0. The label of the edge is given by the sign of s.
The interaction graph captures the activation (positive) and inhibition (negative) relations
between the components of a Boolean network. Figure 2.1 shows the interaction graph of
a Boolean network in three variables.

8

Chapter 2. Boolean networks and control 9

(a)
f1 = x2 ∨ x3
f2 = x1x2
f3 = x1x2x̄3

x f(x)

000 000
001 100
010 100
011 100
100 000
101 100
110 111
111 110

(b)

v1

v2 v3

(c)

110 111

100 101

010 011

000 001

Figure 2.1: (a) Boolean network in three variables. (b) Interaction graph of the Boolean
network in (a). Green edges denote activation interactions and red edges denote inhibitions.
(c) Asynchronous dynamics of the Boolean network in (a). The two attractors A1 = {000}
and A2 = {110, 111} are marked in gray. The states belonging to the SBA1 and SBA2 are
marked in red and blue respectively. The states 010 and 011 belong to WBA1 and WBA2 ,
since both attractors are reachable from them.

The dynamics of a Boolean network is defined by the state transition graph (STG),
a directed graph with node set Bn. Given a Boolean function f , we can define different
dynamics depending on the way the components are updated, giving rise to different state
transition graphs.

• The synchronous dynamics SD(f) defines transitions that update at the same time
all the components that can be updated. The synchronous STG has an edge from
x ∈ Bn to y ∈ Bn if x 6= y and y = f(x).

• The asynchronous dynamics AD(f) defines transitions updating only one component
at a time. The asynchronous STG has an edge from x ∈ Bn to y ∈ Bn if there exists
i ∈ V such that y = x̄i and yi = fi(x).

• The generalized asynchronous dynamics GD(f) defines transitions that update a
non-empty subset of components. Given x, y ∈ Bn there is a transition from x to y
in the generalized asynchronous STG if there exists a subset ∅ 6= I ⊆ V such that
y = x̄I and yi = fi(x) for all i ∈ I.

In order to better capture the different (and sometimes unknown) time scales that might
coexist in a biological system, the asynchronous or generalized asynchronous dynamics are
often used. In the cases when information about the relation between the update rates of
the different components is available, other types of updates for instance sequential or block
sequential update can be defined [DS20]. In this work we focus on the main three dynamics
defined above, although most of the results are also applicable to other types of updates.

10 2.1. Boolean networks and dynamics

To ease the notation, we use D(f) to refer to any of the three dynamics. Figure 2.2 shows a
representation of the three different dynamics (synchronous, asynchronous and generalized
asynchronous) for a Boolean network in four variables.

A path or trajectory in an STG is defined as a sequence of nodes π = x0, x1, . . . such that
there exists an edge from xi−1 to xi for all i ≥ 1. We might represent a path using arrows
to denote transitions: π = x0 → x1 → . . .→ xk. The set of all paths starting at a state x is
denoted by Paths(x). Given a state x ∈ Bn, we define Reach(x) = {y ∈ Bn | ∃π ∈ Paths(x)
s.t. y ∈ π} and given a subset S ⊆ Bn, Reach(S) is the set {y ∈ Bn | y ∈ Reach(x) for
some x ∈ S}. Note that x ∈ Reach(x), since x is the 1-element path to x. A set T ⊆ Bn

such that T = Reach(T) is called a trap set. Trap sets are therefore subsets closed with
respect to the dynamics and they correspond to unions of strongly connected components
of the STG that do not admit any outgoing edge.

An attractor is a minimal trap set under inclusion. Attractors correspond to the ter-
minal strongly connected components of the STG. Given an attractor A ⊆ Bn, we call
it steady state (or fixed point) if |A| = 1 and cyclic attractor (or complex attractor) if
|A| > 1. In biological systems, steady states might correspond to different cell fates or cell
types, while cyclic attractors might be associated with cell cycles or cell processes with
sustained oscillation. The Boolean network in Figure 2.1 has two attractors in the asyn-
chronous dynamics, one steady state and one cyclic attractor. Since the STG might vary
in different updates, cyclic attractors and trap sets might also vary in different dynamics.
Steady states, however, are the same in any update. Figure 2.2 shows the synchronous,
asynchronous and general asynchronous dynamics of a Boolean function. All three dynam-
ics have two attractors: a steady state and a cyclic attractor. The steady state is the same
in all the dynamics whereas the cyclic attractor is different in each of them. Note that,
in non-deterministic dynamics such as asynchronous or generalized asynchronous, there
can be non-attractive cycles in the dynamics, that is, cycles that trajectories can leave
after entering. In application, trajectories that stay indefinitely in a non-attractive cycle
are usually taken as modeling artifacts and are not further considered. In this work, we
accept the standard view assuming that the trajectories of interest will eventually leave
the non-attractive strongly connected components in the state transition graph.

Given an attractor A, we define the weak basin of attraction of A as the set WBA ⊆ Bn

such that A ⊆ Reach(x) for every x ∈WBA and the strong basin of attraction of A as the
set SBA ⊆ Bn such that for every x ∈ SBA, x ∈ WBA and x /∈ WBA′ for every attractor
A′ 6= A. Note that SBA is a trap set. Figure 2.1 (c) shows the basins of attraction of two
attractors in the asynchronous dynamics.

Given a set of variables I ⊆ V and a state c ∈ Bn we define the subspace induced by
I and c as the set of states Σ(I, c) = {x ∈ Bn | xi = ci ∀i ∈ I}. We denote subspaces
by writing a 0 or a 1 for the fixed variables and a ∗ for the free variables. Thus, 10∗∗
denotes the subspace fixing the first component to 1 and the second component to 0, that
is, {x ∈ Bn | x1 = 1 and x2 = 0}. A subspace that is also a trap set is called trap space.

Chapter 2. Boolean networks and control 11

Trap spaces are subspaces closed with respect to the dynamics. They can also be thought
of as generalized or partial steady states. In particular, each steady state is a trap space.
Note that there is always a trivial trap space that is the complete state space Bn. While
attractors and trap sets might vary in different updates, trap spaces (as steady states) are
always the same in all the dynamics. The Boolean network in Figure 2.2 has five trap
spaces: 0∗∗0, 10∗∗, 10∗1, 1001, ∗∗∗∗.

(a)

0110 0111 1110 1111

0010 0011 1010 1011

0000 0001 1000 1001

0100 0101 1100 1101

(b)

0110 0111 1110 1111

0010 0011 1010 1011

0000 0001 1000 1001

0100 0101 1100 1101

(c)

0110 0111 1110 1111

0010 0011 1010 1011

0000 0001 1000 1001

0100 0101 1100 1101

Figure 2.2: State transition graphs of the Boolean function f(x) = (x1x̄2 ∨ x1x3 ∨
x1x̄4 ∨ x2x3x4, x̄1x̄2x3 ∨ x̄1x2x̄3 ∨ x̄1x3x4, x1x2 ∨ x̄1x̄2 ∨ x̄1x2x̄3 ∨ x̄1x2x4 ∨ x̄2x̄3x̄4,
x̄1x2x4 ∨ x1x̄2x̄3 ∨ x1x2x̄3 ∨ x1x̄2x4) in (a) synchronous, (b) asynchronous and (c) gen-
eralized asynchronous dynamics. The trap spaces, denoted by colored boxes, (0∗∗0, 10∗∗,
10∗1, 1001, ∗∗∗∗) and the steady state (1001) are the same in the three dynamics, while
the cyclic attractors (marked in blue) vary. All three dynamics admit one cyclic attractor,
the set {0110, 0010, 0000} in the synchronous case, {0100, 0110, 0010} in the asynchronous
and {0100, 0110, 0010, 0000} in the general asynchronous.

By definition, every trap space contains at least one attractor. In some cases, minimal
trap spaces can be good approximations of attractors, that is, they are in one-to-one
correspondence with the attractors. We can determine when minimal trap spaces are
good approximation of attractors by checking three properties: univocality, faithfulness
and completeness [KS15]. Given a Boolean function f , a dynamics D and a trap space

12 2.1. Boolean networks and dynamics

T , we say that T is univocal in D(f) if it only contains one attractor of D(f) and that
T is faithful in D(f) if for every attractor A of D(f) such that A ⊆ T , T is the smallest
subspace containing A. A set of trap spaces T is complete in D(f) if for any attractor A
of D(f), there exists a trap space T ∈ T such that A ⊆ T . Given a Boolean function f
and a dynamics D, if all the minimal trap spaces of f are univocal and faithful in D(f)
and the set of minimal trap spaces is complete in D(f), then the minimal trap spaces
of f are in one-to-one correspondence with the attractors of D(f) [KS15]. In such cases,
we say that the minimal trap spaces of f are a good approximation of the attractors of
D(f). In the examples of Figure 2.2, the two minimal trap spaces 1001 and 0∗∗0 are a
good approximation of the attractors in the three dynamics. The properties of univocality,
faithfulness and completeness are often satisfied by the minimal trap spaces of networks
modeling biological systems [KS15].

2.1.1 Value percolation

In the following, we introduce the concept of value percolation in Boolean functions and
derive some properties that set the basis of many results in this work. We start by defining
the percolation function with respect to a Boolean function f , which associates to every
subspace S the subspace determined by the components fixed by f within S.

Definition 2.1.1. Let S be the set of all subspaces in Bn and f a Boolean function. We
define the percolation function with respect to f as the function F (f) : S → S that maps a
subspace S ∈ S to the smallest subspace that contains the image of S under f , f(S), with
respect to inclusion.

Explicitly, given a subspace S ∈ S, F (f)(S) = Σ(I, c) with I = {i ∈ V | |fi(S)| = 1}
and c any state in Bn such that ci = fi(x) for all x ∈ S for i ∈ I. Given a Boolean function
f and two subspaces S, S′ ⊆ Bn, we say that the subspace S percolates to S′ under f if
and only if there exists k ≥ 0 such that F (f)k(S) = S′.

Example 2.1.2. Consider the Boolean network in Figure 2.1, f(x) = (x2 ∨ x3, x1x2,
x1x2x̄3), and the subspaces S1 = ∗1∗ and S2 = ∗0∗. Since f(x) = (1, x1, x1x̄3) for x ∈ S1
and f(S2) = (x3, 0, 0) for x ∈ S2, F (f)(S1) = 1∗∗ and F (f)(S2) = ∗00. Taking S′1 = 1∗∗
and S′2 = ∗00 and applying the percolation function again, we see that F (f)2(S1) =
F (f)(S′1) = ∗∗∗ and F (f)2(S2) = F (f)(S′2) = 000. Figure 2.3 shows the image of F (f) for
every subspace.

For any trap space T and its image T ′ = F (f)(T), we have T ′ ⊆ T , since by definition F
preserves the fixed components of T . The free components in T might get fixed or remain
free depending on the Boolean function f . In fact, T ′ is a trap space of f , since for any
fixed variable i ∈ I ′ ⊂ V with T ′ = Σ(I ′, c′), fi(x) = c′i by definition of F (f). Moreover,

Chapter 2. Boolean networks and control 13

S F(f)(S)

*** ***
0 *
**1 1*0
0 *00
*00 000
*01 100
1 1**
*10 1**
*11 1*0
0** *00
0*0 *00
0*1 100
00* *00
000 000
001 100
01* 100
010 100
011 100
1** ***
1*0 ***
1*1 1*0
10* *00
100 000
101 100
11* 11*
110 111
111 110

∗∗∗

∗∗01∗∗ 1∗0

∗1∗ ∗10 ∗∗1 ∗11 1∗1

000

100 ∗00

∗0∗0∗∗ 0∗0 00∗10∗∗01 0∗1001 01∗010 011101

11∗ 110 111

Figure 2.3: Table showing all the images under F (f), with f(x) = (x2 ∨x3, x1x2, x1x2x̄3),
for each subspace in B3 (left). Synchronous dynamics of F (f) (right). Trap spaces of f
and edges between them are marked in red. Nodes without outgoing edges represent fixed
points.

F (f)k(T) is a trap space for any k ≥ 0. In Example 2.1.2, both S2 and F (f)(S2) are trap
spaces of f .

A dynamics of F (f) can be defined by assigning a transition from every subspace S to its
image under the percolation function, F (f)(S), when S 6= F (f)(S). This dynamics can be
represented by a directed graph with node set S, set of all subspaces in Bn. Figure 2.3 shows
the synchronous dynamics of F (f) for the Boolean function discussed in Example 2.1.2.

14 2.1. Boolean networks and dynamics

Note that paths starting at a trap space T cannot have cycles of length greater than
one, since the number of fixed variables is non-decreasing. Consequently, all the reachable
attractors from T in this dynamics are fixed points. When considering the synchronous
dynamics of F (f), each initial trap space T leads to a unique fixed point. Note that
all the trap spaces in Figure 2.3 (in red) lead to a unique fixed point. Given a Boolean
function f and a trap space T , we call the unique fixed point F ∗(f)(T) of the synchronous
dynamics of F (f) reachable from T the percolated subspace from T with respect to f , that
is, F ∗(f)(T) = F (f)k(T) with k such that F (f)k(T) = F (f)r(T) for all r ≥ k.

The following lemma introduces a dynamical property about percolated subspaces.

Lemma 2.1.3. Let f be a Boolean function, T ⊆ Bn a trap space. Let k ≥ 0 and T k =
F (f)k(T). Then for every x ∈ T there exists a path in D(f) from x to some y ∈ T k.

Proof. It is enough to show that if T is a trap space, then for every x ∈ T there exists a
path in D(f) from x to some y ∈ F (f)(T). Set T ′ = F (f)(T), with T ′ = Σ(I ′, c′). Since
T ′ ⊆ T , for all i ∈ I ′, fi(x) = c′i by definition of F . If f(x) = x, then x ∈ T ′ and so there
exists a 1-element path to x = y ∈ T ′. If f(x) 6= x, let us look at every update separately.
In the asynchronous dynamics, for every i ∈ I ′, x admits a successor y in AD(f) with
yi = c′i and yj = xj for j 6= i; therefore there exists a path from any state in T to T ′. In
the synchronous dynamics, fi(x) = c′i for all i ∈ I ′ and so x admits a successor y ∈ T ′.
The case of the generalized asynchronous dynamics follows from the other cases, since all
the paths in SD(f) or AD(f) are also paths in GD(f).

Example 2.1.4. Let us consider the Boolean function from Figure 2.1, f(x) = (x2 ∨ x3,
x1x2, x1x2x̄3), and the subspace S = ∗0∗. F (f)(S) = ∗00 and F (f)2(S) = 000. Thus,
according to Lemma 2.1.3 for every x ∈ S, there exists a path to 000 in the asynchronous
dynamics: π1 = 000→ 000, π2 = 001→ 000, π3 = 100→ 000, π4 = 101→ 100→ 000.

A consequence of Lemma 2.1.3 is that, given a trap space T that percolates to a trap
space T ′, there cannot be an attractor A ⊆ T that is not contained in T ′, since for every
state x ∈ T there exists a path to some y ∈ T ′.

Corollary 2.1.4.1. Let f be a Boolean function, A an attractor of D(f) and T, T ′ ⊆ Bn

two trap spaces such that T ′ = F (f)k(T) for some k ≥ 0. If A ⊆ T then A ⊆ T ′.

Note that the properties deduced in Lemma 2.1.3 and Corollary 2.1.4.1 are valid for
any of the three updates considered in this work.

Given a Boolean function f and using Corollary 2.1.4.1 with T = Bn, we can deduce that
the percolated trap space T ′ = F ∗(f)(Bn) contains all the attractors of f . Since T ′ is a trap
space, it is enough to explore the dynamics of f in T ′ to identify the attractors. Moreover,
since the long-term dynamics inside a trap space only depends on the free variables, the
attractors of f in T ′ would correspond to the attractors of the restriction of f to these free

Chapter 2. Boolean networks and control 15

variables within T ′. To formalize this idea, we define the restriction of a Boolean function
to a trap space.

Definition 2.1.5. Let f be a Boolean function, S = Σ(I, c) a subspace and U = V \I the
set of free variables of S. Without loss of generality, we assume that U = {1, . . . ,m} with
m = |U |. We define the restriction of f to S as fS : Bm → Bm, with fS = πS ◦f ◦ ιS , where
πS : Bn → Bm with (πS(x))i = xi for all i ∈ U , x ∈ Bn and ιS is defined as

ιS : Bm → Bn, with (ιS(x̃))i =

{
x̃i, i ∈ U,
ci, i /∈ U, for all x̃ ∈ Bm.

ιS represents the inclusion of a state from the smaller state space, x̃ ∈ Bm, in the
subspace S = Σ(I, c) ⊆ Bn, since it assigns the value ci to each component i fixed in S,
i ∈ I, and keeps the original value for the free variables. Thus, ιS(x̃) ∈ S for all x̃ ∈ Bm.

Remark 2.1.6. Note that for any trap space T and x, y ∈ Bn, if there is a path from ιT (x)
to ιT (y) in D(fT) then there is a path from x to y in D(f) and vice versa.

The previous remark can be extended to attractors.

Proposition 2.1.7. Let f be a Boolean function, T = Σ(I, c) a trap space of f and
U = V \I the set of free variables of T . Then,

(i) if A ⊆ Bn is an attractor of f such that A ⊆ T , then there exists an attractor A′ ⊆ Bm

such that πS(x) ∈ A′ for all x ∈ A.

(ii) if A′ ⊆ Bm is an attractor of f , then there exists an attractor A ⊆ T ⊆ Bn such that
ιS(x̃) ∈ A for all x̃ ∈ A′ .

Example 2.1.8. Let us consider the Boolean function from Figure 2.1, f(x) = (x2 ∨ x3,
x1x2, x1x2x̄3) for x ∈ B3, and the trap space T = ∗0∗, with I = {2} and U = {1, 3}. The
restriction of f to T is given by fT (x̃) = (πT ◦ f ◦ ιT)(x̃) = (f1(x̃1, 0, x̃2), f3(x̃1, 0, x̃2)) =
(x̃2, 0), for x̃ ∈ B2. The asynchronous dynamics of f and fT are shown in (a) and (b)
respectively. Attractors are marked in bold and gray background. The trap space T is
marked in red. We observe that all the paths in AD(f) that are contained in T are
preserved in AD(fT) and vice versa. Note that Proposition 2.1.7 is satisfied by the only
attractor in AD(f) contained in T , A = 000, and the only attractor in AD(fT), A′ = 00.

(a)

110 111

100 101

010 011

000 001

(b)

10 11

00 01

16 2.2. Controlled function and control strategies

2.2 Controlled function and control strategies

In this work, we consider two type of interventions: node interventions and edge interven-
tions. Node interventions target a component (node) of the network, fixing it to a certain
value. More formally, a node intervention (i, c), with i ∈ V and c ∈ B, sets the component
i and its regulatory function fi to the value c. Edge interventions, on the other hand, act
on the interaction between two components, leaving the rest of the regulatory functions
unaltered. Formally, an edge intervention (i, j, c), with i, j ∈ V and c ∈ B, fixes the value
of the component i in the regulatory function fj to the value c.

Node interventions can be seen for instance in a gene regulatory network, as the knock-
out or permanent activation of a gene, whereas edge interventions can represent the alter-
ation of a binding site of a protein in a way that it cannot interact with a chosen component
but still perform other actions in the biological system. In the context of practical applica-
tion, edge interventions are particularly interesting in components that are vital for other
processes in the cell. In the cases where knocking them out or permanently activating them
would endanger the survival of cell or cause other undesirable effects, edge interventions
could help achieving the desired control without altering the rest of the system.

Given a Boolean network f and a set of interventions C, which might be node or
edge interventions, we consider the simultaneous application of all interventions in C on f ,
unless otherwise specified. We write fC for the function resulting from the application of
the interventions in the set C. In this section we give the formal definition for the function
fC and a control strategy.

We start by establishing the basic conditions that a set of interventions needs to satisfy
in order to be consistent. These conditions aim at preventing, for instance, that a node
intervention fixes a component to 1 while another is fixing the same component to 0.

Definition 2.2.1. Let N ⊆ V ×B and E ⊆ V ×V ×B. We say that the set of interventions
C = N ∪ E is consistent if and only if the following conditions are satisfied:

(i) for all i, j ∈ V and c, c′ ∈ B, if (j, c) ∈ C, then (i, j, c′) /∈ C;

(ii) for all i, j ∈ V and c, c′ ∈ B, if (i, c) ∈ C, then (i, c̄) /∈ C and (i, j, c′) /∈ C;

(iii) for all i, j ∈ V and c ∈ B, if (i, j, c) ∈ C, then (i, j, c̄) /∈ C.

The first condition ensures that node and edge interventions do not act on the same
target. The second guarantees that when a node intervention fixes the value of a compo-
nent, no other intervention fixes that component. The last one prevents edge interventions
from fixing the same component to different values in the same regulatory function.

Chapter 2. Boolean networks and control 17

Example 2.2.2. Let V = {1, 2, 3} be the set of variables of a Boolean function and C1 =
{(1, 0), (2, 1, 1)}, C2 = {(1, 1), (2, 3, 0)}, C3 = {(3, 0), (2, 0), (2, 1, 0)}, C4 = {(1, 2, 0), (1, 2, 1)}
and C5 = {(1, 3, 1), (2, 3, 0)} five sets of interventions. According to Definition 2.2.1, only
C2 and C5 are consistent. C1, C3 and C4 are not consistent, since they do not fulfill (i), (ii)
and (iii) respectively.

In order to describe the effect of node and edge interventions in a Boolean network, we
first define a function hj,C : Bn → Bn that, given a set of consistent interventions C and a
component j ∈ V , captures the effect of fixing the components involved in the interventions
acting on the regulatory function of j. For every x ∈ Bn, i, j ∈ V , we set

hj,C(x)i =

{
c if (i, c) ∈ C or (i, j, c) ∈ C for some c ∈ B,
xi otherwise.

(2.1)

Note that hj,C is well-defined when C is consistent. From now on, any set of interventions
is assumed to be consistent unless otherwise specified. Given a Boolean network f and a
consistent set of interventions C, we can now define the controlled network fC . For every
k ∈ V ,

fCk =

{
c if (k, c) ∈ C for some c ∈ B,
fk ◦ hk,C otherwise.

(2.2)

Example 2.2.3. Let us consider the Boolean function from Figure 2.1, f(x) = (x2 ∨ x3,
x1x2, x1x2x̄3), and the consistent intervention set C = {(1, 1), (2, 3, 0)}. The corresponding
controlled function is fC(x) = (1, x2, 0).

The interventions considered in node control fix certain components (nodes) to certain
values. Thus, if a set of interventions consists exclusively of node interventions (C = N),
then it can be associated with a subspace Σ(I, d), with I ⊆ V and d ∈ Bn such that
(i, di) ∈ N if and only if i ∈ I. When all interventions are edge interventions (C = E) the
controlled regulatory function for any component k is given by fEk = fk◦hk,E . We define the
effect of a node intervention (i, c) by setting the regulatory function fi and every instance
of the variable i to c. Other methods might consider only the fixing of the regulatory
function. Both definitions lead to the same long-term behavior of the controlled system.

Given a node intervention (i, c), one could consider a set of edge interventions that
fix the regulatory function fi to c. For instance, if a node i has only one incoming edge
from j in the interaction graph of f , that is, the regulatory function satisfies fi(x) = xj
or fi(x) = x̄j , the node intervention (i, c) is equivalent in the long-term dynamics to the
edge intervention (j, i, c) or (j, i, c̄) respectively. Note that a node intervention might have
multiple equivalent sets of edge interventions. For example, if fi(x) = xj ∨ xk for some
i, j, k ∈ V , using either the edge intervention (j, i, 1) or the edge intervention (k, i, 1) would
have the same long-term effect in the dynamics as the node intervention (i, 1). Since

18 2.2. Controlled function and control strategies

the control problem considered within this work focuses on the long-term behavior of the
system, the transient behavior of the controlled system is not relevant for our purposes. In
the following, we define the concept of equivalent interventions based on their effect in the
long-term dynamics. To do so, we consider the percolated subspace from Bn with respect
to the controlled function fC , F ∗(fC)(Bn).

Definition 2.2.4. Let C1, C2 be two consistent sets of interventions and let f be a Boolean
function. We say that C1 and C2 are equivalent with respect to f if and only if F ∗(fC1)(Bn) =
F ∗(fC2)(Bn) and fC1(x) = fC2(x) for all x ∈ F ∗(fC1)(Bn).

Example 2.2.5. Let C1 = {(2, 0)} and C2 = {(1, 2, 0)} be two consistent intervention
sets and f(x) the Boolean function from Figure 2.1, f(x) = (x2 ∨ x3, x1x2, x1x2x̄3). The
controlled functions for each set of interventions are fC1(x) = (x3,0,0) and fC2(x) = (x2∨x3,
0, x1x2x̄3) respectively. Note that, although fC1 and fC2 are not the same function and
their STGs have different transitions (see below), both of them have the same long-term
dynamics: the steady state 000. In fact, C1 and C2 are equivalent with respect to f since
F ∗(fC1)(Bn) = 000 = F ∗(fC2)(Bn) and fC1(000) = 000 = fC2(000). The asynchronous
STG of fC1 (a) and fC2 (b) are represented below. The steady state is marked in gray.

(a)

110 111

100 101

010 011

000 001

(b)

110 111

100 101

010 011

000 001

In the following, we give a brief overview of the different types of control and the main
factors defining a control problem. We also present the control problem considered in this
work and give the formal definition of control strategy.

Control goal. A control problem is primarily determined by its goal, which is defined by
the desired state of the system that needs to be achieved. In some cases, this state might
correspond to a specific attractor. For instance, in a network modeling a cell-fate decision
system for cancer cells, it might be desirable to induce the apoptotic attractor in order to
lead the system to the elimination of the unhealthy cells. This type of control, which takes
an attractor (steady state or cyclic) as goal, is known as attractor control. In other cases, it
might not be necessary to reach a specific attractor and it might be enough to ensure that a
subset of relevant components are in the desired state. For instance, in the previous example
of a cell-fate decision network, if there were multiple attractors grouped in two phenotypes
(apoptosis or proliferation) it might be enough to ensure that the system reaches any

Chapter 2. Boolean networks and control 19

attractor belonging to the apoptotic phenotype. In many cases, these phenotypes are
defined by the value of a subset of observable components or biomarkers. Thus, the control
problem reduces to ensuring that these components are in the desired state in all the
attractors of the controlled system. This type of control, which focuses on the state of
a set of relevant components, is known as target control. Note that the set of relevant
components and their desired values define a subspace. The control approach presented
in Chapter 3 deals with target control, having a subspace as the control target. Formally,
the goal of a control problem can be described by a subset P ⊆ Bn. Attractor control
(P = A, attractor) and target control (P = S, subspace) are the most common control
goals. However, in some cases it might be interesting to be able to deal with more generic
control goals such as groups of attractors (P =

⋃
iAi, union of attractors) and attractor

avoidance (P = Bn\(
⋃

iAi)). The control approach presented in Chapter 4 deals with
control targeting a generic subset.

Control strategies. A control strategy can intuitively be defined as a set of control
interventions that make the controlled system evolve to a desired state or set of states P .
Following this idea, we define the control problem in terms of the long-term behavior of the
controlled system. In particular, given a target P , we say that a set of interventions defines
a control strategy for P when all the attractors of the controlled network are contained in
P . We formalize this idea in the following definition.

Definition 2.2.6. Given a Boolean network f and a subset P ⊆ Bn, a set of interventions
C is a control strategy for the target P in D(f) if A ⊆ P for any attractor A of D(fC).

Note that when considering only node control, since a set of node interventions N
defines a subspace, a control strategy can also be identified with the subspace associated
with N (see [CFTS20, CFTS22b]).

We define the size of a control strategy C as the number of interventions |C|. In the
case of E = ∅, the number of interventions corresponds to the number of fixed variables. In
practical applications, we are interested in intervention sets that are minimal with respect
to inclusion. This is a natural approach when considering intervention sets that contain
only node interventions or only edge interventions. For simplicity, in this work we use the
same definition of minimality for intervention sets that mix edge and node interventions.
Depending on the context, the resources required to implement different interventions can
vary, and more sophisticated objective functions might take these differences into account.

There might be node or edge interventions whose practical application is not feasible.
For this reason, the methods developed in this work allow for the exclusion of certain nodes
or edges whose interventions are not considered in the control problem.

An example of a control strategy using node interventions is shown in Figure 2.4, where
the set N = {(1, 1)}, associated with the subspace 1∗∗, is a control strategy for the one-
element target subspace P = 110, since fN only has one attractor that is the steady state

20 2.2. Controlled function and control strategies

(a)

110 111

100 101

010 011

000 001

(b)

110 111

100 101

010 011

000 001

Figure 2.4: Asynchronous dynamics of the Boolean function f(x) = (x2 ∨ x1x̄3, x1, x̄1x3)
(left) and fN (x) = (1, 1, 0) with N = {(1, 1)} (right). Transitions that vary between
AD(f) and AD(fN) are marked in red. Attractors are marked in bold. N is a control
strategy for P = 110 in AD(f).

(a)

110 111

100 101

010 011

000 001

(b)

110 111

100 101

010 011

000 001

Figure 2.5: (a) Asynchronous dynamics of the Boolean function f(x) = (x2 ∨ x3, x1x2,
x1x2x3). (b) Asynchronous dynamics of the Boolean function fE(x) = (1, x1x2, 0), with
E = {(2, 1, 1), (2, 3, 0)}. Transitions that vary between AD(f) and AD(fE) are marked
in red. Attractors are marked in bold. E is a control strategy for P = 1∗0. There is no
control strategy for P consisting only of a node intervention on the second component.

110. Figure 2.5 shows an example where the set of edge interventions E = {(2, 1, 1), (2, 3, 0)}
is a control strategy for the target P = 1∗0. Apart from the trivial node interventions
targeting the fixed variables of P , there are no node control strategies for P , since 000 /∈ P
is a steady state of fN0 , with N0 = {(2, 0)}, and 111 /∈ P is a steady state of fN1 , with
N1 = {(2, 1)}. Thus, in this scenario, which excludes node interventions in the fixed
variables of P , control can only be achieved by using edge interventions. This example
illustrates how edge interventions can broaden the possibilities for control.

Initial states. Another aspect to consider when defining a control problem is the initial
state of the system. The subset of states I ⊆ Bn defining the initial state of the system
can be an attractor or set of attractors (I =

⋃
iAi), for instance in the context of cell

reprogramming, when we aim to drive the dynamics from an initial cell type to the desired
one. It can also be determined by the value of some observable components or biomarkers.
In this case, I is the subspace defined by the value of the biomarkers. We set I = Bn in
the cases in which the initial state of the system is not known or the control interventions
must be valid for any possible initial state. The control problem with I = Bn is known

Chapter 2. Boolean networks and control 21

as full-network control. The control approaches developed in this work aim at full-network
control and identify strategies for any possible initial state.

Strategy type and transient control. The control strategies described by Defini-
tion 2.2.6 consist of permanent interventions (permanent control) applied all at once (one-
step control). In some cases, the control interventions can be released once the dynamics
has entered a particular region of the state space (see Section 3.1), which we call flexible
control. Definition 2.2.6 can be extended to consider sets of interventions applied sequen-
tially C1, C2, . . . , Ck (sequential control). Sequential control methods can provide alternative
control strategies, involving potentially fewer perturbations [MSH+19]. In this work, we
focus on permanent, one-step control (Chapters 3 and 4) and a simple type of sequential
control that takes only two steps, applying the control and releasing it (Section 3.2), that
represents the transient behavior of the control interventions (transient control). Formally,
the sequential set of interventions consists of C1 = C and C2 = ∅. The concept of transient
control strategy is given in the following definition.

Definition 2.2.7. Given a Boolean function f and a subset P ⊆ Bn, a set of interventions
C is a transient control strategy for the target P in D(f) if there exists a subset P ′ ⊆ Bn,
such that if A′ is an attractor of fC then A′ ⊆ P ′ and for any attractor A of D(f), if
A ∩ ReachD(f)(P

′) 6= ∅ then A ⊆ P .

In other words, given a transient control strategy C, first the set of interventions C in-
duces the system to reach a subset P ′ and then the release of these interventions guarantees
that the long-term dynamics evolves to the desired target. In particular, the subset P ′ acts
as an intermediate region that the system needs to reach while the control interventions
are active. For this reason, we require that the subset P ′ contains the long-term dynamics
of fC . Once this intermediate region is reached, the control interventions can be released,
since the only attractors of f reachable in D(f) from P ′ are contained in the target P .

Figure 2.6 shows an example of a transient control strategy. The original asynchronous
dynamics has two steady states: 100 and 011, and the desired target is P = ∗0∗. C =
{(1, 1)} is a transient control strategy for P because there exists a subset P ′ = 1∗0 such that
the two attractors of AD(fC), 100 and 110, are contained in P ′ and the only attractor of
D(f) that has non-empty intersection with ReachD(f)(P

′) = ∗∗0 is 100, which is contained

in P . Note that C is not a permanent control strategy for P since AD(fC) has a steady
state (110) not contained in P .

In the example of Figure 2.6, three update steps are enough to ensure that the system
has reached the intermediate subset P ′. In practical applications, where different reactions
might have different time scales, it might be necessary to verify that the intermediate
subset has been reached before releasing the control interventions. This could be done,
for instance, by measuring some components or by waiting enough time for the system to
stabilize.

22 2.2. Controlled function and control strategies

110 111

100 101

010 011

000 001

110 111

100 101

010 011

000 001‘

Figure 2.6: Asynchronous dynamics of the Boolean function f(x) = (x̄2x̄3, x̄1x3 ∨ x1x2x̄3,
x̄1x2x3) (left) and fC(x) = (1, x2x̄3, 0) with C = {(1, 1)} (right). Transitions that vary
between AD(f) and AD(fC) are marked in red. Attractors are marked in bold and gray
background. C is a transient control strategy for P = ∗0∗ since there exists a subset
P ′ = 1 ∗ 0 (green) that contains the two attractors of AD(fC), 100 and 110, and the only
attractor of AD(f) that is reachable from P ′ is 100 ∈ P . The set of states reachable from
P ′ is marked in blue.

Transient control strategies can help broadening the possibilities for potential applica-
tions by considering interventions whose effect only lasts temporarily. Some interventions,
for instance the intake of drugs, might require a periodical application when their effects
decay over time. The use of transient controls could help address this challenge by iden-
tifying strategies whose interventions would not need to be maintained permanently over
time.

Many different control problems can be defined by considering different target goals,
initial states, duration of the interventions, types of strategies or intervention targets (see
Figure 2.7).

Control goal P

Target control (subspace)
P = S

Attractor control
P = A

Generic subset
P = S

Initial States I

Subset
I = I0

Full-network
I = Bn

Strategy type

One-step Sequential

Control interventions C

Node
(i, c)

Edge
(i, j, c)

Intervention persistence

FlexiblePermanent Transient

Figure 2.7: Control problems in terms of goal, initial states, strategy type, intervention
persistence and intervention target.

Chapter 2. Boolean networks and control 23

The methods developed in this work deal with the problem of full-network control,
providing control strategies that are valid for any possible initial state, and can take as
goal a subspace (Chapter 3) or any type of subset (Chapter 4). They consider node and
edge interventions applied permanently in one-step in Section 3.1 and Chapter 4, although
the method in Section 3.1 allows the interventions to be eventually released. In addition,
a method for transient control, or two-step sequential, is presented in Section 3.2. All
these methods are valid for the three updates introduced in this chapter: asynchronous,
synchronous and generalized asynchronous. However, since the asynchronous dynamics is
often used for modeling biological systems, we focus our examples and analyses on this
update. Comments on the results for the other updates are shown in the application
sections.

Chapter 3

Control via trap spaces

A common approach to control in the Boolean framework is the use of value percolation,
which consists in checking how the fixed values propagate through the network, to establish
whether the effect of percolating the interventions is sufficient to induce the target state
[SKK10]. Although methods based uniquely on value percolation allow for efficient compu-
tation [KSSV13], they can miss many control strategies. In order to increase the number
of control strategies identified while still benefiting from an efficient implementation, we
introduce the use of trap spaces [CFTS20, CFTS22c].

In this chapter we describe two approaches to control strategy identification, which are
based on value percolation and use trap spaces to identify new control strategies. Both
approaches take a subspace as control goal and allow for node and edge interventions.
The first one considers permanent perturbations while the second one uses temporary
interventions.

The implementation of these approaches is based on Answer Set Programming (ASP).
ASP is a form of declarative programming that allows us to deal with the combinatorial
explosion associated with the exponential number of candidate sets in the computation
of control strategies. The use of ASP was proposed by Kamisnki et al. [KSSV13] in
their implementation for node control strategy identification using value percolation. In
[CFTS22a] we extended the work done in [KSSV13] to use ASP to identify control strategies
with the trap-space approach initially presented in [CFTS20]. Later, we extended this
implementation to also deal with edge control [CFTS22c].

The main results related to the permanent control method presented in this chapter
are published in Cifuentes-Fontanals et al. [CFTS22c], from which I am first author and
main developer of the method. In particular, Sections 3.1, 3.3 and 3.4 are extracted from
[CFTS22c], with the permission of the co-authors. The chapter is organized as follows. In
the first section, we recall the usual approach to control by direct percolation and present
our approach using trap spaces. In Section 3.2, we extend the approach via trap spaces

24

Chapter 3. Control via trap spaces 25

to transient control. The implementation of both approaches is detailed in Section 3.3,
including the ASP encoding. We finish by applying our approaches to a biological case
study (Section 3.4).

3.1 Permanent control strategies

We start by recalling the property described in Corollary 2.1.4.1, which states that, given
a trap space T that percolates to a subspace S, there cannot be an attractor A ⊆ T that
is not contained in S. Taking T = Bn, the following result can be derived.

Proposition 3.1.1. Let P ⊆ Bn be a subspace and f a Boolean function. Let C be a set
of interventions such that Bn percolates to a subspace S ⊆ P under fC. Then C defines a
control strategy in D(f) for P .

The idea of Proposition 3.1.1 is that, since all the attractors of D(fC) in Bn are also
contained in S = F k(fC)(Bn) for any k > 0, if S ⊆ P then all the attractors of fC are
contained in P and C is a control strategy for P in D(f).

We refer to the control strategies satisfying the conditions of Proposition 3.1.1 as control
strategies by direct percolation. This type of control strategy requires, in general, that the
interventions are applied permanently. An example of such a control strategy is shown in
Figure 3.1. There, N = {(1, 1)} is a control strategy by direct percolation in D(f) for the
target P = ∗∗1. In particular, Bn percolates to 111 under fN . The only attractor of D(fN)
is 111 which is not an attractor of the original system D(f). If the control interventions
were released, the system would evolve to the steady state 010, which is not in P , and the
desired target would be lost. Note that permanent interventions may induce the creation
of new attractors, as seen in Figure 3.1. Thus, control strategies by direct percolation
are useful when the definition of the control problem does not require the dynamics to
evolve to an attractor of the original network but rather to any attractor that is contained
in the target subspace. This is the case for the control problem defined in this work.
Several approaches to the identification of control strategies by direct percolation using
node control have been developed [SKK10, YGTZA18] and there exist implementations
that identify all control strategies by direct percolation efficiently [KSSV13]. However,
there are still many control strategies that do not fulfill the conditions of Proposition 3.1.1.
Figure 3.2 shows an example of a control strategy that does not percolate to the target
subspace.

In order to exploit the efficiency of value percolation to identify more control strategies,
we developed a method based on percolation that uses trap spaces [CFTS20]. As mentioned
before, trap spaces are subspaces closed for the dynamics. Thus, each trap space contains
at least one attractor. From all trap spaces of a Boolean function, we select the ones that

26 3.1. Permanent control strategies

(a)

110 111

100 101

010 011

000 001

(b)

110 111

100 101

010 011

000 001

Figure 3.1: (a) Asynchronous dynamics of the Boolean function f(x) = (x1x̄2∨x1x̄3∨x̄2x̄3,
x1 ∨ x2, x1 ∨ x̄2). (b) Asynchronous dynamics of the Boolean function fN (x) = (1, 1, 1)
with N = {(1, 1)}. Transitions that vary between AD(f) and AD(fN) are marked in red.
Attractors are marked in bold and gray background. N is a control strategy for P = ∗∗1 in
AD(f). Bn percolates to 111 ∈ P under fN . The only attractor of fN is 111 which is not
an attractor of the original system. If the control interventions were released, the system
would evolve to the steady state 010, which is not in P , and the desired target would be
lost.

contain only attractors belonging to the target subspace. We call such trap spaces selected
trap spaces. Proposition 3.1.2 introduces sufficient conditions for a set of interventions to
be a control strategy for a target via a selected trap space.

Proposition 3.1.2. Let P ⊆ Bn be a subspace and f a Boolean function. Let T = Σ(I, d)
be a trap space such that if A ⊆ T is an attractor of D(f), then A ⊆ P . Let C be a set of
interventions such that Bn percolates to T under fC and for all (i, c) ∈ C holds i ∈ I and
for all (i, j, c) ∈ C holds j ∈ I. Then C defines a control strategy in D(f) for P .

Proof. Let A ⊆ Bn be an attractor for D(fC). Since Bn percolates to T = Σ(I, d) under
fC , for every x ∈ Bn, in particular for every x ∈ A, there exists a path in D(fC) from x to
some y ∈ T . Therefore, A ⊆ T . Since Bn percolates to T under fC , T is also a trap space
in fC , so fCk (x) = dk = fk(x) for all k ∈ I and x ∈ T . Since for all (i, c) ∈ C, i ∈ I and for
all (i, j, c) ∈ C, j ∈ I, we have that fCk (x) = fk ◦ hk,C(x) = fk(x) for all k /∈ I and x ∈ T .
Consequently, fC(x) = f(x) for all x ∈ T . Since A ⊆ T and for all x ∈ T, f(x) = fC(x), A
is also an attractor of D(f) and, therefore, A ⊆ P .

In the case C = N , the condition of i ∈ I for all (i, c) ∈ C corresponds to T ⊆ Ω, where
Ω is the subspace associated to N [CFTS20].

We call the control strategies satisfying the conditions of Proposition 3.1.2 control
strategies via trap spaces. Note that control strategies via trap spaces, contrary to control
strategies by direct percolation, cannot introduce new attractors. All the attractors of the
controlled network are attractors of the original system, since the dynamics within the trap
space is preserved. Figure 3.2 shows an example of this type of control strategy. T = ∗∗0 is
a selected trap space for the target P = 110, since it contains only the attractor A = 110.

Chapter 3. Control via trap spaces 27

(a)

110 111

100 101

010 011

000 001

(b)

110 111

100 101

010 011

000 001

Figure 3.2: (a) Asynchronous dynamics of the Boolean function f(x) = (x1x̄3∨x̄2x̄3, x1∨x3,
x1x3∨x2x3). (b) Asynchronous dynamics of the Boolean function fN (x) = (x1∨ x̄2, x1, 0)
with N = {(3, 0)}. Transitions that vary between AD(f) and AD(fN) are marked in red.
Attractors are marked in bold and gray background. N is a control strategy for P = 110
in AD(f). Bn does not percolate to P under fN but percolates to the selected trap space
T = ∗∗0 (green). T is a selected trap space for the target P since the only attractor of
D(f) contained in T is also contained in P .

Bn percolates to T under fN , with N = {(3, 0)}, since F (fN)(Bn) = ∗∗0. Consequently,
N is a control strategy via trap spaces for P . Since Bn does not percolate to P under fN ,
N is not a control strategy by direct percolation. Figure 3.3 illustrates the main idea of
the methods for control strategy identification by direct percolation and via trap spaces.

We can easily identify all the selected trap spaces if the attractors of the Boolean
network are known or, alternatively, if they can be approximated by minimal trap spaces
[KS15], that is, if each minimal trap space contains only one attractor and every attractor
is included in a minimal trap space (see Section 2.1). Although attractor identification can
be hard to achieve depending on the particular problem, the second property is easier to
verify and is relatively common in Boolean networks modeling biological systems [KS15].

Control strategies by direct percolation do not depend on the update, since the prop-
erties deduced from the percolation function are valid for every update (see Chapter 2).
The selected trap spaces, on the other hand, are defined in terms of the attractors, which
might vary in different updates. As a consequence, control strategies via trap spaces are
in general update-dependent. This provides the method with enough flexibility to identify
control strategies that are valid in one update but not in another.

A further advantage of the control strategies identified by Proposition 3.1.2 is that they
allow for the control interventions to be eventually released. Once a selected trap space
is reached, the system will remain in the trap space, regardless of whether the control
interventions are active or not (see Figure 3.3(b)). Moreover, if the dynamics has already
stabilized, since all the attractors of the controlled network are also attractors in the
original network, a release of the control would not alter the state of the system. Thus,
control strategies via trap spaces can be applied using permanent interventions as well as
transient ones. This additional property widens the range of possible choices for control
since interventions relying on agents that decay over time could also be considered.

28 3.1. Permanent control strategies

(a)

Target

Sel. trap space

Percolation

F (fC2)(Bn)F (fC1)(Bn)

(b)

Target

Sel. trap space

Figure 3.3: (a) Illustration of the ideas behind the methods for control strategy identifi-
cation by direct percolation and via trap spaces. Rectangles represent subspaces, using
solid lines in case of trap spaces and dashed lines otherwise. The yellow dashed lines rep-
resent the percolation process, with the state space percolating towards the target under
two different control strategies (C1 and C2). The three-arrow cycles represent attractors.
The selected trap space used for control via trap spaces is marked in green. (b) Possible
trajectories of the system once the control is released. Note that none of the trajectories
starting in a state belonging to the selected trap space can reach any attractor outside the
target subspace (green arrows) whereas that might be possible in trajectories starting at
any other point within the target subspace (purple arrows).

Although the methods using direct percolation and percolation via trap spaces are
both based on value propagation, the control strategies that they identify can be very
different. As mentioned before, control strategies by direct percolation might introduce
new attractors on the controlled system, while control strategies via trap spaces preserve
the original attractors within the selected trap space. Moreover, the interventions used
in control via trap spaces must target the components fixed in the selected trap space,
while control by direct percolation has no restriction on the interventions. Even when
the candidate strategy consists of interventions targeting components fixed in a selected
trap space, the controlled system could still percolate directly to the target subspace but
not to the selected trap space. As a consequence, in many cases, there might be control
strategies that are obtained by direct percolation that are not identified via trap spaces
and vice versa. For this reason, it is useful to use the two methods in combination, that
is, identifying sets of interventions that lead the state space to percolate directly to the
target subspace or to any of the selected trap spaces (see Section 3.4.1 for an example of
this scenario).

Chapter 3. Control via trap spaces 29

110 111

100 101

010 011

000 001

110 111

100 101

010 011

000 001

Figure 3.4: Asynchronous dynamics of the Boolean function f(x) = (x1x3, x1x3 ∨ x2x̄3,
x̄1x3 ∨ x2) (left) and fC(x) = (0, x2, 0) with C = {(3, 0)} (right). Transitions that vary
between AD(f) and AD(fC) are marked in red. Attractors are marked in bold and gray
background. T = 0 ∗ ∗ (blue) is a trap space only containing attractors belonging to
P = 00∗. C is a transient control strategy for P since Bn percolates to T ′ = 0 ∗ 0 (green)
under fC , with T ′ ⊆ T . C is not a permanent control strategy for P since AD(fC) has a
steady state (010) not contained in P .

3.2 Transient control strategies

In the previous section, we consider control strategies using permanent interventions ap-
plied all at once. In this section, we focus on transient control, or two-step sequential, as
explained in Section 2.2. To avoid possible confusions, we call the usual control strate-
gies permanent control strategies. We start by recalling the definition of transient control
strategy from Definition 2.2.7, which states that, given a Boolean function f , a set of in-
terventions C is a transient control strategy for a target P in D(f) if there exists a subset
P ′ ⊆ Bn that contains all the attractors of the controlled system D(fC) and that for any
attractor A of the original network D(f) that is reachable from P ′, A is contained in P .

A control strategy via trap spaces is always a transient control strategy, since the
selected trap space T satisfies the conditions of P ′. Once the system has reached the selected
trap space the control interventions can be released since all the attractors reachable from
T belong to the target subspace. This is not the case in control strategies by direct
percolation, since they do not necessarily satisfy the requirements of Definition 2.2.7. An
example of this is shown in Figure 3.1. The only attractor of the controlled function fC is
the steady state 111, so any possible intermediate subset P ′ must include 111. However,
the steady state of the original network 010 is reachable from 111 in D(f) and 010 /∈ P .
Thus, C is a permanent control strategy by direct percolation but not a transient control
strategy. On the other hand, not all the transient control strategies are permanent control
strategies. Figure 3.4 shows an example of a transient control strategy C = {(3, 0)} for the
target P = 00∗ that is not a permanent control strategy, since AD(fC) has a steady state
010 /∈ P .

30 3.3. Implementation

In the following, we focus on transient control strategies that use a selected trap space
as intermediate subset (P ′). The following proposition characterizes them.

Proposition 3.2.1. Let P be a subspace, T a trap space that only contains attractors in
P and C a set of interventions. If Bn percolates to a subspace S ⊆ T under fC, then C is
a transient control strategy for P .

We call these control strategies transient control strategies via trap spaces. Note that
given a transient control strategy C for the target P , there might be attractors in D(fC)
that are not contained in P since C is not necessarily a permanent control strategy for P .
Once the dynamics enters a selected trap space T , the release of the control can take place.
Since T is a trap space in D(f), the dynamics cannot leave T and since all the attractors
contained in T are also contained in P , all the reachable attractors belong to P .

3.3 Implementation

The methods for control strategy identification presented in this chapter are based on
the identification of sets of interventions that cause the state space to percolate either to
the target subspace or to one of the selected trap spaces under the controlled function.
Identifying all the minimal control strategies of this type might entail the exploration of
all possible sets of interventions, whose number grows exponentially with the size of the
network (for node control) or with the number of edges (for edge control).

The use of Answer Set Programming (ASP) was proposed by Kaminski et al. [KSSV13]
to deal with the combinatorial explosion associated with node control in the computation of
control strategies by direct percolation. Answer Set Programming is a form of declarative
programming that works well with hard combinatorial, search and optimization problems.
This type of problems often entail a decision-making process over a set of candidates to
decide whether they satisfy a specified constraint and possibly identify an optimized output.

In this section, we recall the implementation presented in [CFTS22c], which identifies
control strategies for node and edge control using the methods of direct percolation and
percolation via trap spaces, and add its extension to transient control. We start by giving
an introduction to Answer Set Programming, describing the basic semantics required to
understand our implementation. Then, we provide a detailed description of the full ASP
encoding for all the control methods. We end by giving an overview of the main algorithm
for control strategy identification.

Chapter 3. Control via trap spaces 31

3.3.1 Basic introduction to Answer Set Programming

As mentioned above, Answer Set Programming is a form of declarative programming. This
type of programming is based on knowing what the problem is and how a possible solution
looks like rather than how to solve it. This differs from traditional programming where
an algorithm to solve the problem needs to be provided. In declarative programming it
is enough to describe the problem and the program will find a solution by the process of
automated reasoning [GKKS12].

In order to solve a problem with ASP, it is needed to provide a description of the problem
using logical rules. Solving the original problem is then reduced to identifying the solutions
of its corresponding logic program. This process takes place in two steps: grounding and
solving. In the first step, a grounder generates the propositional representation of the
problem from the logical rules. In the second step, the solver computes the stable models
or solutions of the propositional program. The interpretation of the stable models gives the
solutions to the original problem. Figure 3.5 illustrates the main steps of the full process.
To implement our problem we use clingo, which consists of the grounder gringo and the
solver clasp, included in Potassco, the Potsdam Answer Set Solving Collection [GKK+11].
Therefore, our explanations about ASP syntax and semantics are based on the language
used by clingo. In the following, we give a basic introduction to the ASP encoding that we
use in the rest of the section. More details about ASP and its syntax and semantics can
be found in [GKKS12, Lif19].

Problem

Logic
Program

Grounder Solver
Stable
Models

Solution

Encoding Interpretingclingo

Figure 3.5: Main steps of the ASP solving process [GKKS12].

A logic program P over a set of atoms or propositional variables is defined as a finite
set of logic rules, which are usually of the form

b :- a1, . . . , am, not am+1, . . . , not an (3.1)

The left part of a rule r is called head (h(r) = b) and the right part body (B(r) =a1,

. . . , am, not am+1, . . . , not an). The symbol :- that separates the head and the body
of a rule denotes implication. Thus, a rule can be understood as the statement: the head

32 3.3. Implementation

is true if the body is true. A rule that has no body is called a fact, since it is always true. A
rule with an empty head represents an integrity constraint, since the body must always be
false. Facts and integrity constraints are very useful when describing the control problem.
For instance, we use facts to represent the Boolean function and the control goals and
integrity constraints to guarantee that the interventions that are considered are consistent
(see Section 3.3.2). To ease the encoding, it is common to use variables. Variables can be
used to describe generic rules that can be applied to many different literals. For example,
a(T) :- b(T) denotes that for any value of T, a(T) is true if b(T) is true. This allows us
to simplify the encoding, since it is enough to write the conditions that must be satisfied
by every component only once in terms of V.

Simple rules like (3.1) are built by the conjunction or disjunction of several literals,
which are (possibly negated) propositional variables or atoms (ai). More complex rules
can also include further language constructs such as conditional literals or cardinality con-
straints. A conditional literal is of the form

a : b1, . . . , bn

for n ≥ 0, where a,bi are literals and the symbol : denotes implication. A cardinality
constraint is expressed as

l { c1; . . . ; cn} u

where l,u ∈ N and each ci is a literal. The numbers l,u are the lower and upper bounds
respectively of the number of literals that are satisfied in the cardinality constraint. We
use cardinality constraints in our control problem to limit the size of the control strategies.
Furthermore, rules can also include aggregates and optimization options, such as mini-
mization or maximization on the number of satisfied literals, which could be used to give
different weights to different potential interventions. For more details about ASP syntax
and semantics we refer the reader to [GKKS12, Lif19].

A model of a logic program P is an assignment mapping variables to truth values
that satisfies the set of rules of P . A stable model is a model in which for every atom
assigned to true there exists a rule r in P such that h(r) is true and B(r) is satisfied by
the assignment. Thus, every true literal of a stable model is supported by at least one rule.
Every set of interventions whose literals are assigned to true in a solution (stable model) of
the control problem is a control strategy. Furthermore, we run the control problem using a
minimization option that allows us to obtain minimal solutions with respect to inclusion.

3.3.2 Problem encoding

In this section we explain in more detail the ASP encoding used for control strategy iden-
tification. We recall the ASP implementation introduced in [KSSV13] and extended in

Chapter 3. Control via trap spaces 33

Inputs

Program instance + Main program
ASP encoding

Control strategies

Candidate
instantiation

New controlled
function instantiation

Percolation
step

Satisfaction
requirements

Figure 3.6: Diagram showing the main blocks of the ASP encoding, consisting of two main
blocks: program instance and main program. The inputs (Boolean function in DNF form,
target subspaces, selected trap spaces, list of forbidden interventions and limit size of the
control strategies) are used to create the program instance. The main program is divided
in four code blocks, marked in green.

[CFTS22a] and [CFTS22c] to identify control strategies by direct percolation and via trap
spaces using node and edge control [CFTS20, CFTS22c] and describe how it can also
identify transient control strategies.

The ASP encoding consists of two different parts: the encoding of the control problem
(program instance) and the encoding of the computation process (main program). The
program instance is created using the inputs of the control problem: the Boolean function,
assumed to be given in disjunctive normal form, the target subspaces and selected trap
spaces, the limit size of the control strategies and the restrictions on the nodes and edges
that can be used for control. The main program is divided in four blocks: candidate
instantiation, new controlled function instantiation (only necessary for edge interventions),
percolation step and satisfaction requirements. A diagram representing the main blocks of
the ASP encoding is shown in Figure 3.6.

The Boolean network from the example in Figure 3.7 is encoded as follows. The lit-
eral formula (line 1) links every variable with its DNF, described by the literals dnf

and clause (lines 2-9). The regulatory function of the first component f1(x) = x2x̄3 ∨
x1x2∨x1x3 is declared in the literal formula(x1,0) (line 1) and linked to its three clauses
dnf(0,0), dnf(0,1) and dnf(0,2) (line 2). The first clause x2x̄3 is encoded in the literals
clause(0,x2,1) and clause(0,x3,-1) (line 4). Note that we use -1 and 1 in the third
variable of the literal clause to denote whether a variable is negated or not, respectively.
To ease the encoding, we also use the value -1 to represent the Boolean value 0 in the rest
of the program. Note that all the rules of the program instance are facts that describe the
control problem.

34 3.3. Implementation

0110 0111 1110 1111

0010 0011 1010 1011

0000 0001 1000 1001

0100 0101 1100 1101

Figure 3.7: The asynchronous dynamics of the Boolean function f(x) = (x2x̄3∨x1x2∨x1x3,
x1x3 ∨ x̄1x2x̄3, x1x̄4 ∨ x̄2x̄4 ∨ x̄3x̄4, x̄1 ∨ x̄2 ∨ x̄3 ∨ x4) has two attractors A1 = {0001} and
A2 = {1110}. The selected trap spaces of f containing only attractors in the target
subspace P = 00∗∗ (teal) are T1 = ∗∗01 (red) and T2 = 0001 (the first steady state,
bold red). Bn percolates to the selected trap space T1 under the controlled functions
fN1(x) = (x1x2 ∨ x2, x̄1x2, 0, 1), with N1 = {(3, 0)}, and fN2(x) = (x2x̄3 ∨ x1x2 ∨ x1x3,
x1x3 ∨ x̄1x2x̄3, 0, 1), with N2 = {(4, 1)}.

1 formula(x1 ,0). formula(x2 ,1). formula(x3 ,2). formula(x4 ,3).

2 dnf(0,0). dnf(0,1). dnf(0,2). dnf(1,3). dnf(1,4). dnf(2,5).

3 dnf(2,6). dnf(2,7). dnf(3,8). dnf(3,9). dnf(3,10). dnf(3,11).

4 clause(0,x2 ,1). clause(0,x3 ,-1). clause(1,x1 ,1). clause(1,x2 ,1).

5 clause(2,x1 ,1). clause(2,x3 ,1). clause(3,x1 ,1). clause(3,x3 ,1).

6 clause(4,x1 ,-1). clause(4,x2 ,1). clause(4,x3 ,-1). clause(5,x1 ,1).

7 clause(5,x4 ,-1). clause(6,x2 ,-1). clause(6,x4 ,-1). clause(7,x3 ,-1).

8 clause(7,x4 ,-1). clause(8,x1 ,-1). clause(9,x2 ,-1). clause (10,x3 ,-1).

9 clause (11,x4 ,1).

Listing 3.1: Program instance: Boolean function.

We allow the possibility of excluding certain interventions from the control candidates,
for instance in the case that an intervention is not feasible for application. The node and
edge interventions that we want to exclude from the control are declared in the literals
avoid node or avoid edge respectively (line 10). The target subspace and the target trap
spaces are encoded in the literal subspace (line 12). We use two types of identifier: pos-
itive and negative. The sign of the subspace identifier marks whether we need to impose
restrictions on the control interventions when the system percolates to that subspace. For
example, when using a method for permanent control (direct percolation, via trap spaces
or combined), the positive identifier is used if the subspace is a selected trap space since,
by Proposition 3.1.2, the control interventions need to target a component fixed in the
selected trap space, whereas the negative identifier is used if the subspace is the direct
target since Proposition 3.1.2 does not impose any condition on the control interventions.
When using the method for transient control, the direct target is not declared and the

Chapter 3. Control via trap spaces 35

selected trap spaces are marked with the negative identifier, since by Proposition 3.2.1
there are no restrictions on the control interventions. The fixed variables of each sub-
space are encoded in the variable goal (lines 13-14). The selected trap space ∗∗01 from
Figure 3.7 is encoded by the variables subspace(1), goal(1,x3,-1) and goal(1,x4,1)

(lines 12-13). Note that for transient control, lines 12-14 would be substituted by the lit-
erals subspace(-1), subspace(-2), goal(-1,x3,-1), goal(-1,x4,1), goal(-2,x1,-1),
goal(-2,x2,-1), goal(-2,x3,-1), goal(-2,x4,1). In fact, the program encoding for
transient control is the same as the program encoding for direct percolation but marking
with a negative identifier all the selected trap spaces and removing the target subspace.
Finally, a limit size on the number of interventions is set in line 16.

10 avoid_node(x1). avoid_node(x2). avoid_edge(x1 , x1). avoid_edge(x2 , x2).

11

12 subspace (-1). subspace (1). subspace (2).

13 goal(-1,x1 ,-1). goal(-1,x2 ,-1). goal(1,x3 ,-1). goal(1,x4 ,1).

14 goal(2,x1 ,-1). goal(2,x2 ,-1). goal(2,x3 ,-1). goal(2,x4 ,1).

15

16 #const maxsize =2.

Listing 3.2: Program instance: forbidden interventions, target subspace, selected trap
spaces and limit size.

As mentioned above, the main ASP program for control strategy identification is di-
vided in four parts. The first two (candidate instantiation and new controlled function
instantiation) differ in node and edge control whereas the last two (percolation step and
satisfaction requirements) are the same. In the following, we describe each step in detail.
To simplify the explanation, we describe the method for permanent control that combines
direct percolation and percolation via trap spaces. The ASP program for transient control
is the same as for direct percolation, differing only on the program instance as explained
in the previous paragraph.

The candidate instantiation for node control is encoded as follows. The literal node(V,S)
is used to denote the node intervention that fixes the node V to the value 0 (S = -1) or 1
(S = 1). Lines 1-5 in Listing 3.3 instantiate the literals node(V,S) for direct percolation.
Note that, in order to reduce the number of candidates, a candidate node intervention
node(V,S) for direct percolation is instantiated only when there is a positive (respectively
negative) path in the IG from the node V to one of the nodes fixed in the target subspace
to the value S (respectively -S). The variables that are part of such paths in the IG are
tracked by the literal closure(V,T) that becomes true when the variable V is in the path
with the correct sign T. This reduction method is explained in more detail in the second
part of Section 4.4.2 (see [KSSV13] and [SKK10] for a full explanation). The conditions
satisfied(Z), Z < 0 are added to the rule in line 5 to guarantee that these node inter-
ventions are only instantiated when the state space percolates to the target, marked with a
negative identifier. The variable Z is used to identify which subspace is satisfied by the set

36 3.3. Implementation

of interventions and allows us to encode different conditions depending on the sign of Z: the
requirements for control strategies by direct percolation when Z < 0 and the requirements
for control strategies via trap spaces when Z > 0.

Line 6 instantiates the candidate interventions for control via trap spaces. When the
state space percolates to a selected trap space, it is necessary that the candidate interven-
tions are chosen among the variables fixed in the trap space, as required in Proposition 3.1.2
and ensured in line 6. In this case, the conditions satisfied(Z), Z > 0 are added in line
6 to guarantee that these node interventions are only instantiated when the state space
percolates to the selected trap space identified by Z. The instantiations of the fixed variables
of the selected trap space T = ∗∗01 from the example in Figure 3.7 are goal(1,x3,-1)

and goal(1,x4,1). Consequently, the node interventions considered for control via this
trap space are node(x3, -1) and node(x4,1). Line 7 excludes contradictory node inter-
ventions, that is, two node interventions fixing the same node to opposite values. In line
8, the variable node(V) is declared to keep track of the controlled nodes.

1 goal(T,S) :- goal(Z,T,S), Z < 0.

2 satisfy(V,W,S) :- f(W,D); dnf(D,C); cl(C,V,S).

3 closure(V,T) :- goal(V,T).

4 closure(V,S*T) :- closure(W,T); satisfy(V,W,S); not goal(V,-S*T).

5 { node(V,S) : closure(V,S), not avoid_node(V), satisfied(Z), Z < 0 }.

6 { node(V,S) : goal(Z,V,S), not avoid_node(V), satisfied(Z), Z >=0 }.

7 :- node(V,1); node(V,-1).

8 node(V) :- node(V,S).

Listing 3.3: Candidate instantiation: node interventions.

The candidate instantiation for edge control is shown below. The candidate edge inter-
ventions are generated in lines 9-13. The literal edge(Vi,Vj,S) is used to denote the edge
intervention that fixes the node Vi in the regulatory function of the node Vj to the value
0 (S=-1) or 1 (S=1). Note that the existence of a clause involving i in the DNF of fj is
required in order to instantiate the candidate edge intervention (i, j, c) and that forbidden
edges are excluded. It is also ensured that, when the state space percolates to a selected
trap space, the edge interventions target the variables fixed in the trap space, as stated
in Proposition 3.1.2 (lines 11-13). Contradictory edge interventions are also excluded (line
15). We keep track of the controlled edges with the variable edge(Vi,Vj) (line 16).

9 { edge(Vi,Vj ,1); edge(Vi ,Vj ,-1) } :- formula(Vj ,D), dnf(D,C), clause(C, Vi, S),

10 not avoid_edge(Vi,Vj), satisfied(Z), Z < 0.

11 { edge(Vi,Vj ,1); edge(Vi ,Vj ,-1) } :- formula(Vj ,D), dnf(D,C), clause(C, Vi, S),

12 not avoid_edge(Vi,Vj), goal(Z,Vj,T),

13 satisfied(Z), subspace(Z), Z >= 0.

14

15 :- edge(Vi,Vj ,1), edge(Vi,Vj ,-1).

16 edge(Vi ,Vj) :- edge(Vi,Vj,S).

Listing 3.4: Candidate instantiation: edge interventions.

Chapter 3. Control via trap spaces 37

When considering node and edge interventions together, the following restrictions are
also added, to ensure that the set of interventions is consistent. They prevent that a node
and an edge intervention fix or target the same variable (lines 17 and 18 respectively).

17 :- node(V), edge(V,Vj).

18 :- node(V), edge(Vi ,V).

Listing 3.5: Candidate instantiation: consistent requirements for node and edge
interventions.

In order to capture the effect of the edge interventions in the Boolean function, a new set
of literals new clause, new dnf, new formula is instantiated to represent the DNF of the
resulting regulatory functions (lines 19-23). These new literals are directly instantiated for
every term, clause and DNF respectively that are not affected by edge interventions. When
a clause is affected by an edge intervention, there are two possible situations. The edge
intervention fixes the term to 1, in which case the term just disappears from the clause, or it
fixes the term to 0, in which case the whole clause is evaluated to 0. In the first situation,
the term is just not included in the new clause, that is, the corresponding new clause

literal is not instantiated. In the second situation, the clause needs to be removed from
the DNF so the literal remove dnf is instantiated to indicate that this clause should be
removed (line 20). Line 21 links all the clauses that do not need to be removed to the new
DNF. Note that if all the terms of a clause get fixed to 1, the whole DNF is set to 1. In this
case, the literal remove formula is instantiated (line 22) so that the new formula literal is
not generated, since the regulatory function is constant. To indicate that the component
V is set to 1, the literal fixed node(V,1) is also instantiated (line 25). If all the clauses of
a DNF are evaluated to 0 and consequently removed from the disjunction, the regulatory
function becomes the constant 0. Then, the literal new formula is not instantiated and the
literal fixed node(V,-1) is generated to indicate that the component V is set to 0 (line 26).
When none of the non-empty DNF clauses are evaluated to one, the literal new formula

is instantiated to link them to the corresponding regulatory function (line 22).

19 new_clause(C,V,S) :- clause(C,V,S); dnf(D,C); formula(Vj ,D); not edge(V,Vj).

20 remove_dnf(D,C):- clause(C,Vi,-S); edge(Vi,Vj ,S); dnf(D,C); formula(Vj ,D).

21 new_dnf(D,C) :- new_clause(C,Vi,S); dnf(D,C); formula(Vj,D); not remove_dnf(D,C).

22 remove_formula(Vj ,D) :- dnf(D,C); formula(Vj,D); edge(Vi,Vj,S) : clause(C,Vi,S).

23 new_formula(V,D) :- new_dnf(D,C); formula(V,D); not remove_formula(V,D).

24

25 fixed_node(V,1) :- remove_formula(V,D).

26 fixed_node(V,-1) :- not remove_formula(V,D); not new_formula(V,D); formula(V,D).

Listing 3.6: New controlled function instantiation, only required for edge control.

38 3.3. Implementation

Let us consider the case of the edge intervention edge(x3,x4,1), that fixes x3 =
1 in f4. Since f4(x) = x̄1 ∨ x̄2 ∨ x̄3 ∨ x4, fixing x3 = 1 leads to the clause x̄3 being

evaluated to 0 and the regulatory function becomes f
(3,4,1)
4 (x) = x̄1 ∨ x̄2 ∨ x4 (the same

without the clause x̄3). The ASP program will instantiate the literals new clause(8, x1,

-1), new clause(9, x2, -1), new clause(11, x4, 1) since they are not affected by
the edge intervention. It will also instantiate the literals new dnf(3,8), new dnf(3,9),

new dnf(3,11) that connect the clauses to the new DNF of f4 and remove dnf(3,10),
since the edge intervention edge(x3,x4,1) and the term in the clause clause(10,x3,-1)

have opposite signs. Although new dnf(3,10) will not be instantiated, new formula(x4,3)

will, since its DNF will still have the non-trivial clauses new dnf(3,8), new dnf(3,9),

new dnf(3,11).

If instead the edge intervention was edge(x3,x4,-1), fixing x3 = 0 in f4 would set the

regulatory function to 1 (f
(3,4,0)
4 (x) = 1). In this case, remove formula(x4,3) would also

be instantiated, since there would be a clause in the DNF that gets evaluated to 1, and
new formula(x4,3) will not, since the DNF would become 1.

The regulatory functions that become constants either through node or edge control
are captured in the literals intervention(V,S) (lines 27 and 28 respectively) and tracked
by the literal intervention(V) (line 29).

27 intervention(V,S) :- node(V,S).

28 intervention(V,S) :- not node(V,S), not node(V,-S), fixed_node(V,S).

29 intervention(V) :- intervention(V,S).

Listing 3.7: Setting intervention literals for the percolation step.

The percolation effect is encoded in the same way as described in [KSSV13] (lines 30-35).
First, the literal eval formula(Z,V,S) is instantiated for every component that gets fixed
to a constant value by an intervention (line 30). The DNFs of the remaining regulatory
functions are marked as free using the literal free(Z,V,D) (line 31). Then for each clause,
the literal eval clause(Z,V,-1) is instantiated if the clause gets fixed to 0 (line 32). The
literal eval formula(Z,V,1) is declared for all the components whose DNF is fixed to 1,
which happens if all the terms of a DNF clause get fixed to their corresponding values
(lines 33-34). When all the DNF clauses are set to 0, the literal eval formula(Z,V,-1)

is declared to indicate that the component is fixed to 0 (line 35). See [KSSV13] for more
details.

30 eval_formula(Z,V,S) :- subspace(Z); intervention(V,S).

31 free(Z,V,D) :- new_formula(V,D); subspace(Z); not intervention(V).

32 eval_clause(Z,C,-1) :- new_clause(C,V,S); eval_formula(Z,V,-S).

33 eval_formula(Z,V,1) :- free(Z,V,D); eval_formula(Z,W,T) : new_clause(C,W,T);

34 new_dnf(D,C).

35 eval_formula(Z,V,-1) :- free(Z,V,D); eval_clause(Z,C,-1) : new_dnf(D,C).

Listing 3.8: Percolation step.

Chapter 3. Control via trap spaces 39

Finally, it is ensured that a candidate subspace is a control strategy by requiring that
at least one subspace constraint is satisfied (lines 36-38). A subspace constraint is satisfied
when all the variables that are fixed in the subspace have their regulatory functions fixed
after the percolation step. This is checked in line 37 by stating that a subspace Z is satisfied
if for all goal(Z,T,S) the regulatory corresponding to component T has been fixed to S,
that is, if the literal eval formula(Z,T,S) is true. A limitation on the total number of
interventions is also added (line 39).

36 not satisfied(Z) :- goal(Z,T,S), not eval_formula(Z,T,S), subspace(Z).

37 satisfied(Z) :- eval_formula(Z,T,S) : goal(Z,T,S); subspace(Z).

38 0 < { satisfied(Z) : subspace(Z) }.

39 :- maxsize > 0; maxsize + 1 { node(V,R); edge(Vi,Vj ,S) }.

Listing 3.9: Satisfaction requirements.

3.3.3 Main algorithm

The complete algorithm for control strategy identification is shown in Algorithm 1. It
takes as inputs the Boolean function f , the target subspace P , the type of control method
method, the update D, the limit size for the control strategies k, the (possibly empty) list
of forbidden interventions avoid intv and, optionally, the list of attractors attr (line 1).
The Boolean function, target subspace, selected trap spaces, limit size and list of forbidden
interventions are used as input for the ASP program, which is called by createCandidate-
sAndPercolate (lines 3, 10, 12, 14) and returns the corresponding control strategies. Our
ASP encoding takes as input a constant-free Boolean function. Therefore, if the network
has constant coordinate functions, a preprocessing step takes place so that constant values
are percolated and removed from the network. Note that this does not affect the attractors
of the network, as explained in Section 2.1.

Algorithm 1 allows for the computation of control strategies by direct percolation (lines
2-3), via the trap spaces method (lines 9-10), using the two previous methods combined,
meaning that both percolation to the target subspace and selected trap spaces is considered
(lines 11-12) and transient (lines 13-14). When searching for control strategies via the trap
spaces (permanent or transient), we distinguish two types of selected trap spaces: trap
spaces contained in P (Type 1) (line 6) and trap spaces not contained in P but containing
only attractors in P (Type 2) (line 8). Note that selected trap spaces of Type 2 are only
identified when all the attractors are known or can be approximated by minimal trap
spaces (line 7). Moreover, in order to avoid unnecessary calculations, we only consider
non-percolating trap spaces, that is, trap spaces that do not percolate to smaller ones, as
selected trap spaces since all the subspaces percolating to a trap space T also percolate to
F (f)(T). This step is included in the process of computing the selected trap spaces.

40 3.3. Implementation

We implemented Algorithm 1 using PyBoolNet [KSS16], a Python package for the
generation, modification and analysis of Boolean networks. PyBoolNet also provides an
efficient computation of trap spaces for relatively large networks, which we use for the
computation of the selected trap spaces, and a method to check whether the attractors of
a Boolean network can be approximated by minimal trap spaces [KS15]. To solve the ASP
problem, we use clingo, included in Potassco, the Potsdam Answer Set Solving Collection
[GKK+11]. The source code of the implementation of Algorithm 1 is available at [CFa].

Algorithm 1 Control strategies for a target subspace

1: function ControlStrategies(f , P , method, D, k, avoid intv, attr)
2: if method = “direct percolation” then:
3: CS ← createCandidatesAndPercolate(f , P , −, k, avoid intv)
4: else:
5: T ← trapSpaces(f)
6: selTS ← selectedTrapSpacesType1(T, P)
7: if attr 6= ∅ then:
8: selTS ← selTS + selectedTrapSpacesType2(T, P , D, attr)

9: if method = “trap spaces” then:
10: CS ← createCandidatesAndPercolate(f , −, selTS, k, avoid intv)

11: if method = “combined” then:
12: CS ← createCandidatesAndPercolate(f , P , selTS, k, avoid intv)

13: if method = “transient” then:
14: CS ← createCandidatesAndPercolate(f , selTS, −, k, avoid intv)

15: return CS

3.3.4 Further considerations: minimality and running times

Since we are interested in minimal intervention sets, the ASP program is run to return all
the minimal sets of interventions with respect to inclusion that are control strategies by
direct percolation and/or via trap spaces up to the chosen limit size. The output set of
control strategies might vary depending on the method that is chosen and consequently
there might be control strategies that are minimal by direct percolation and not minimal
via trap spaces and vice versa. For instance, for the Boolean network of Figure 3.2 and
the target P = 110, there is only one minimal control strategy for node control via trap
spaces, the set N1 = {(3, 0)}. Direct percolation instead identifies the unique minimal
control strategy N2 = {(1, 1), (3, 0)}. When computing the control strategies combining
both methods, only N1 will be identified, since N2 is a superset of N1. For this reason, the

Chapter 3. Control via trap spaces 41

set of control strategies identified by the combined method is not necessarily equivalent
to the union of the control strategies obtained by each method, even though each control
strategy is identified either by direct percolation or via trap spaces. This is the case in the
biological network analyzed in Section 3.4, where some of the control strategies identified
by direct percolation are non-minimal and therefore not present as control strategies of the
combined method since they are supersets of a smaller one.

The main factors influencing the running times of the approach are the size and com-
plexity of the network (number of nodes, edges, prime implicants, etc.) and the number
and size of the target subspaces and selected trap spaces. Assuming that there are no
nodes nor edges to avoid, the amount of candidate interventions to choose from for direct
percolation is twice the number of nodes 2n for node control, twice the number of edges
2m for edge control or twice the sum of both 2(n + m) for the mixed control. Thus, the
total number of possible combinations grows exponentially with 2n, 2m or 2(n + m) re-
spectively. As mentioned during the encoding, the number of candidate interventions can
be reduced by considering only a candidate node intervention (i, c) when there is a posi-
tive (respectively negative) path in the IG from i to one of the nodes fixed in the target
subspace to the value c (respectively c̄) [SKK10]. Similar reduction methods could also be
studied for edge control. The efficiency of the ASP approach for node control was analyzed
in [KSSV13], where the running times of different Boolean networks and different ASP
solvers were studied, showing that the approach was able to deal with networks of 100-200
nodes within milliseconds. The number of edges could, in theory, be as large as n2, however
this is not usually the case in biological systems, which are often rather sparse. Although
extending the candidate interventions to edges has an impact on the running times (see
Section 3.4.3), the problem is still treatable for relatively large biological networks.

In the case of percolation via trap spaces, the number of candidate interventions might
be reduced since, according to Proposition 3.1.2, the intervention candidates are required
to target only variables fixed in the corresponding selected trap space. Consequently, the
running times are also dependent on the number and size of the selected trap spaces. Note
that when the selected trap space is a steady state, the number of candidate interventions
is the same as in the method of direct percolation.

In the example of Figure 3.2, taking P = 110 as the target subspace, there are 8, 577
and 656 consistent candidate combinations for node, edge and mixed control respectively
for the direct percolation method. When considering the method via trap spaces, since
one of the selected trap spaces is a steady state (T1 = 110), the amount of candidate
interventions is the same. If only T2 = ∗∗0 was considered as a selected trap space, the
number of combinations of candidate interventions would be 2, 27 and 28 for node, edge
and mixed control respectively, since they would only include node and edge interventions
targeting the third component.

42 3.4. Application

The last factor to take into account when analyzing the running times is the number
of candidate subspaces, both in case of direct percolation (if the target is extended to
multiple subspaces) and in the case of percolation via trap spaces when different selected
trap spaces act as targets. The more target subspaces, the more likely that a candidate
intervention satisfies the condition. However, increasing the number of target subspaces
might also increase the number of candidate interventions. Moreover, in some cases, the
combined method might require higher running times than the sum of the times required
for direct percolation and via trap spaces individually (see results in Section 3.4).

3.4 Application

In this section, we study the applicability of our method to a cell fate decision model
(MAPK network). We consider different targets and compare the control strategies ob-
tained by direct percolation and via trap spaces, as well as transient control, for the asyn-
chronous update. We analyze the results first for node and then for edge control. In all
the cases, we obtain new control strategies via trap spaces missed by direct percolation.

The network analyzed in this case study was introduced by Grieco et al. (2013)
[GCBP+13] to model the effect of the Mitogen-Activated Protein Kinase (MAPK) path-
way on cell fate decisions in bladder cancer cells (see Figure 3.8). The network con-
sists of 53 Boolean variables, including the four inputs DNA-damage, EGFR-stimulus,
FGFR3-stimulus and TGFBR-stimulus. The states of the three outputs of the network
(Apoptosis, Growth-Arrest and Proliferation) indicate the enablement or disablement of
the corresponding processes that represent the different cell fates or phenotypes considered
in [GCBP+13].

There are 18 attractors in the asynchronous dynamics, of which 12 are steady states
and 6 are complex. The attractors are in one-to-one correspondence with the minimal trap
spaces, that is, each attractor is contained in a minimal trap space and each minimal trap
space only contains one attractor [KS15]. Therefore, we can use the selected trap spaces
of Type 1 and Type 2 (see Section 3.3.3) to search for control strategies via trap spaces.

We start by targeting the subspace defined by the apoptotic phenotype and compare
the control strategies identified via trap spaces to the ones by direct percolation and to the
transient control strategies, first for node control and then for edge control. In the second
part, we consider the attractors of the asynchronous dynamics by targeting the minimal
trap spaces. We compare the control strategies identified by direct percolation, via trap
spaces, the combination of the two methods and by transient control (see Algorithm 1)
for four steady states for node and edge control. We end by discussing the running times
of our approach. All the results presented in this section were obtained with a regular
desktop 8-processor computer, Intel®CoreTM i7-2600 CPU at 3.40GHz, 16GB memory.

Chapter 3. Control via trap spaces 43

Figure 3.8: MAPK network presented in [GCBP+13]. Figure obtained using GINsim
[CNT12]. Input and output nodes are colored in white and black respectively. Green edges
and red edges denote activation and inhibition respectively.

3.4.1 Target: apoptotic phenotype

We start by considering as target the apoptotic phenotype that is defined by the subspace
obtained by fixing the output nodes (Apoptosis to 1, Growth-Arrest to 1 and Proliferation
to 0) as in [GCBP+13]. We refer to this subspace as the apoptotic target. We identify 103
non-percolating selected trap spaces. We set a limit size of three interventions, since this
size is large enough to obtain relevant control strategies with all the methods.

In this setting, the combined method identifies 271 control strategies, minimal with
respect to inclusion, for node control up to size 3: three of size 1, 106 of size 2, 162 of
size 3. The three control strategies of size 1 are {(TGFBR-stimulus, 1)}, {(TGFBR, 1)}
and {(DNA-damage, 1)}, the last one being obtained only via trap spaces. Under the
control strategy {(DNA-damage, 1)}, the state space percolates to the trap space {ATM
= 1, DNA-damage = 1, TAOK = 1}, which contains only attractors in the apoptotic
target. This minimal control strategy is not identified by direct percolation. The number of
control strategies identified by each method is shown in Table 3.1. All the transient control

44 3.4. Application

strategies identified for the apoptotic target are also obtained via trap spaces. As explained
in Section 3.3.4, the list of control strategies obtained by the combination of the two
methods might not be equal to the union of the control strategies obtained by each of the
methods individually, since minimality is applied to each type of control strategy separately,
and a control strategy that is minimal for one method might not be minimal under another
method. In this case, there are eighteen control strategies of size 2 and thirteen of size 3
obtained by direct percolation that are supersets of the control strategy {(DNA-damage,
1)}. For example, {(DNA-damage, 1), (SMAD, 1)} is identified as a control strategy by the
direct percolation method since neither {(DNA-damage, 1)} nor {(SMAD, 1)} are control
strategies by direct percolation. When considering the combination of both methods,
{(DNA-damage, 1)} is identified as a control strategy and consequently neither {(DNA-
damage, 1), (SMAD, 1)} nor any of the supersets of {(DNA-damage, 1)} are considered.
For this reason, there are fewer control strategies of size 2 and 3 for the combined method
than by direct percolation (see Table 3.1). The method of direct percolation identifies many
control strategies of size 2 and 3 that are missed by the method via trap spaces. These
missed strategies fall into two categories. The first category includes the strategies that are
not considered by the trap spaces method, since they include interventions targeting nodes
not fixed in any selected trap space or fix them to the opposite value. For instance, the
intervention set {(DUSP1, 0), (PLCG,1)} is not taken into consideration since the node
DUSP1 is not fixed to 0 in any of the selected trap spaces. The second category includes
the sets of interventions that percolate directly to the target subspace but do not percolate
to any of the selected trap spaces. For these reasons, it is useful to combine the method of
direct percolation with the method via trap spaces to increase the total number of control
strategies identified (see Section 3.1 for more details).

Using the combined method for edge control we obtain 950 control strategies up to size
3: three of size 1, 117 of size 2 and 830 of size 3 (see Table 3.1). As for node control, all
the transient control strategies are also identified via trap spaces. The three edge control
strategies of size 1 are equivalent to the node interventions identified as control strategies
of size 1. This results from the three variables involved in the size 1 node control strategies
having a unique incoming edge. For example (TGFBR-stimulus, TGFBR, 1) has exactly
the same effect as (TGFBR, 1), since TGFBR is uniquely regulated by TGFBR-stimulus.

In other cases, edge control allows intervention strategies that would be too restrictive
in node control. For example, the two edge interventions (MAP3K1-3, p38, 1) and (MSK,
CREB, 0), which fix the activation of MAP3K1-3 on p38 and the inhibition of MSK on
CREB, lead the controlled system to percolate to the apoptotic target. However, fixing
MAP3K1-3 to 1 and MSK to 0 does not, since the controlled system displays non-apoptotic
steady states, which are not present in the original dynamics.

Chapter 3. Control via trap spaces 45

Table 3.1: Number and size of the control strategies identified by the different methods up
to size 3 for the apoptotic target. Note that some minimal control strategies of size 2 and
size 3 for direct percolation are not minimal for the combined method.

Node control |N | = 1 |N | = 2 |N | = 3

By direct percolation 2 124 175
Via trap spaces 2 0 0
Combined 3 106 162
Transient 2 0 0

Edge control |E| = 1 |E| = 2 |E| = 3

By direct percolation 2 137 893
Via trap spaces 2 0 0
Combined 3 117 830
Transient 2 0 0

Node and edge control |C| = 1 |C| = 2 |C| = 3

By direct percolation 4 530 3569
Via trap spaces 4 0 0
Combined 6 454 3299
Transient 4 0 0

By allowing the combination of node and edge interventions, the combined method
identifies over three thousand control strategies up to size 3, as shown in Table 3.1. Note
that these include all the control strategies obtained for node and edge control. In partic-
ular, the six control strategies of size 1 correspond to the three control strategies of node
control and the three of edge control.

We observe that there are many control strategies that mix node and edge interventions.
Most of them include interventions already appearing in control strategies consisting exclu-
sively of node interventions or of edge interventions. In some cases, we find mixed control
strategies that are equivalent to a node control strategy or an edge control strategy where
a node intervention is substituted by an equivalent edge intervention or vice versa. For
example, the control strategy {(CREB, DUSP1, 0), (TAOK, 1)} is equivalent to the control
strategy {(CREB, DUSP1, 0), (ATM, TAOK, 1)}, since the node intervention (TAOK, 1)
is equivalent to the edge intervention (ATM, TAOK, 1). There are also control strategies
involving interventions that are not part of any node or edge control strategy. This is the
case for {(FGFR3, FRS2, 1), (GRB2, FRS2, 0), (p38, 1)}, where neither (FGFR3, FRS2,
1) nor (GRB2, FRS2, 0) appear in any edge control strategy.

46 3.4. Application

3.4.2 Target: minimal trap spaces

When computing control strategies for the minimal trap spaces, the input components
need to be fixed in order to ensure that their value matches the one fixed in the target.
Since each input combination identifies a separate trap space, there is at least one attractor
per input combination. There are sixteen possible input combinations, fourteen of which
identify subspaces that contain a unique attractor. These input combinations therefore give
minimal node control strategies for the corresponding attractors. The subspaces induced
by the two remaining input combinations (S1 = {EGFR-stimulus = 0, FGFR3-stimulus
= 0, TGFBR-stimulus = 0 and DNA-damage = 0}, S2 = {EGFR-stimulus = 0, FGFR3-
stimulus = 0, TGFBR-stimulus = 0 and DNA-damage = 1}) contain two steady states
each and, therefore, further control interventions are needed. Table 3.2 shows the number
and size of the control strategies up to size 7 (the number of inputs plus three) of these
four steady states for node, edge and mixed control. Note that in all the cases there are
control strategies identified via trap spaces not captured by direct percolation and there
is no minimal control strategy identified by direct percolation missed via trap spaces. In
fact, since by definition every steady state is a selected trap space, when the target is a
steady state, all the control strategies identified by direct percolation are also identified via
trap spaces. Moreover, no control strategy of size 5 is found for direct percolation for any
of the steady states.

As in the case of the apoptotic target, there are edge control strategies allowing in-
terventions that would not be possible using only node control. For example fixing the
component GRB2 either to 0 or to 1, together with the corresponding input interventions,
does not lead to a system with s1 as the unique attractor. However, fixing GRB2 in the edge
intervention (GRB2, GAB1, 1) in addition to the input interventions leads to a controlled
dynamics that has s1 as a unique attractor.

When considering mixed interventions, in contrast to the apoptotic target case, all the
interventions appearing in minimal control strategies also occur in some strategy composed
exclusively of node or exclusively of edge interventions. As can be seen from the numbers
in Table 3.2, we still gain many mixed control strategies and thus more flexibility for
choosing interventions that are both realizable in the lab and as non-invasive as possible
for the system.

In this scenario, the transient control approach is able to identify new control strategies
for all four steady states. In particular, since all the control strategies via trap spaces are
transient control strategies, when the target is a steady state, transient control identifies
all the control strategies found by the combined method of percolation and trap spaces.
The three transient edge control strategies for the steady state s1 that are not identified
by any other method consist of four edge interventions fixing the inputs, as expected, plus
an edge intervention targeting the node GRB2. This node is not fixed in the selected
trap space which the controlled system percolates to. For this reason, the method via

Chapter 3. Control via trap spaces 47

Table 3.2: Number and size of the control strategies identified by the different methods up
to size 7 for the different steady states. Note that there is no control strategy up to size 4.
s1 and s′1 denote the two steady states in S1 and s2 and s′2 the two steady states in S2.

Node control s1 s′1 s2 s′2
|N | 5 6 7 5 6 7 5 6 7 5 6 7

By direct percolation 0 0 60 0 0 32 0 14 2 0 14 2
Via trap spaces 2 0 0 0 8 12 0 22 14 2 0 0
Combined 2 0 0 0 8 12 0 22 14 2 0 0
Transient 2 0 0 0 8 12 0 28 16 2 0 0

Edge control s1 s′1 s2 s′2
|E| 5 6 7 5 6 7 5 6 7 5 6 7

By direct percolation 0 0 150 0 0 84 0 22 58 0 33 50
Via trap spaces 3 1 0 0 14 20 0 36 64 3 1 0
Combined 3 1 0 0 14 20 0 36 64 3 1 0
Transient 6 11 157 0 16 168 0 50 72 6 33 40

Node and edge control s1 s′1 s2 s′2
|C| 5 6 7 5 6 7 5 6 7 5 6 7

By direct percolation 0 0 12720 0 0 7040 0 1168 2608 0 1440 2048
Via trap spaces 80 16 0 0 704 2112 0 1872 4192 80 16 0
Combined 80 16 0 0 704 2112 0 1872 4192 880 16 0
Transient 128 224 3512 0 768 8960 0 2512 4832 128 736 1080

trap spaces cannot identify any of these strategies. This example shows how considering
transient interventions can widen the possibilities for control.

3.4.3 Running times

The running times of the control strategy computation for each method, target and type
of control are shown in Table 3.3. These refer to the total times needed for Algorithm 1
to terminate for each method, including the computation of the selected trap spaces when
needed. We can observe how the number of candidate interventions affects the time required
for each method. Node control is the fastest, with running times in the order of milliseconds,
whereas edge control requires a few seconds. In most of the cases, the running times of
the different methods vary from a few seconds to a few minutes when combining the two
types of interventions. We observe that steady states with three selected trap spaces
have slightly higher running times than steady states with two selected trap spaces. The
apoptotic phenotype is the target with the highest number of selected trap spaces (over
one hundred). However, we do not observe a significant increase of the running time
with respect to the steady states. This could result from the additional constraint on

48 3.4. Application

candidate interventions that is imposed when working with selected trap spaces, requiring
the interventions to be selected among the variables fixed in the trap space.

Table 3.3: Running times (in seconds) for the control strategy computation targeting the
apoptotic phenotype and the four steady states in the MAPK network. The size of the
target is defined as the number of fixed components in the target subspace.

Target
Size of Number of selected

Method
Time (s)

the target trap spaces Node Edge Both

Apoptotic
phenotype

3 103
By direct percolation 0.18 7.05 280.18

Via trap spaces 0.47 0.82 0.74
Combined 7.15 117.36 461.37
Transient 1.13 1.42 1.13

Steady state s1 53 3
By direct percolation 0.04 8.41 125.65

Via trap spaces 0.07 7.39 289.18
Combined 0.08 17.07 149.47
Transient 0.08 35.00 138.62

Steady state s′1 53 3
By direct percolation 0.04 1.61 154.79

Via trap spaces 0.09 1.40 104.80
Combined 0.15 4.69 211.49
Transient 0.09 5.48 303.55

Steady state s2 53 2
By direct percolation 0.03 0.42 10.71

Via trap spaces 0.10 1.03 33.33
Combined 0.10 3.26 155.31
Transient 0.10 3.72 198.61

Steady state s′2 53 2
Direct percolation 0.03 1.25 12.29

Via trap spaces 0.10 1.87 6.56
Combined 0.11 3.60 12.31
Transient 0.10 8.44 55.22

3.4.4 Other updates

This case study focuses on the asynchronous update, since it is the one used for modeling
the MAPK network in [GCBP+13]. Here we add some remarks about the results for this
network considering the other two updates: synchronous and generalized asynchronous.
As mentioned in Section 3.1, the control strategies obtained by direct percolation are
independent of the update and consequently they are the same in any dynamics, whereas
the control strategies via trap spaces might vary when the selected trap spaces differ from
one update to the another.

In the synchronous dynamics, the MAPK network is not complete, that is, minimal trap
spaces are not good approximations of attractors. In such cases, our approach does not
select trap spaces of type 2, unless the full list of complex attractors is provided. Therefore,
all the control strategies identified via trap spaces are also identified by direct percolation

Chapter 3. Control via trap spaces 49

and no new control strategies are uncovered.

In the generalized asynchronous dynamics, the MAPK network is complete, as in the
asynchronous case. Since the trap spaces of a Boolean function are the same in all the
updates, the selected trap spaces are also the same as in the asynchronous dynamics. Con-
sequently, the control strategies identified via trap spaces for the generalized asynchronous
update correspond to the ones identified for the asynchronous update.

3.5 Discussion

In this chapter, we presented a method for control strategy identification based on value
percolation that uses trap spaces in order to uncover potentially smaller control strategies.
This method allows for node interventions, acting on specific components, as well as edge
interventions, acting on the interactions between them. The use of edge interventions can
widen the possibilities for potential applications in the context of biological systems, as
shown in Section 3.4.

The implementation of the method is based on Answer Set Programming (ASP), ex-
tending the works from [KSSV13], which helps us to deal with the problem of the combi-
natorial explosion linked to the control strategy computation. Although our approach is
able to handle state-of-the-art biological models (Section 3.4.3), an exhaustive analysis of
the factors affecting the running times such as the size of the network, number of edges or
complexity of the Boolean functions would be needed.

Although in general control strategies by direct percolation require permanent inter-
ventions, control strategies via trap spaces allow the possibility of releasing the control once
the selected trap space has been reached. This approach is adapted to identify transient
control strategies, by using selected trap spaces as intermediate subsets. In this work, we
study transient control as a specific case of sequential control of two steps: applying control
and releasing it, using trap spaces as intermediate steps. This use of trap spaces could be
extended to identify potential longer control sequences.

Chapter 4

Exhaustive approach

As explained in the previous chapter, approaches based on value percolation can be im-
plemented efficiently but are not able to identify all possible control strategies for a given
target. Although percolation-based control strategies might be enough for simple anal-
ysis of the network, an exhaustive identification of all possible controls would increase
the diversity of strategies and thus could uncover potentially more relevant strategies for
application.

Moreover, approaches developed for control strategy identification in Boolean networks
often focus on either attractor control, aiming at a specific state of the system, or target
control, aming at a certain subspace or phenotype. However, in some cases it might be
interesting to be able to deal with more generic control goals such as groups of attractors
or attractor avoidance. Control problems with more complex targets, that is, arbitrary
subsets which are not necessarily attractors or subspaces, are, to our best knowledge, not
being exhaustively tackled. For this reason, different from the method in Chapter 3, the
method presented in this chapter considers a subset as target.

Identifying all the minimal control strategies for a generic subset is a complex problem.
In some cases, it might require the exploration of the state space, which grows exponentially
with the size of the network. To deal with this computational explosion, we explore model
checking techniques. Model checking is a form of program verification that determines if a
given transition system satisfies a specific property. Model checking has been widely used
and many tools have been developed in the context of Boolean networks [CGR12].

In this chapter we describe an approach to control strategy identification, based on
model checking, that provides a complete solution set of minimal controls allowing full
flexibility on the control target. The main results presented in this chapter are published
in Cifuentes-Fontanals et al. [CFTS22b], from which I am first author and main developer
of the method. In particular, Sections 4.1 to 4.3 are extracted from [CFTS22b], with the
permission of the co-authors.

50

Chapter 4. Exhaustive approach 51

The chapter is organized as follows. We start by picking up the idea of using trap
spaces in control from the previous chapter and go a step forward by presenting an intuitive
method based on the completeness of the minimal trap spaces to identify control strategies
(Section 4.1). Motivated by the idea of using model checking as a basis for an exhaustive
approach, we give an introduction to model checking, focusing on the main concepts needed
for this work (Section 4.2). In Section 4.3, we establish the basis for the control strategy
computation with model checking. The implementation of the approach is detailed in
Section 4.4, together with techniques to reduce the search space size and improve the
performance of the method. Finally, in Section 4.5 we show the applicability of our method
to a biological case study.

4.1 Control by completeness

As shown in Chapter 3, approaches to control strategy identification based on value per-
colation, either percolating directly to the target or to a trap space, can be implemented
efficiently. However, these methods still might miss many possible control strategies. An
example of such a control strategy is shown in Figure 4.1.

In this section we explore sufficient conditions to impose on the minimal trap spaces of
the controlled system to identify a set of interventions as a control strategy. As mentioned
in Section 2.1, minimal trap spaces are often good approximations of attractors in biological
systems, that is, they are in one-to-one correspondence with attractors. To determine when
this is the case in a Boolean network, it is enough to check whether its minimal trap spaces
are univocal, faithful and complete in the corresponding dynamics [KS15] (see Section 2.1).
We recall the definition of completeness for trap spaces and extend it to a Boolean function.

Definition 4.1.1. A set of trap spaces T is complete in D(f) if and only if for every
attractor A of D(f) there exists T ∈ T such that A ⊆ T . A Boolean function f is complete
in the dynamics D(f) if its minimal trap spaces are complete in D(f).

The following proposition presents sufficient conditions for a set of interventions to be a
control strategy. Given a candidate intervention set C, if the set of minimal trap spaces of
the controlled function is complete and contained in the target subset, then C is a control
strategy for that subset.

Proposition 4.1.2. Let f be a Boolean function, P ⊆ Bn a subspace, C a set of interven-
tions and T the set of minimal trap spaces of fC. If all the trap spaces of T are contained
in P and T is complete in D(fC), then C is a control strategy of P .

Proof. Let A be an attractor of D(fC). Since T is complete in D(fC), there exists a
minimal trap space T ∈ T such that A ⊆ T . Therefore, A ⊆ T ⊆ P .

52 4.2. Introduction to model checking

(a)

110 111

100 101

010 011

000 001

(b)

110 111

100 101

010 011

000 001

Figure 4.1: (a) Asynchronous dynamics of the Boolean function f(x) = (x1x̄3 ∨ x̄2, x1x̄3 ∨
x2x3, x̄1x̄2 ∨ x2x3) with two steady states 110 and 011 and (b) asynchronous dynamics
of the controlled function fC = (x̄2 ∨ x1, x1, 0), with C = {(3, 0)}. Transitions that vary
between AD(f) and AD(fC) are marked in red. Attractors are marked in bold with gray
background. A green rectangle marks the subspace associated to the control intervention
∗∗0. C is a control strategy for P = 110 in AD(f). Bn does not percolate to P nor to any
non-trivial trap space under fC . T = 110 ⊆ P (in gray) is the only minimal trap space of
fC and is complete in D(fC).

Proposition 4.1.2 provides sufficient conditions that allow us to identify new control
strategies missed by percolation-based approaches. An example of such a control strategy
is shown in Figure 4.1. Bn percolates to the subspace S under fC and S is not a selected trap
space nor included in the target P . Since fC is complete in AD(fC) and its only minimal
trap space is contained in P , C is identified as a control strategy. Completeness of the
minimal trap spaces can be detected using model checking as described in [KS15]. We refer
to this approach for control strategy identification as the completeness approach. Although
the completeness approach might increase the amount of control strategies identified, it
still does not characterize all the possible control strategies satisfying Definition 2.2.6.
Figure 4.2 shows an example of a set of interventions C that is a control strategy for the
target P . Although Bn percolates to S under fC and S is the unique trap space in fC ,
S * P and Proposition 4.1.2 cannot be applied. Thus, C is not detected as a control
strategy by the completeness approach.

Motivated by the potential of model checking to verify the completeness of a network,
in the following sections we formulate a model-checking approach to obtain the full solution
set of control strategies.

4.2 Introduction to model checking

This section provides a practical introduction to the model checking concepts required
for the description of our approach. For a more extensive and detailed explanation of
model checking we refer the reader to [BK08]. Model checking is a formal method used

Chapter 4. Exhaustive approach 53

(a)

0110 0111 1110 1111

0010 0011 1010 1011

0000 0001 1000 1001

0100 0101 1100 1101

(b)

0110 0111 1110 1111

0010 0011 1010 1011

0000 0001 1000 1001

0100 0101 1100 1101

Figure 4.2: The asynchronous dynamics of a Boolean function f(x) = (x1x̄2 ∨ x̄1x3x4 ∨
x1x2x̄4∨x1x2x3, x1x4∨x̄1x2x3x̄4∨x̄2x3x4∨x2x̄3x4, x̄2x̄3x̄4∨x1x2x4∨x̄1x̄2x3x4∨x̄1x2x̄3x̄4,
x1x2∨x1x4∨x̄2x̄3x̄4∨x3x4) and the corresponding controlled function fC(x) = (0, x2x3x̄4∨
x̄2x3x4∨x2x̄3x4, x̄2x̄3x̄4∨x̄2x3x4∨x2x̄3x̄4, x̄2x̄3x̄4∨x3x4), with C = {(1, 0)}, are represented
in (a) and (b) respectively. Transitions that vary between AD(f) and AD(fC) are marked
in red. Attractors are marked in bold with gray background. A green rectangle marks the
subspace associated to the control intervention 0∗∗∗. C is a control strategy for P = 00∗∗
in AD(f). Bn does not percolate to the target P nor to any other trap space under fC .
Since T = 0∗∗∗ is the unique trap space of fC and T * P , C would not be identified as
control strategy by the completeness approach.

in computer science to solve verification problems. Its application to the control strategy
problem presents many advantages, for instance the use of symbolic representation, which
allows one to deal with systems with a large number of states, like STGs of Boolean
networks. Moreover, many efficient algorithms have been developed and are available for
running model checking queries. An overview of existing model checking tools in the
context of biochemical networks analysis can be found in [CGR12].

Model checking allows one to verify whether a given transition system satisfies a specific
property. A transition system is defined as a set of states and a set of transitions, which
represent changes from one state to another. Here we define a labeled transition system
(LTS) as a tuple (S,T, L) where S is a finite set of states, T ⊆ S× S is a transition relation
such that (x1, x2) ∈ T if there exists a possible transition from state x1 to state x2 and
L : S → 2AP is a labeling function with AP a finite set of atomic propositions. In the
following, a transition (x1, x2) will also be denoted by x1 → x2. The labeling function
L gives a set L(x) ∈ 2AP of atomic propositions for each state x which includes exactly
the atomic propositions satisfied by x. In the Boolean context, an STG defines an LTS,
where the set of states is Bn and the transitions are defined by the Boolean function and
the type of update that is chosen. For our purposes, we need a deadlock-free transition
system, so we add extra transitions (x, x) ∈ T for every steady state x ∈ Bn. We use the
atomic propositions AP = {(v = c) | v ∈ V, c ∈ B} and define the labeling function by
(v = c) ∈ L(x) if and only if xv = c.

54 4.3. Control with model checking

There are different ways to express properties of a transition system. In our case, we
use Computation Tree Logic (CTL). CTL is based on a branching notion of time, where the
behavior of the system is represented by a tree of states. In the case of Boolean networks,
one can imagine that every path starting in a state x ∈ Bn is represented as a branch in a
tree rooted in x. In the following we introduce the main concepts of CTL.

We distinguish between state properties and path properties. In this context, a path
is an infinite sequence x0, x1, . . . ∈ S such that (xi−1, xi) ∈ T for all i ≥ 1. A statement
about a state or a path can be made using a CTL formula. A CTL state formula φ over
the set of atomic propositions AP is of the form

φ := a | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | Eϕ | Aϕ

where a ∈ AP is an atomic proposition, E is the exists operator, A is the for all
operator, φ, φ1 and φ2 are CTL state formulas and ϕ is a CTL path formula, which in our
work will be of the form:

ϕ := Fψ | Gψ

where F is the future operator, G the global operator and ψ a CTL state formula.
Note that we do not use the full expressiveness of CTL but only a subset of operators
necessary to formulate our control queries. In accordance to the definition of semantics of
CTL formulas, a state formula is evaluated for a state whereas a path formula is evaluated
for an infinite path. When φ = a, where a is an atomic proposition, if a ∈ L(x) we say
that the CTL state formula φ is satisfied at the state x and we write x |= φ. For example,
if φ = (i = 1) for some i ∈ V , then x |= φ if (i = 1) ∈ L(x), that is xi = 1. Analogously, we
write π |= ϕ when the CTL path formula ϕ is satisfied by a path π. See Table 4.1 for the
recursive definition of the satisfaction relation |= for transition systems and CTL formulas
used in this work. Since we only use atomic propositions of the form (v = c) where v ∈ V
and c ∈ B and (v = c) ∈ L(x) if and only if xv = c, atomic propositions can be interpreted
in each state x according to the values of each variable in x. Thus, to simplify the notation,
given an atomic proposition φv,c = (v = c), we define φv,c(x) = (xv = c) so that φv,c is
satisfied by x if and only if φv,c(x) = true. Figure 4.3 shows some examples of state and
path formulas which are satisfied in an STG.

4.3 Control with model checking

In this section, we present the basis of our new approach for the identification of all the
minimal control strategies, based on model checking. To do so, we express the definition

Chapter 4. Exhaustive approach 55

x |= true
x |= a iff a ∈ L(x)
x |= φ1 ∨ φ2 iff x |= φ1 or x |= φ2
x |= φ1 ∧ φ2 iff x |= φ1 and x |= φ2
x |= ¬φ iff x 2 φ
x |= Eϕ iff ∃π ∈ Paths(x) s.t. π |= ϕ
x |= Aϕ iff ∀π ∈ Paths(x), π |= ϕ
π |= Fφ iff ∃y ∈ π s.t. y |= φ
π |= Gφ iff ∀y ∈ π, y |= φ
x |= EFφ iff ∃π ∈ Paths(x), ∃y ∈ π s.t. y |= φ
x |= AGφ iff ∀π ∈ Paths(x), ∀y ∈ π, y |= φ

Table 4.1: Satisfaction relation and semantics for the CTL formulas used in this work, with
a ∈ AP an atomic proposition, x ∈ S a state, π a path in the transition system, ϕ a path
formula and φ, φ1 and φ2 state formulas.

of control strategy for a target subset in terms of CTL formulas. We start by rewriting it
in terms of paths.

Lemma 4.3.1. Let f be a Boolean function, P ⊆ Bn a subset, C a set of interventions and
S a subspace such that Bn percolates to S under fC. The following are equivalent:

(i) C is a control strategy for P in D(f).

(ii) For every x ∈ S there exists y ∈ P such that there exists a path in D(fC) from x to
y and there does not exist any path in D(fC) from y to any state outside P (that is,
all paths starting at y are contained in P).

Proof. (⇒) Let x ∈ S and let A be an attractor of D(fC) that can be reached from x.
Since C is a control strategy, A ⊆ P . Take y ∈ A. Since A is reached from x, there exists
a path from x to y ∈ A ⊆ P and there are no paths from y leaving P .

(⇐) Let A be an attractor of fC . Let x ∈ A. Since x ∈ A ⊆ S, there exists y ∈ P such
that there exists a path in D(fC) from x to y and there does not exist any path in D(fC)
from y to any state outside P . Since A is an attractor, y ∈ A and ReachD(fC)(y) = A.
Then, A ∩ Bn\P = ∅, that is, A ⊆ P , and C is a control strategy for P .

Before expressing Lemma 4.3.1 in terms of CTL formulas, we introduce a state formula
ψS that is satisfied at a state x if and only if the state x belongs to the subspace S = Σ(I, c):

ψS(x) =
∧
i∈I

(xi = ci).

56 4.3. Control with model checking

(a)

110 111

100 101

010 011

000 001

(b)

110 111

100 101

010 011

000 001

Figure 4.3: (a) Asynchronous state transition graph of a Boolean function with two at-
tractors, {101} and {010, 110} (marked in gray). (b) TS for the STG shown in (a). Note
that a self-loop has been added in the steady state 101 to have a deadlock-free TS. The
states 001, 011, 101 and 111 satisfy the state formula AGφ3, where φi = (i = 1), while
EFφ3 is satisfied in all the states except 010 and 110. The path that starts at 000 and
then oscillates between 010 and 110 (in red) satisfies for instance Fφ2 and G¬φ3 but not
Gφ1.

This formulation can be extended to subsets as well. Clearly, every subset can be
written as a union of subspaces, since a singleton set constitutes a subspace. Let P ⊆ Bn

be a subset. We define φP to be satisfied at a state x if and only if the state x belongs to
P :

φP (x) =
∨
S∈S

ψS(x)

where S is a subspace cover of P .

Now we can express Lemma 4.3.1 in terms of CTL formulas, using φP (x) as defined
above.

Proposition 4.3.2. Let f be a Boolean function, P ⊆ Bn a subset, C a set of interventions
and S a subspace such that Bn percolates to S under fC. The following are equivalent:

(i) C is a control strategy for P in D(f).

(ii) ΦP (x), defined as ΦP (x) = EF(AG(φP))(x), is satisfied in D(fC) for every x ∈ S.

Proof. ΦP is satisfied at a state x if and only if there exists a path x = x0, x1, ... such that
AG(φP) is satisfied at xi for some i ≥ 1. Let y = xi. AG(φP) is satisfied at y if and only
if for all paths y = y0, y1, ..., for all i ≥ 0, φP is satisfied at yi, that is, yi ∈ P . Thus, by
Lemma 4.3.1, ΦP is satisfied for all x ∈ S if and only if C is a control strategy for P in
D(f).

Chapter 4. Exhaustive approach 57

Note that ΦP is not affected by the presence of non-attractive cycles since, by definition,
they contain at least one state with an outgoing trajectory leading to an attractor.

The CTL formula ΦP defined in Proposition 4.3.2 provides a way to determine whether
a set of interventions is a control strategy for P . The next section presents the implemen-
tation of this idea for control strategy identification.

4.4 Implementation

Given a set of interventions C, we can determine whether C is a control strategy for a
target P by checking whether the CTL formula ΦP (x) is satisfied for the conditions in
Proposition 4.3.2. However, running a CTL query in a large state space might entail
a long computational time. To overcome this problem, we develop some preprocessing
methods for the computation of node control strategies to reduce two factors affecting
significantly the computational time: the dimension of the state space in which the query
is run and the number of interventions to check. We start by giving an overview of the
main algorithm for control strategy identification, clarifying the differences for node and
edge control. Then, we go into details on some of the reduction methods developed.

4.4.1 Main algorithm

Building on the model checking formulas derived in the previous section, we develop a
method for control strategy identification. The formula derived in Proposition 4.3.2 can be
used to define a CTL query that can determine whether a candidate set of interventions is
a control strategy for a target subset.

The main algorithm takes as inputs a constant-free Boolean function f (i.e. all coor-
dinate functions of f are non-constant), a target subset P , the type of update D (asyn-
chronous, synchronous or generalized), the limit size of the control strategies k and the
(possibly empty) list of forbidden interventions avoid int and returns the minimal con-
trol strategies for P in the respective dynamics. If the original Boolean function is not
constant-free, a preprocessing step is applied in which the constant function values are
percolated.

In order to improve the performance of the method, instead of exploring the whole
state space for every candidate intervention, it is enough to explore the subspace obtained
when percolating the state space under fC , that is, S∗ = F ∗(fC)(Bn). Note that S∗ is a
trap space of fC , since it is the percolated subspace of the trap space Bn. As discussed in
Section 2.1.1, this reduction to the percolated subspace does not miss any of the attractors

58 4.4. Implementation

(see Proposition 2.1.7). Thus, the result of the exploration using the model checking
query applied to the function restricted to S∗ in the reduced space is equivalent to the
result of the exploration in the full state space with the original controlled function. The
complete implementation of the control strategy identification for node control is detailed
in Algorithm 2 and explained in the following.

• For each candidate intervention set C, the percolated subspace of Bn under fC , S∗ =
Σ(I∗, c∗), is computed (line 9), as defined in Section 2.1.1. By Proposition 4.3.2, the
control query can be run on S∗.

• If S∗ is contained in the target subset P , then C is a control strategy by Proposi-
tion 3.1.1 (lines 12-13). If not, the algorithm continues to compute the restriction to
S∗ (see Definition 2.1.5), f∗, and its minimal trap spaces (lines 16-17).

• If there exists a minimal trap space disjoint from the target, the candidate interven-
tion set is discarded, since each minimal trap space contains at least one attractor
(line 18).

• Trap spaces that are partially contained in the target subset are analyzed first (line
19). For each trap space T ′, the function f∗ is restricted to T ′, and the control query
is run for the new restricted function f∗∗ (lines 22-24). By Proposition 2.1.7, the
control formula needs to be satisfied in each of the trap spaces in order to be satisfied
in S∗. Thus, if there is a trap space where the formula is not satisfied, the candidate
intervention set is discarded (lines 24-27).

• Otherwise, the algorithm concludes by checking the CTL formula ΦP for f∗ and
deciding whether C is a control strategy (lines 29-30).

Since the aim is to identify minimal control strategies, the candidate intervention sets
C are taken randomly fixing an increasing number of variables, so that supersets of sets
already defining a successful intervention strategy are not considered (lines 5-8). Note that
the forbidden interventions avoid intv, which can be determined by the biological control
problem or by a preprocessing step that discards a priori some candidate interventions,
are excluded (line 6). Furthermore, an upper bound k for the size of the control strategies
can be set. Moreover, the decisions made for each percolated subspace are stored in two
variables ST (for positively checked subspaces) and SF (for negatively checked subspaces)
to avoid repeating the same verification query.

The algorithm presented above is implemented using PyBoolNet [KSS16], a Python
package that allows generation and analysis of Boolean networks. PyBoolNet uses NuSMV
to decide model checking queries for Boolean networks. It also provides an efficient compu-
tation of trap spaces for relatively large networks. The source code of the implementation
of Algorithm 2 is available at [CFb].

Chapter 4. Exhaustive approach 59

Algorithm 2 Node control strategies for a target subset P

Input: f Boolean function, P target, D update, k limit size, avoid intv forbidden
interv.

Output: control strategies for P

1: function ControlStrategies(f , P , D, k)
2: CS ← ∅
3: ST ← ∅ . ST stores positively checked subspaces
4: SF ← ∅ . SF stores negatively checked subspaces
5: for i in {1, . . . , min(k, n)} do: . n: number of variables of f
6: C ← {C intervention sets : |C| = i and C ∩ avoid intv = ∅}
7: for C in C do:
8: if (C 6⊆ C′ for all C′ in CS) then:
9: S∗ ← F ∗(fC)(Bn)

10: if S∗ ∈ ST then: add C to CS

11: if S∗ ∈ ST ∪ SF then: break

12: if S∗ ⊆ P then:
13: add C to CS
14: add S∗ to ST
15: else:
16: f∗ ← reduce(f, S∗)
17: minTS ← minimalTrapSpaces(f∗)
18: if (T ∩ P 6= ∅ for all T in minTS) then:
19: halfTS ← {T in minTS if T * P}
20: valid ← true
21: for T in halfTS do:
22: f∗∗ ← reduce(f∗, T)
23: ΦP ← CTLFormula(f∗∗, P)
24: if not CTLModelChecking(f∗∗, D, ΦP) then:
25: valid ← false
26: add S∗ to SF
27: break
28: if valid then:
29: ΦP ← CTLFormula(f∗, P)
30: if CTLModelChecking(f∗, D, ΦP) then:
31: add C to CS
32: add S∗ to ST
33: else
34: add S∗ to SF
35: else
36: add S∗ to SF
37: return CS

60 4.4. Implementation

Edge control

Some of the reductions used in the previous algorithm to identify node control strategies
are less effective or directly not applicable when considering edge interventions. One of the
reasons is that the application of a generic edge intervention does not necessarily cause the
fixing of a regulatory function to a constant value. In fact, often no regulatory function
gets fixed. Consequently there is none or very little percolation and the dimensionality
reduction associated to it has no impact. Moreover, the storing of the decisions made for
each percolated subspace is not useful anymore since it would also be necessary to store
the corresponding controlled function for which the subspace is a control strategy, which
would take too much memory. Consequently, the algorithm for edge control presented here,
Algorithm 3, is a basic approach and would require the implementation of performance
improvements to be able to deal with relatively large biological networks. For this reason,
the examples shown in the application section (Section 4.5) are limited to node control.

4.4.2 Reduction methods

In order to reduce the computational time of the control query, we develop different reduc-
tion methods to simplify the network or the candidate intervention space. The following
simple reduction techniques are applicable to node and edge control and any type of target.

The first step in Algorithms 2 and 3 is to reduce the search to the percolated subspace S
of Bn under the controlled function fC . Since S is a trap space for fC , by Proposition 2.1.7,
we can restrict the controlled function to S and the result of the control query for fCS in S
is equivalent to the result for fC in Bn. Thus, we can reduce the dimensions of the search
space and the controlled function. Since Boolean networks modeling biological systems
often induce a large amount of value propagation, in node control this usually results in
a considerable reduction in the dimension of the state space and controlled function that
leads to a significant reduction of the computational time.

Another simple check that can be done is to detect whether the target requires the fixing
of input components. Since input components are not regulated by any other variable, the
only way of getting them fixed to a desired value is by controlling them directly. Thus,
these components are always part of all the control strategies. For this reason, before
the algorithm starts, a preprocessing step is performed to detect whether there are input
components among the fixed components in the target. If they are either free in the
network, that is, not fixed to any value, or fixed to the opposite value than the one in the
target, they are automatically added to the resulting control strategy and removed from
the intervention candidate pool. Although this reduction is valid for any type of target
that requires the fixing of input components, it is particularly useful when the target is a
steady state, since all the inputs of the network need to be fixed.

Chapter 4. Exhaustive approach 61

Algorithm 3 Edge control strategies for a target subset P

Input: f Boolean function, P target, D update, k limit size, avoid intv forbidden
interv.

Output: control strategies for P

1: function ControlStrategies(f , P , D, k, avoid intv)
2: CS ← ∅
3: for i in {1, . . . , min(k, n)} do: . n: number of variables of f
4: C ← {C intervention sets : |C| = i and C ∩ avoid intv = ∅}
5: for C in C do:
6: if (C 6⊆ C′ for all C′ in CS) then:
7: S∗ ← F(fC)(Bn)
8: if S∗ ⊆ P then:
9: add C to CS

10: else:
11: f∗ ← reduce(f, S∗)
12: minTS ← minimalTrapSpaces(f∗)
13: if (T ∩ P 6= ∅ for all T in minTS) then:
14: halfTS ← {T in minTS if T * P}
15: valid ← true
16: for T in halfTS do:
17: f∗∗ ← reduce(f∗, T)
18: ΦP ← CTLFormula(f∗∗, P)
19: if not CTLModelChecking(f∗∗, D, ΦP) then:
20: valid ← false
21: break
22: if valid then:
23: ΦP ← CTLFormula(f∗, P)
24: if CTLModelChecking(f∗, D, ΦP) then:
25: add C to CS
26: return CS

62 4.4. Implementation

More complex reduction steps can also be designed to reduce the computational time.
In the following, we present some of them. They are applicable to node control taking a
subspace as target, unless specified otherwise. We divided them into two types depending
whether they focus on reducing the state space where the control query is checked or on
reducing the candidate intervention space in order to diminish the number of calls to the
control query.

Reduction by restricting to smaller regions of the state space

We recall the concept of autonomous set and the methodology developed in [KS15] to
reduce the computational time for determining whether a Boolean network is complete, to
adapt it to the method of control strategy identification. The idea is to define necessary
conditions for a set of interventions to be a control strategy in terms of the autonomous
sets of the interaction graph.

Given a Boolean function f and a set of components U ⊆ V , we define Above(U) as
the set {i ∈ V | ∃ path in IG(f) from i to some u ∈ U}. We say that U is autonomous if U
= Above(U). Note that when U is an autonomous set, for any u ∈ U , fu does not depend
on the value of any component i /∈ U . Now we recall the restriction of a Boolean function
to a subspace S, fS , as defined in Definition 2.1.5. In particular, given an autonomous
set U and I = V \U , we observe that fS = fS′ for any two subspaces S = Σ(I, c) and
S′ = Σ(I, c′), with c, c′ ∈ Bn. Thus, the choice of c is not relevant. From now on we write
fU to represent any of these restrictions. Analogously, we define πU and ιU . The following
remark extends Remark 2.1.6 to autonomous sets.

Remark 4.4.1. For any autonomous set U and any two states x, y ∈ Bn, if there is a path
from ιU (x) to ιU (y) in D(fU) then there is a path from x to y in D(f) and vice versa.

The following proposition and corollary establish a necessary condition for a set of
interventions to be a control strategy based on autonomous sets. They state that, given a
set of interventions C, it is necessary that all the autonomous sets of the controlled system
(fC) satisfy the control strategy query in order for a set of interventions C to be a control
strategy. To ease the notation in the proposition, we consider a Boolean function f and an
empty set of interventions C = ∅. Note that, given a Boolean function f and a non-empty
set of interventions C 6= ∅, C is a control strategy for a given target P in D(f) if and only
if C′ = ∅ is a control strategy for P in D(fC).

Proposition 4.4.2. Let f be a Boolean function, P = Σ(I, c) a subspace and U ⊆ V
an autonomous subset in IG(f) such that I ∩ U 6= ∅. If ∅ is not a control strategy for
P ′ = Σ(I ′, c) with I ′ = I ∩ U in D(fU), then ∅ is not a control strategy for P in D(f).

Chapter 4. Exhaustive approach 63

Proof. ∅ is not a control strategy in D(f) iff there exists x ∈ Bn such that for all π ∈
PathsD(f)(x), for all y ∈ π, there exists a path in D(f) from y to some z ∈ Bn\P . Assume
∅ is not a control strategy for P ′ in D(fU). Then there exists an x̃ ∈ Bm, with m = |U |,
such that for all π̃ ∈ PathsD(fU)(x̃), for all ỹ ∈ π̃, there exists a path in D(fU) from ỹ to
some z̃ ∈ Bm\P ′. Take x ∈ Bn such that x = ιU (x̃). Let π ∈ PathsD(f)(x) and y ∈ π.
By Remark 4.4.1, there exists a path in D(fU) from x̃ to ŷ with y = ιU (ŷ). Then, there
exists a path in D(fU) from ŷ to some ẑ ∈ Bm\P ′. By Remark 4.4.1, there exists a path
in D(f) from y to z ∈ Bn with z = ιU (ẑ). Since ẑ ∈ Bm\P ′, there exists i ∈ I ′ ⊆ I such
that zi = ẑi 6= ci and, consequently, z ∈ Bn\P . Therefore ∅ is not a control strategy for P
in D(f).

Corollary 4.4.2.1. Let f be a Boolean function, C a set of interventions, P = Σ(I, c) a
subspace. C is not a control strategy for P if there exists an autonomous subset U ⊆ V in
IG(fC) such that I ∩U 6= ∅ and ∅ is not a control strategy for P ′ = Σ(I ′, c) with I ′ = I ∩U
in D(fCU).

Corollary 4.4.2.1 allows us to define an algorithm to check if there exists an autonomous
set not satisfying this requirement and therefore discard the candidate intervention set
without having to check the control query in the whole state space.

The use of Corollary 4.4.2.1 as a performance improvement depends on the target
subspace and the type of the network. If the Above set of the components defining the
target subspace is large, the reduction applied might not be significant. This can occur
when the components describing the target are outputs of the system, since they are
likely to be influenced directly or indirectly by most of the components of the network.
In such cases, the checking of autonomous sets should be avoided since they could lead
to an increase of the total computational time. In cases where the Above set of the
target components is small, checking autonomous sets first could significantly reduce the
computational time.

Reduction of the candidate space

In this section, we present two methods for reducing the candidate intervention space. The
first one is adapted to control problems taking a subspace as target, while the second is
only discussed for control problems targeting a minimal trap space. Both of them are only
developed for node control, although the first one could potentially be extended to edge
control.

The first reduction method is introduced by Samaga et al. for the control identification
method by direct percolation [SKK10]. The key idea is to use the dependency between
variables, derived from the interaction graph (IG), to discard a priori unsuccessful candidate
interventions. A node i has a positive (resp. negative) dependency on a node j if there

64 4.5. Application

exists a directed positive (resp. negative) path from i to j in the IG. These dependencies
can be used to avoid considering interventions that do not influence correctly at least one
target node [SKK10]. Given a target subspace P = Σ(J, d), a candidate node intervention
(i, c) is considered if and only if there exists a path from i to some j ∈ J with positive sign
for c = dj and negative sign for c 6= dj . This property, encoded in the ASP implementation
of the node control for direct percolation presented by Kaminski et al. [KSSV13] and
recalled in this work (Section 3.3.2, Listing 3.3), allows us to discard a priori candidate
interventions that will not have the desired effect on the control target.

The second reduction method is based on marker sets and it is discussed here for control
problems targeting a minimal trap space. Borriello and Daniels [BD21] explored the idea
of using distinguishing components to identify candidate node interventions for attractor
control. Here we formalize this idea for minimal trap spaces using marker sets. Marker sets
are usually defined as sets of components that separate attractors or phenotypes [KTF+21].
Here we extend the concept of marker set to distinguish a minimal trap space from the
others.

Definition 4.4.3. Let f be a Boolean function and M ⊆ V . M is a distinguishing marker
set for a minimal trap space T = Σ(I, c) in f if, given any other minimal trap space
T ′ = Σ(J, d), T 6= T ′, there exists i ∈ I ∩ J ∩M such that ci 6= di.

We can use distinguishing marker sets to identify candidate nodes for control interven-
tion.

Proposition 4.4.4. Let f be a Boolean function, P a minimal trap space of f , N a node
control strategy for P in D(f) and M the set of distinguishing marker sets separating P
from the rest of the minimal trap spaces of f . Then there exists an M ∈ M such that for
all i ∈M , (i, c) ∈ N for some c ∈ B.

Proposition 4.4.4 provides us with necessary conditions that a node control strategy
must satisfy in terms of the marker sets. Since computing the marker sets is much faster
than exhaustively identifying control strategies, the marker information can be used as a
preprocessing step, so that the number of candidate subspaces to check is reduced.

4.5 Application

In this case study, we look at node control strategies for the MAPK network analyzed in
the previous chapter (see Section 3.4 for a full description of the network). We start by
targeting the subspace defined by the apoptotic phenotype in asynchronous, synchronous
and general asynchronous updates. We compare the node control strategies identified by

Chapter 4. Exhaustive approach 65

Table 4.2: Number and size of the control strategies identified by each method (DP, TS,
CO, CN, and MC) for the corresponding target subspace in the asynchronous, generalized
asynchronous and synchronous dynamics. The numbers in parenthesis denote the amount
of truly minimal control strategies identified by each method.

Asynchronous and
Generalized Asynchronous

Synchronous

Method |N | = 1 |N | = 2 |N | = 3 |N | = 1 |N | = 2 |N | = 3

DP 2 124 (59) 175 (45) 2 124 (88) 175 (49)
TS 2 0 0 1 0 0
CO 3 106 (59) 162 (45) 2 124 (88) 175 (49)
CN 8 105 66 2 164 (112) 195 (155)
MC 8 105 66 4 118 216

the methods for permanent control presented in Chapter 3 (direct percolation (DP), via
trap spaces (TS) and combined (CO)) to the ones identified by completeness (CN) and
model checking (MC). We also deal with attractor control in the asynchronous update
and compare the control strategies obtained targeting the four steady states selected in
Section 3.4 (s1, s

′
1, s2, s

′
2). As expected, percolation-based approaches (DP, TS and CO)

are significantly faster than the completeness and exhaustive approaches. The running
times are in the order of milliseconds for the ASP-based approaches (DP, TS and CO)
while both the completeness and model checking approaches require several hours. In all
the cases, the exhaustive approach is able to identify new control strategies missed by
direct percolation and via trap spaces.

4.5.1 Target: apoptotic phenotype

Table 4.2 shows the number of control strategies up to size 3 obtained by each method
for the different dynamics. The control strategies for asynchronous and generalized asyn-
chronous dynamics are represented in the same column since they are the same in all the
approaches. Note that although all the methods look for minimal control strategies un-
der inclusion, only the exhaustive approach is able to guarantee that no smaller control
strategy exists. Thus, the control strategies identified by non-exhaustive methods might
not be minimal with respect to all the strategies. The numbers in parenthesis in Table 4.2
denote the amount of truly minimal control strategies identified by each method. Note that
the exhaustive approach is able to uncover new minimal control strategies with respect to
percolation-based methods in all the dynamics.

As mentioned in the previous chapter, the control strategies identified by direct per-
colation are the same in all the updates. The minimal trap spaces of the network are

66 4.5. Application

a good approximation of the attractors (see Chapter 2) for the MAPK network in the
asynchronous and generalized dynamics but not in the synchronous one. Consequently, no
additional control strategy is identified by TS compared to DP in the synchronous dynam-
ics. CN and MC obtain the same number of control strategies in the asynchronous and
generalized dynamics. This is not the case in the synchronous dynamics, where additional
control strategies are obtained by MC. This might be caused by the fact that the CN
method cannot decide on a set of interventions being a control strategy if the controlled
network is not complete, which is more likely to happen when the original network is not
complete.

The eight minimal control strategies of size 1 identified for the apoptotic phenotype in
the asynchronous and generalized asynchronous dynamics are

{(TGFBR-stimulus, 1)}, {(TGFBR, 1)}, {(DNA-damage, 1)}, {(ATM, 1)},
{(FRS2, 1)}, {(GRB2, 1)}, {(TAK1, 1)}, {(TAOK, 1)}

and the four in the synchronous dynamics,

{(TGFBR-stimulus, 1)}, {(TGFBR, 1)}, {(DNA-damage, 1)}, {(ATM, 1)}

Note that the four control strategies identified for the synchronous dynamics are also
control strategies in the other updates. Moreover, the first three are identified by direct
percolation or via trap spaces while the last five are only identified by the completeness
method and the exhaustive approach.

4.5.2 Target: minimal trap spaces

We now consider attractor control in the asynchronous update. As in Section 3.4.2, we
choose as targets the steady states s1, s

′
1, s2, s

′
2, with s1, s

′
1 ∈ S1 = {EGFR-stimulus =

0, FGFR3-stimulus = 0, TGFBR-stimulus = 0 and DNA-damage = 0} and s2, s
′
2 ∈ S2 =

{EGFR-stimulus = 0, FGFR3-stimulus = 0, TGFBR-stimulus = 0 and DNA-damage =
1}. Table 4.3 shows the number and size of the node control strategies up to size 7 (the
number of inputs plus three) of these four steady states identified by each method.

We observe that in all the cases CN and MC are able to identify minimal control
strategies of size 5, while DP does not find any and TS can only find them for two of the
four steady states. Interestingly, all the control strategies of size 5 have the same structure:
four of the five node interventions fix the inputs to the right value and the fifth variable
is either GAB1 or PI3K. In the interaction graph of the MAPK network (Figure 3.8),
we can observe that these two variables form a positive cycle of length 2 which might be
responsible for the multi-stability within S1 and S2 after the four input components have

Chapter 4. Exhaustive approach 67

Table 4.3: Number and size of the control strategies identified by the different methods up
to size 7 for the different steady states in asynchronous dynamics. Note that there is no
control strategy up to size 4. s1 and s′1 denote the two steady states in S1 and s2 and s′2
the two steady states in S2.

Node control s1 s′1 s2 s′2
|N | 5 6 7 5 6 7 5 6 7 5 6 7

DP 0 0 60 0 0 32 0 14 2 0 14 2
TS 2 0 0 0 8 12 0 22 14 2 0 0
CO 2 0 0 0 8 12 0 22 14 2 0 0
CN 2 0 0 2 0 0 2 0 0 2 0 0
MC 2 0 0 2 0 0 2 0 0 2 0 0

been fixed. In particular, either GAB1 or PI3K needs to be set to 1 to guarantee that
system will evolve to s1 or s′2 and to 0 for s′1 or s2.

4.6 Discussion

In this chapter we presented an approach based on model checking to identify all the
minimal control strategies for an arbitrary target subset. As shown in Section 4.5, the model
checking approach is able to uncover many relevant control strategies that would be missed
by other non-exhaustive methods. Moreover, it provides full flexibility on the definition of
the control target, allowing to study different control problems such as attractor avoidance,
which can lead to gain additional insights into the network. In particular, this approach is
specially interesting when a deep analysis of the control strategies of the model is required,
as shown in the following chapter.

Due to its exhaustiveness, this approach entails significantly more computational time
than other approaches, such as direct percolation or trap spaces (Chapter 3), since in
some cases the full exploration of the state space might be required. For this reason,
we developed several reduction methods for our approach to diminish the computational
time and make it feasible for application. As seen in Section 4.5, our approach is able to
deal with relatively large biological networks for node control. Further reduction methods
should be developed for edge control to make it accessible for state-of-the-art biological
networks, such as the extension of the reduction methods for node control to edge control
or the identification of equivalent intervention sets.

Chapter 5

Application

In this chapter, we study more extensively the applicability of the methods for control
strategy identification presented in Chapters 3 and 4. We start by applying our methods
to a network modeling the epithelial-to-mesenchymal transition, considering different con-
trol targets: attractor, subspace and subset avoidance, and studying both node and edge
interventions. We analyze the different control strategies obtained for the asynchronous
dynamics in each case and explore their relevance in the biological context. In the second
section, we compare our approaches to current control methods for attractor and target
control considering different dynamics in multiple Boolean networks. All the results pre-
sented here were obtained with a regular desktop 8-processor computer, Intel®CoreTM

i7-2600 CPU at 3.40GHz, 16GB memory.

The results for permanent node control presented in this chapter are published in
Cifuentes-Fontanals et al. [CFTS22b, CFTS22c] and included here with the permission of
the co-authors.

5.1 Case study: EMT network

The network considered in this case study was recently introduced by Selvaggio et al.
[SCP+20] to model how micro-environmental signals influence cancer-related phenotypes
along the epithelial-to-mesenchymal transition (EMT). During the EMT, epithelial cells
progressively lose connections with their neighboring cells, which are held together laterally
by tight junctions and adherens junctions (AJ), to adopt a migratory capacity, mediated
by the remodeling of focal adhesions (FA) [DW19, SCP+20]. Moreover, this transition is
reversible, since mesenchymal cells can lose their migratory capacities and return to the
epithelial state (mesenchymal-to-epithelial transition, MET). Hybrid phenotypes can be

68

Chapter 5. Application 69

Figure 5.1: EMT multi-valued network. Boolean nodes are represented by ellipses and
multi-valued nodes by rectangles. Input and output nodes are colored in gray and black
respectively. Image obtained using GINsim [CNT12], model from [SCP+20]. Further
information about the model can be found in [SCP+20].

found at intermediate states between these transitions and often show traits from epithelial
and mesenchymal cells, which may provide advantageous abilities to cancer cells such as
drug resistance or tumor-initiating potential [SCP+20, DW19].

To model this process, Selvaggio et al. (2020) created a network consisting of 51
components (see Figure 5.1). The ten inputs of the model aim to capture the micro-
environmental signals and factors that can induce EMT. They represent cell-cell signaling
molecules (WNT, DELTA), growth factors (EGF, HGF), inflammatory signals (IL6, ROS,
TGFb), cell adhesion molecules (FAT4, RPTP) and the stiffness of the extracellular matrix
(ECM) [SCP+20]. The two multi-valued readouts of the model represent the qualitative
degrees of cell adhesions by adherens junctions (AJ) and focal adhesions (FA). The internal
components of the network are modeled by Boolean variables except for two, FAK-SRC and
ECad-AJ, both of them assigned to a three-level variable. The levels of FAK-SRC capture
different interactions happening at different activity levels, whereas the three levels of
ECad-AJ (0,1,2) represent whether the protein ECad is not located at the membrane, it

70 5.1. Case study: EMT network

Table 5.1: Relation of the phenotypes of the EMT network, the values of the multivalued
readouts (AJ, FA) in bold, and the values of the equivalent Boolean components (AJ1,
AJ2, FA1, FA2, FA3). The number of steady states belonging to each phenotype is also
shown.

AJ AJ1 AJ2 FA FA1 FA2 FA3
Number of

steady states

Epithelial phenotype E1 2 1 1 0 0 0 0 60

Hybrid phenotypes
H1 2 1 1 1 1 0 0 40
H2 1 1 0 2 1 1 0 36
H3 2 1 1 3 1 1 1 48

Mesenchymal phenotypes
M1 0 0 0 1 1 0 0 208
M2 0 0 0 2 1 1 0 368
M3 0 0 0 3 1 1 1 672

Undefined phenotype UN 0 0 0 0 0 0 0 20

is correctly located and bound to BCat-AJ and whether the stable complex (BCat-ECad-
p120) has been formed, respectively [SCP+20].

Since the original model is multi-valued, we work with its booleanised version obtained
with GINsim [CNT12]. This booleanisation maps a multi-valued component of maximum
value m to m Boolean components. For instance, a component taking four values FA =
0, 1, 2, 3 is encoded using 3 Boolean variables (FA1, FA2, FA3) that take values 000,
100, 110, 111 respectively to represent the four possible values of FA (see Table 5.1).
Although this method introduces states that do not correspond to any value of the multi-
valued variable (non-admissible states), these cannot be part of any attractor since they
always have at least one path to an admissible state and do not have incoming transitions
from admissible states. Therefore, the asymptotic behavior generated strictly replicates
the original model. The booleanised network of this case study consists of 56 Boolean
variables, whose regulatory functions can be found in the PyBoolNet repository [KSS16].

The asynchronous dynamics has 1452 attractors, all of them steady states. They are
classified into different phenotypes, which are defined in terms of the values of the readout
components AJ and FA. The presence of adherens junction (AJ > 0, FA = 0) is a feature of
epithelial states, whereas focal adhesions (FA > 0, AJ = 0) are displayed by mesenchymal
cells. Hybrid phenotypes are characterized by the presence of both traits (AJ > 0 and
FA > 0) [SCP+20]. This results in eight biological phenotypes, divided in four groups,
epithelial (E1), mesenchymal (M1, M2, M3), hybrid (H1, H2, H3) and unknown (UN),
according to the values of AJ and FA (see Table 5.1). Note that phenotypes are defined
according to the values of AJ and FA of the steady states. Thus, the value combinations
that are not present in any steady state do not appear as phenotypes.

Chapter 5. Application 71

We analyze different control targets for node and edge control. We start by targeting
single steady states (attractor control). Then, we target the subspaces corresponding to
each phenotype (target control). Finally, we study the avoidance of the hybrid phenotype,
setting as target the complement of the general hybrid phenotype. Since the exhaustive
approach considering edge interventions takes too long to be run for all steady states and
phenotypes, the results for edge control shown in Sections 5.1.1 and 5.1.2 are obtained
using the method combining direct percolation and trap spaces. The results for the hybrid
avoidance using node and edge interventions are obtained using the exhaustive approach.

5.1.1 Attractor control: steady states

Here we consider the problem of attractor control, starting with node control. Since the
control targets are steady states, the minimum number of interventions in each control
strategy is at least the number of inputs (each input component needs to be fixed to the
corresponding value in the attractor).

For each of the 1452 steady states, the minimal node control strategies up to size
13 are identified. 788 steady states have minimal control strategies of size 10, meaning
that the dynamics can be controlled to the steady state only by fixing the values of the
input components to their values in the attractor. Of the remaining ones, 396 need an
extra component to be fixed, 212 require fixing at least two more components and the last
56 steady states require fixing three extra components. Figure 5.2 shows the number of
minimal control strategies identified for each size (10-13) with steady states grouped by
phenotype, distinguishing between control strategies identified by the method combining
direct percolation and trap spaces or only by the model checking approach. Note that in
most of the cases the exhaustive approach is able to identify many control strategies that
are missed by the direct percolation and trap spaces combined approach.

By definition, every steady state is a selected trap space, thus all the control strategies
identified by direct percolation are also identified via trap spaces. Although most of the
steady states only have one selected trap space (the steady state itself), there are 32 steady
states that have an additional selected trap space. Control via trap spaces is able to identify
new control strategies for all these 32 steady states that are missed by direct percolation.
However, these new control strategies are supersets of the ones identified by the exhaustive
approach. Consequently, they are not minimal with respect to all the strategies and do
not appear in Figure 5.2.

In addition, we observe that the mesenchymal phenotypes are the ones with the highest
amount of control strategies, which is to be expected since they are also the ones containing
more attractors. The number of steady states per phenotype can be found in Table 5.1.
Interestingly, no control strategies consisting of only input variables lead to hybrid steady
states.

72 5.1. Case study: EMT network

Figure 5.2: Number of node control strategies identified for the steady states grouped by
phenotype and size. The minimal control strategies obtained by the combined method of
direct percolation and trap spaces are represented in red and the additional control strate-
gies identified by model checking in green. Non-minimal control strategies are excluded.
The number of steady states per phenotype can be found in Table 5.1.

Next, we consider both node and edge control. Figure 5.3 shows the amount of control
strategies obtained by the method combining direct percolation and trap spaces for each size
(10-13) with steady states grouped by phenotype, distinguished by the type of interventions
used: node, edge or both types. The amount of node-only and edge-only control strategies
of size 10 is the same, since these strategies consist of interventions that fix the inputs to the
values in the steady state. Since from the point of view of application edge interventions
targeting inputs are identical to the corresponding node interventions, we exclude these
edge interventions when computing mixed control strategies. For this reason, there are
no combined interventions of size 10. Steady states in the hybrid phenotype H3 have
significantly more control strategies using edge interventions than the rest of phenotypes.
These edge interventions could indicate crucial interactions in the decision making process
of the system leading to the steady states in H3.

Chapter 5. Application 73

Figure 5.3: Number of control strategies identified by the combined method of direct
percolation and trap spaces for the steady states grouped by phenotype and size. Note
that the number of control strategies is given in logarithmic scale. The control strategies
obtained by using only node or only edge interventions are represented in red and green
respectively, while the control strategies including both node and edge interventions are
represented in yellow. The number of steady states per phenotype can be found in Table 5.1.

5.1.2 Target control: phenotypes

The minimal node control strategies up to size 3 are identified for each of the phenotypes,
taking as target the subspace defined by the corresponding values of the phenotypic compo-
nents in each case (see Table 5.1). The five Boolean phenotypic components, representing
the two adhesion properties, are excluded from the candidate interventions, since they rep-
resent the readouts of the model that we want to control. Table 5.2 shows the number
of control strategies identified per phenotype and size. Note that no control strategies up
to size 3 are identified for E1 and H1. However, when the method is run with a larger
limit size, several control strategies of size 4 appear for both phenotypes. Similarly to the
case of attractor control, we observe that the phenotypes with higher number of control
strategies are the mesenchymal phenotypes (over a hundred), while the epithelial and the
hybrid phenotypes have fewer or no control strategies up to size 3. This is consistent with
the bias of the model towards the mesenchymal phenotypes in terms of attractors.

74 5.1. Case study: EMT network

Table 5.2: Number of minimal control strategies identified per size for each phenotype
using node control.

Phenotype E1 H1 H2 H3 M1 M2 M3 UN

Size 1 0 0 0 0 0 0 0 0

Size 2 0 0 0 0 3 3 17 0

Size 3 0 0 6 2 113 111 83 14

All of the minimal control strategies obtained are also identified by direct percolation,
except for three minimal control strategies for the phenotype M3 that are only identified
by model checking. These are: {BCat-AJ = 1, GSK3B = 1, ITG-AB = 1}, {ECad-AJ1=
1, GSK3B = 1, ITG-AB = 1} and {ECad-AJ2 = 1, GSK3B = 1, ITG-AB = 1}. The
method via trap spaces is only able to identify control strategies for the phenotypes M2
and M3 that are also identified by direct percolation.

Figure 5.4 shows a graphic representation of the components involved in the control
strategies of size 2 obtained for the M1, M2 and M3 phenotypes. We observe that the inter-
vention (ROS,1), where ROS is an input component that represents reactive oxygen species
present in the extracellular micro-environment, appears in at least one control strategy in
all three phenotypes. In fact, the intervention (ROS,1) is able to induce the suppression
of all the epithelial markers (ECad, ECad-AJ, BCat-AJ, miR200), AJ1 and AJ2, which
get fixed to 0, and the activation of FA1 and FA2, which get fixed to 1. Consequently,
(ROS,1) leads the system to the phenotypes M2 and M3. A second intervention is needed
to distinguish between these two phenotypes. Note that the intervention (ROS,1) is also
present in a control strategy for M1. In this case, the second intervention (PAK,0) is crucial
to avoid phenotypes M2 and M3 since it limits the level of FA, preventing FA2 and FA3
to become 1.

Another interesting remark is that all the control strategies for M3 except one, have the
intervention (ITG-AB,1) in common. ITG-AB represents the presence of integrins, trans-
membrane receptors composed of two subunits (alpha and beta) capable of interacting and
adhering to the extracellular matrix. They provide a link between the outside environment
and cellular responses related to motility, including migration of cancer cells [JPI20]. The
only control strategy that does not involve ITG-AB is {(ECM,1), (ROS,1)}. The extra-
cellular matrix (ECM) is a mesh of molecules that support physically and biochemically
the surrounding cells. ECM = 1 denotes ECM stiffening, which can induce EMT and
promote tumor invasion and metastasis [SCP+20, WFT+15]. However, combined with the
intervention (ROS,1), they are enough to induce the mesenchymal phenotype M3.

As in Section 5.1.1, the control strategies for node and edge control are obtained using
the method combining direct percolation and trap spaces. The number of control strategies
identified for each phenotype is shown in Table 5.3 and its representation in terms of the
type of interventions used is shown in Figure 5.5. Note that we exclude edge interventions

Chapter 5. Application 75

(M1) FAK-SRC-b1

TGFB TGFBR

ROS

PAK

(M2) ROS

ECM ITG-AB RAP1

(M3) ECMITG-AB

BCat CSL ECad FAK-SRC-b2 JNK RPTP RPTP-L ROS

SLUG SMAD SNAIL TCF-LEF TGFB TGFBR ZEB miR200

Figure 5.4: Control strategies of size 2 for the M1, M2 and M3 phenotypes using node
interventions. Pairs of nodes linked by an edge represent control strategies of size 2. The
color of the node (white and gray) represents the value that the component is fixed to (0
and 1, respectively). Input nodes are marked in red.

Table 5.3: Number of control strategies per size for each phenotype identified by the
percolation method considering node and edge interventions. Note that mixed control
strategies do not include edge interventions targeting inputs, since from the point of view
of application they are identical to the corresponding node interventions.

Phenotype E1 H1 H2 H3 M1 M2 M3 UN

Size 1 0 0 0 0 0 0 0 0

Size 2 0 0 0 0 4 6 35 0

Size 3 0 0 12 2 436 930 777 36

targeting inputs when computing mixed control strategies, since from the point of view
of application they are identical to the corresponding node interventions. We observe
that there are significantly more control strategies mixing node and edge control than just
using a unique type of interventions. This is not surprising since mixed control strategies
consider more combinations of interventions and some edge interventions can be equivalent
to a node intervention. Although there are node control strategies for six out of the eight
phenotypes, only two of them have edge control strategies up to size 3. This might be

76 5.1. Case study: EMT network

caused by the limitation on the size of the control strategies, since edge control might
require the application of more interventions than node control.

The control strategies of size 2 identified for the targets M1, M2 and M3 using node
and edge interventions are shown in Figure 5.6. Note that all the components appearing in
edge interventions are also part of a node control strategy, except for FAK-SRC-b1 in M2.
Many edge interventions are equivalent to the corresponding node ones. Others, despite
not fixing any component to a constant, are able to trigger, in combination with ITG-AB,
the same phenotype as the corresponding node strategy.

Figure 5.5: Number of control strategies identified for each phenotype up to size 3. The
control strategies obtained by using only node or only edge interventions are represented
in red and green respectively, while the control strategies including both node and edge
interventions are represented in yellow.

5.1.3 Subset control: avoidance of hybrid phenotypes

As mentioned above, hybrid phenotypes may provide cancer cells advantageous features
such as drug resistance or tumor-initiating potential [SCP+20, DW19]. Therefore, interven-
tions avoiding these phenotypes might be good candidates for drug targets in therapeutic
treatment against cancer cells presenting these traits.

Chapter 5. Application 77

(M1) FAK-SRC-b1

TGFB TGFBR
TGFB
↓

TGFBR

ROS PAK

(M2)

ROS

ECM ITG-AB RAP1

ECM
↓

ITG-AB

RAP1
↓

ITG-AB

FAK-SRC-b1
↓

RAP1

(M3) ECM

ECM
↓

ITG-AB

ITG-AB

BCat CSL ECad FAK-SRC-b2 JNK RPTP RPTP-L ROS

SLUG SMAD SNAIL TCF-LEF TGFB TGFBR ZEB miR200

TGFB
↓

TGFBR

RPTP
↓

JNK

ROS
↓

FAK-SRC-b2

TCF-LEF
↓

SNAIL

CSL
↓

SNAIL

SMAD
↓

SNAIL

miR200
↓

SLUG

RPTP-L
↓

RPTP

BCat
↓

TCF-LEF

SLUG
↓

ECad

ZEB
↓

ECad

ZEB
↓

miR200

SNAIL
↓

miR200

FAK-SRC-b2
↓

RPTP

ROS
↓

RPTP

TGFBR
↓

SMAD

JNK
↓

SNAIL

Figure 5.6: Control strategies of size 2 for the M1, M2 and M3 phenotypes using node and
edge interventions. Pairs of nodes linked by an edge represent control strategies of size 2.
The color of the node (white and gray) represents the value that the component is fixed to
(0 and 1, respectively). Input nodes are marked in red.

78 5.1. Case study: EMT network

DELTA NOTCH

CK1 DVL LATS WTN YAP-TAZ

ITG-AB

FAK-SRC-b2 RPTP RPTP-LJNK

AKT ILK NFkB

FAK-SRC-b1

PI3K RAS PAK

BCat CSL ECad ROS SLUG SMAD

SNAIL TCF-LEF TGFB TGFBR ZEB miR200

Figure 5.7: Control strategies of size 1 and 2 for the avoidance of the hybrid phenotype
using node interventions. Single nodes represent control strategies of size 1 and pairs of
nodes linked by an edge represent control strategies of size 2. The color of the node (white
and gray) represents the value that the component is fixed to (0 and 1, respectively). Input
nodes are marked in red.

Hybrid phenotypes are characterized by having both components AJ and FA activated,
that is, AJ ≥ 1 and FA ≥ 1. Thus, the subset defining the avoidance of the hybrid
phenotype is

P = {AJ1 = 0,AJ2 = 0} ∪ {FA1 = 0,FA2 = 0,FA3 = 0}.

As in the previous case, the five phenotypic components are excluded from the candidate
interventions. Setting the upper bound on the size of the control strategies to 2, we obtain
32 control strategies (see Figure 5.7): twelve of size 1 and twenty of size 2.

The twelve control strategies of size 1 obtained are:

{ECad = 0}, {ROS = 1}, {SLUG = 1}, {SNAIL = 1}, {TGFB = 1}, {TGFBR = 1},
{ZEB = 1}, {BCat = 0}, {CSL = 1}, {SMAD = 1}, {TCF-LEF = 0}, {miR200 = 0}.

Chapter 5. Application 79

The first seven control strategies can be identified using direct percolation, targeting the
epithelial state {AJ1 = 0,AJ2 = 0} or the mesenchymal one {FA1 = 0,FA2 = 0,FA3 = 0},
which can be represented as subspaces. The last five are not identified by using only perco-
lation but are captured by the model checking approach. Two of the obtained interventions
correspond to input variables (ROS and TGFB) while the other ten correspond to inter-
nal components. Each of the input interventions (ROS,1) and (TGFB,1) lead the system
to mesenchymal phenotypes. TGFB represents the transforming growth factor beta-1
(TGFB), which is a cytokine that regulates growth and differentiation of cells. Looking
at the regulatory functions, we observe that TGFBR is uniquely regulated by TGFB, so
setting TGFB to 1 implies that TGFBR is also set to 1. In addition, since TGFB does
not regulate any other component, we can deduce that these interventions are equivalent
in terms of their effect on phenotypic components (see Definition 2.2.4). Moreover, since
there are no control strategies of size 1 for individual phenotypes (see Table 5.2), we de-
duce that these interventions lead to systems where multiple epithelial, mesenchymal or
unknown phenotypes coexist, none of them being hybrid.

The internal components involved in the control strategies identified include the ep-
ithelial markers (ECad and miR200) and the mesenchymal ones (BCat, SNAIL, SLUG,
TCF-LEF and ZEB) as described in [SCP+20], which is consistent with the hybrid avoid-
ance. In addition, the authors of [SCP+20] performed a systematic analysis of the effect of
single mutants on the attractor landscape, excluding the input variables. All the single mu-
tants corresponding to the non-input interventions found by our approach were identified
as having only attractors in non-hybrid phenotypes. Moreover, there was no other single
mutation that produced this result. In other words, the results obtained by our approach
are in complete correspondence to the ones presented in [SCP+20].

The control strategies of size 2 for the avoidance of the hybrid phenotype are separated
in three different groups (see Figure 5.7). This differs from the structure of the control
strategies obtained for the mesenchymal phenotypes, where almost all the control strate-
gies share a common component (see Figure 5.4). Note that all the control strategies for
the mesenchymal phenotypes are control strategies for the avoidance of the hybrid ones.
However, most of them do not appear in Figure 5.7, since they are supersets of control
strategies of size 1. We also observe that DELTA and NOTCH are interchangeable. In
fact, looking at Figure 5.1, we observe that NOTCH is uniquely regulated by DELTA and
DELTA does not regulate any other component, as in the case of TGFB and TGFBR men-
tioned above. Consequently, interventions in any of these two components are equivalent
(see Definition 2.2.4).

When considering edge interventions, we obtain ten edge control strategies of size 1 for
the avoidance of the hybrid phenotype. Seven of them are equivalent to a node control
strategy. These equivalences are shown in Table 5.4.

80 5.1. Case study: EMT network

Table 5.4: Edge interventions from the control strategies of size 1 for the avoidance of
the hybrid phenotypes and their corresponding equivalent node interventions, also control
strategies of size 1.

Edge intervention Node intervention

(BCat, TCF-LEF) = 0 TCF-LEF = 0
(SLUG, ECad) = 1 ECad = 0
(SLUG, ECad) = 1 ECad = 0
(SLUG, ECad) = 1 ECad = 0
(miR200, SLUG) = 0 SLUG = 1
(TGFB, TGFBR) = 1 TGFBR = 1
(ZEB, miR200) = 1 miR200 = 0
(SNAIL, miR200) = 1 miR200 = 0

Interestingly, the three remaining ones,

{(SMAD, SNAIL) = 1}, {(TCF-LEF, SNAIL) = 0}, {(TGFBR, SMAD) = 1},

do not correspond to any node control strategy nor get any component fixed to a
constant value. However, they alter the system enough to destroy all the attractors from
the hybrid phenotype. Note that the components targeted by these edge strategies, SNAIL
and SMAD, are also node control strategies when fixed to 1. Moreover, each of these three
edge interventions in combination with the node intervention (ITG-AB, 1) are control
strategies for the phenotype M3 (see Figure 5.6).

In order to understand the effect of these edge interventions, we compute the steady
states for each of the perturbed networks. The number of steady states per phenotype
is the same as in the original network except for the hybrid ones, which are not steady
states any more. Thus, each of these perturbations destroys only hybrid steady states and
preserves the remaining steady states with minor alterations.

There are 116 control strategies of size 2 for the avoidance of the hybrid phenotype. Of
them, 21 consist only of node interventions, 42 only of edge interventions and 53 include
both node and edge interventions. Exploring the biological relevance of the interactions
related to the suggested edge interventions could potentially lead to a better understanding
of the hybrid phenotypes and the development of possible therapeutic strategies.

Chapter 5. Application 81

5.2 Comparison of methods

In this section, we compare the two approaches presented in Chapter 3 and Chapter 4
to other control methods currently available. In order to be able to compare different
approaches, certain common features need to be chosen. Here, we consider control for
any possible initial state. We focus on two different scenarios: one for attractor control
and one for target control. Although methods for target control are usually aimed at
targeting larger subspaces, determined for example by a phenotype, which often include
several attractors, they can are also be used for attractor control when the target attractor
is a steady state or a minimal trap space. Since this is the case for the target attractors
used in this comparison, methods for target control are also included in the first scenario.

The comparison presented here encompasses each of the approaches for control strategy
identification discussed in previous sections and two other control methods currently avail-
able: the method based on stable-motifs presented by Zañudo and Albert [ZA15] and the
method based on basins of attraction introduced by Su and Pang [SP21]. The implementa-
tion used for the direct percolation approach is the one presented in [CFTS22c], originally
adapted from [KSSV13]. All the methods used for the comparison are listed below. An
overview of their main features is shown in Table 5.5.

• Stable-motifs approach (SM), attractor control method based on the identification of
the stable motifs of the network as described in [ZA15].

• Basins approach (BA), attractor control method that uses the basin of attraction of
the target attractor to identify control strategies as implemented in [SP20].

• Direct percolation approach (DP), target control method based on percolation into
the target subspace as implemented in [CFTS22c], originally introduced in [KSSV13].

• Trap-spaces approach (TS), target control method based on percolation into selected
trap spaces introduced in [CFTS20] and extended in [CFTS22c], as described in
Section 3.1.

• Combined approach (CO), target control method combining direct percolation and
percolation via trap spaces [CFTS22c], as explained in Chapter 3.

• Completeness approach (CN), target control method based on the completeness of
the minimal trap spaces introduced in [CFTS22b] and described in Section 4.1.

• Model checking approach (MC), target control method based on the query of a CTL
formula in model checking introduced in [CFTS22b] and described in Section 4.3.

82 5.2. Comparison of methods

Table 5.5: Overview of the versatility of the different control methods in terms of the types
of targets, interventions and update schemes.

Control target Update Interv.

Method steady
state

trap space
attractor

complex
attractor

subspace arbitrary
subset

async. sync. gen.
async. node edge

BA X X X - - X - - X -
SM X X - - - X - - X -
DP X X - X - X X X X X
TS X X - X - X X X X X
CO X X - X - X X X X X
CN X X - X - X X X X X
MC X X X X X X X X X X

The methods for attractor control considered here (BA and SM) only work for asyn-
chronous update, so the comparison is only made for this dynamics. In the case of target
control, control strategies are identified for the three dynamics. However, for simplicity
only the synchronous and asynchronous are compared, since the control strategies obtained
for the generalized asynchronous are the same as the ones obtained for the asynchronous
dynamics.

Although some methods for target control can deal with edge interventions in the
asynchronous dynamics [BD19] or in the synchronous one [MVCAL16, SVLM20], they only
require that the steady states of the controlled system belong to the target subspace, and
impose no restrictions on the complex attractors that might also exist. Since our approach
identifies control strategies that require that all attractors (steady states or complex) belong
to the target, a direct comparison to these methods is not possible.

In order to capture different control scenarios, three biological networks of various sizes
with different type and number of attractors are considered. A short description of each
network is provided below. See Table 5.6 for an overview of the networks and their features.
The Boolean rules for each biological network can be found in the PyBoolNet repository
[KSS16].

(a) T-LGL network, originally introduced by Zhang et al. (2008) [ZSY+08] to model the
T cell large granular lymphocyte (T-LGL) survival signaling network, which we use
in the version presented in [ZA15]. This network consists of 60 Boolean variables and
its asynchronous dynamics has 3 cyclic attractors.

(b) MAPK network, analyzed in Sections 3.4 and 4.5. As previously explained, it was
introduced by Grieco et al. (2013) [GCBP+13] to model the effect of the Mitogen-
Activated Protein Kinase (MAPK) pathway on cell fate decisions taken in patholog-
ical cells. The network consists of 53 Boolean variables and it has 18 attractors in
the asynchronous dynamics, 12 steady states and 6 cyclic attractors.

Chapter 5. Application 83

Table 5.6: Main features of the biological networks used in the comparison. Input com-
ponents are fixed in the T-LGL network and free in the Cell-Fate and MAPK networks,
unless specified otherwise.

Network Size Inputs Outputs
Attractors

steady cyclic

Cell-Fate [CTF+10] 28 3 3 27 0
MAPK [GCBP+13] 53 4 3 12 6
T-LGL [ZSY+08] 60 6 3 0 3

(c) Cell-Fate network, introduced by Calzone et al. (2010) [CTF+10] to model the cell
fate decision process. The network uses 28 Boolean variables and its asynchronous
dynamics has 27 attractors, all of them steady states. These are classified in four
different phenotypes (Apoptosis, Survival, Non-Apoptotic Cell Death and Naive)
according to the values of the output components of the network.

As mentioned in Chapters 3 and 4 our methods take as input a constant-free Boolean
function. Therefore, since the T-LGL network has constant coordinate functions, it has
been pre-processed so that the constant values are percolated and removed from the net-
work. For the sake of the comparison, all the methods have taken as input the reduced
network.

5.2.1 Attractor control

As mentioned above, we compare the approaches presented in this work (DP, TS, CO, CN
and MC) to two different control strategy identification methods for attractor control: the
stable-motifs approach (SM) and the basins approach (BA). The stable-motifs approach is
based on the identification of the network stable motifs as described in [ZA15]. It works
for steady states and the complex attractors captured by the stable motifs (in some cases,
complex attractors are not identified and the method cannot be applied). The basins ap-
proach works for any kind of attractor and computes the basins of attraction of the network
attractors in order to identify control strategies of minimum size as explained in [SP21].
The stable motifs of the network are related to the trap spaces of the Boolean function,
since they capture components locking each other to certain values, so it is reasonable that
similar control strategies are obtained by TS and SM in most of the cases. The compu-
tation of the basins of attraction, on the other hand, provides full information about the
network dynamics, therefore BA could have the potential to identify all the minimal control
strategies of minimum size similar to MC. However, BA is not exhaustive and although it
is able to identify more control strategies than most of the methods, in some cases it is not

84 5.2. Comparison of methods

able to find all of them. Both BA and SM only consider node control in the asynchronous
update. Thus, the comparison is only made for node control in this dynamics.

For each network, we choose one of its attractors as the control target. To enrich the
comparison, we select attractors for which the control strategies obtained by each method
differ. The control target for the T-LGL network is the apoptotic attractor, that is, the
attractor with Apoptosis = 1 and Proliferation = 0. This is the only attractor where the
control strategies obtained for SM, BA and TS differ. The three methods identify the
same control strategies for the other two attractors. The target attractor for the MAPK
network is s2 (see Section 3.4.2). Both SM and TS obtain the same control strategies for
the remaining attractors of the MAPK network. The results for BA could not be obtained
since the software was not able to process this network. The control target for the cell-fate
network is the apoptotic steady state (Apoptosis = 1) that has the three inputs (FADD,
FASL and TNF) set to 1. It is one of the ten attractors for which TS identifies more
control strategies than SM. In the remaining seventeen attractors the two methods obtain
the same control strategies. TS identifies more control strategies than BA in eighteen
attractors, including the selected steady state.

Table 5.7 shows the number and size of the control strategies identified by each method
for the selected attractors. In the T-LGL network, TS and SM are able to identify three
of the four minimal control strategies identified by BA, CN and MC, {(SPHK1, 0)},
{(PDGFR, 0)} and {(S1P, 0)}. They both miss the fourth one {(Ceramide, 1)}. However,
TS is able to identify five non-minimal control strategies combining (Ceramide, 1) with
(PLCG1, 1), (GRB2, 1), (IL2RBT, 1), (IL2RB, 1) and (RAS, 1) respectively. Note that
no control strategy for this attractor up to size 2 is identified by direct percolation. In the
MAPK and cell-fate networks, TS is able to identify all the control strategies identified by
SM and BA and, in some cases, new control strategies missed by the other non-exhaustive
methods. Only CN and MC are able to identify the two minimal control strategies of size
5 in the MAPK network. They both fixed the four inputs to the variables fixed in the
attractor plus an additional component (see Table 5.8).

The running times for each method are shown in Table 5.9. They include the time
for reading the network, computing the attractors or minimal trap spaces and identifying
the control strategies. Note that while BA and TS allow the selection of a specific target
(attractor in case of BA, subspace in case of TS), SM computes the control strategies for
all the attractors in one run. For that reason, we observe that the running times of SM
are significantly higher than the ones for BA and TS. Note that CN and MC take longer
time than other approaches, except SM for the first network. In all the cases we see that
the running times for DP, TS and CO are lower than for the rest of the methods.

Chapter 5. Application 85

Table 5.7: Number and size of the control strategies for the corresponding attractor identi-
fied by the different methods up to sizes 6, 5 and 2 (number of free inputs plus two) for the
networks MAPK, cell-fate and T-LGL respectively. Note that no smaller control strategies
are obtained by any method.

MAPK network Cell-fate network T-LGL network

|N | ≤ 5 |N | = 6 |N | ≤ 4 |N | = 5 |N | = 1 |N | = 2

SM 0 16 0 16 3 0
BA - - 0 15 4 0
DP 0 14 0 22 0 0
TS 0 22 0 22 3 5
CO 0 22 0 22 3 5
CN 2 0 0 22 4 0
MC 2 0 0 22 4 0

Table 5.8: Minimal control strategies up to sizes 5 and 2 (number of free inputs plus two) for
the networks MAPK and T-LGL respectively, for the selected attractor of each biological
network. X and − denote whether the control strategy is obtained by the method or not,
respectively. For simplicity, the interventions that fix the input components to the values
of the attractor are omitted.

Network Minimal CS SM BA DP TS CO CN MC

MAPK
{fixed inputs + (GAB1, 0)}
{fixed inputs + (PI3K, 0)}

-
-

-
-

-
-

-
-

-
-

X
X

X
X

T-LGL

{(Ceramide, 1)}
{(PDGFR, 0)}
{(S1P, 0)}
{(SPHK1, 0)}

-
X
X
X

X
X
X
X

-
-
-
-

-
X
X
X

-
X
X
X

X
X
X
X

X
X
X
X

5.2.2 Target control

We now compare all the approaches for target control described above (DP, TS, CO,
CN and MC). An overview of the features of each control method is shown in Table 5.5.
The node control strategies for the different target subspaces are computed for the three
dynamics. However, since the control strategies obtained for the generalized asynchronous
dynamics are the same as the ones obtained for the asynchronous dynamics, we focus our
comparison just in asynchronous and synchronous dynamics.

86 5.2. Comparison of methods

Table 5.9: Running times for the control strategy computation targeting the chosen at-
tractor. Note that the time for SM includes the computation of the control strategies for
all the attractors, since the method does not allow to select a unique target.

Running times

Method Cell-fate MAPK T-LGL

SM 4h54’58” 3’14” 5’56”
BA 3h30’52” - 2’10”
DP 1.4” 1.9” 1.2”
TS 2.4” 2.2” 1.4”
CO 2.4” 2.2” 1.4”
CN 1’35” 13’18” 29’1”
MC 1’21” 12’15” 33’11”

The target subspaces chosen for each network are the ones corresponding to the apop-
totic phenotype, a common target in drug identification studies for cancer therapeutic
treatments [CED20]. They are defined in terms of the output components of each network:

(a) T-LGL: {Apoptosis = 1, Proliferation = 0}.

(b) MAPK: {Apoptosis = 1, Proliferation = 0, Growth-Arrest = 1}.

(c) Cell-Fate: {Apoptosis = 1, Survival = 0, NonACD = 0}.

Table 5.10 contains the size and number of the control strategies computed by each
approach for the asynchronous and synchronous dynamics. As mentioned in the previous
section, although all the methods look for minimal control strategies under inclusion, only
the exhaustive approach is able to guarantee that no smaller control strategy exists. Thus,
the control strategies identified by non-exhaustive methods might not be minimal with
respect to all the strategies. The numbers in parenthesis in Table 5.10 denote the amount
of truly minimal control strategies obtained by each method. In some cases, DP is able
to identify a high number of minimal control strategies. This is not surprising, since
regulatory networks modeling biological systems often induce a large amount of value
propagation. In particular, all the minimal control strategies for the cell-fate network in
the asynchronous dynamics are control strategies by direct percolation. Nonetheless, in the
other two networks the number of strategies identified by DP is still far from the number
of minimal control strategies identified by MC.

Control strategies are update-dependent by definition. However, all the control strate-
gies identified by DP are valid in all the dynamics considered here. The number of these
control strategies that are minimal might vary from one update to another (see results for
T-LGL and MAPK networks). On the other hand, methods TS, CN and MC are sensitive

Chapter 5. Application 87

Table 5.10: Number and size of the control strategies identified by each method (DP, TS,
CO, CN, and MC) for the corresponding target subspace of each biological network in the
asynchronous and synchronous dynamics. The numbers in parenthesis denote the amount
of truly minimal control strategies obtained by each method.

Asynchronous Synchronous

Network Method |N | = 1 |N | = 2 |N | = 3 |N | = 1 |N | = 2 |N | = 3

Cell-Fate

DP
TS
CO
CN
MC

0
0
0
0
0

17
8
17
21
21

173
28
173
191
191

0
0
0
0
0

17
8
17
17
17

173
28
173
189
189

T-LGL

DP
TS
CO
CN
MC

0
3
3
10
10

224 (77)
5

195 (77)
116
116

327 (77)
7

282 (77)
204
204

0
0
0
0
3

224 (164)
20

224 (164)
232 (172)

251

327 (97)
28

327 (97)
762 (109)

261

MAPK

DP
TS
CO
CN
MC

2
2
3
8
8

124 (59)
0

106 (59)
105
105

175 (45)
0

162 (45)
66
66

2
1
2
2
4

124 (88)
0

124 (88)
164 (112)

118

175 (49)
0

175 (49)
195 (155)

216

to the update. In the case of TS, since none of the networks is complete in the synchronous
dynamics, attractors cannot be approximated by minimal trap spaces and, therefore, no
additional control strategies compared to DP are obtained. The methods CN and MC ob-
tain the same number of control strategies for the asynchronous dynamics. This is not the
case for the synchronous dynamics, where additional control strategies are obtained by MC
for the T-LGL and MAPK networks. As mentioned in Section 4.5, this might be caused
by the fact that the CN method cannot classify a subspace as a control strategy if the
restricted network is not complete. The CN method is likely to obtain better results when
the original network is complete, which is usually the case for the asynchronous dynamics
of biological networks [KS15]. As to the running times, direct percolation, via trap spaces
and the combined method finish in a few seconds, whereas the completeness approach and
the model checking take several hours.

The results presented in this section illustrate the main differences between the two
approaches presented in this work. The first one provides a limited result in a short amount
of time, suitable for a fast analysis of the network, whereas the second one provides an
exhaustive enumeration of all the possible controls at the price of a higher computational
time, ideal for an in-depth analysis of the network.

Chapter 6

Discussion

The work presented in this thesis deals with the study of the control problems in biological
systems, in the context of Boolean networks. In particular, it focuses on the development
of approaches to identify sets of minimum controls that are able to induce the desired states
in Boolean models of biological systems.

Control of biological systems encompasses a great variety of scenarios and goals. Our
first task was to study and understand the multiple factors defining a control problem, from
the definition of the control goal to the strategy type, as well as the role of the initial state of
the system and the type of perturbations. Once the control problem was defined, our next
step was to decide how to approach it. With the goal of making our approaches attractive
for application, we established two key factors: efficiency and diversity. We were interested
in approaches that are able to deal with state-of-the-art networks in a reasonable amount
of time. We also aimed at providing as many different control sets as possible to broaden
the possibilities for potential applications. Thus, we developed two different approaches,
each of them aiming at one of these factors.

We started by studying methods based on value percolation, which is one of the most
efficient approaches to control. However, these methods are usually limited and might
miss many control strategies. With the aim of increasing the number of control strategies
identified while still benefiting from the efficient implementation of value percolation, we
introduced the use of trap spaces (Chapter 3). The main idea of our first approach is
to compute the so-called selected trap spaces, trap spaces that contain only attractors
included in the desired target, and consider intervention sets that percolate to these trap
spaces. Although this approach is not able to identify all the minimal control strategies
for a given target, it is able to uncover, in some cases, relevant control strategies missed by
direct-percolation techniques, as shown in Section 3.4. Its efficient implementation makes it
a competitive and practical tool when looking for a fast and useful analysis of the network.

88

Chapter 6. Discussion 89

Our second approach focuses on exhaustivity and flexibility. It is based on model
checking, using CTL semantics, and allows us to identify all the minimal control strategies
for a given target (Chapter 4). It also provides maximum flexibility in the definition of
the control target, accepting any arbitrary subset as target. This allows us to deal with
more complex control goals beyond the usual attractor or target control, such as groups of
attractors or attractor avoidance (see Section 5.1.3). The exhaustivity and flexibility of this
approach make it very appealing when a more in-depth analysis of the model is desired.
To deal with the high computational costs associated to the exhaustive exploration, we
developed reduction methods to narrow the region of the state space to search and to
discard ineffective interventions a priori.

We studied the applicability of our two approaches in different biological networks
(Sections 3.4 and 4.5 and Chapter 5), showing that both approaches are able to deal with
state-of-the-art biological models. We compared our approaches to other available control
methods in terms of control strategies identified and running times. As expected, the
approaches by direct percolation and via trap spaces were the most efficient ones while
the model-checking approach was the one identifying more minimal control strategies. In
some cases, direct percolation was able to identify all minimal control strategies while in
others it could not identify any of them. The examples of Chapter 5 illustrate how the
first approach is more suitable for a fast and useful analysis of the network, whereas the
second one is ideal for an in-depth analysis of the biological model.

The scalability of the ASP implementation proposed by Kaminski et al., which we ex-
tended to deal with trap spaces and edge control, was also studied in [KSSV13]. Further
experiments would be required to fully evaluate the scalability of our extended implemen-
tation. Factors such as the size of the network, the number of edges, prime implicants,
trap spaces or other topological properties of the network, would require further analyses
to determine the impact that they can potentially have in the computational times of our
ASP implementation. In some cases, the control problem could be run in parallel, for in-
stance when the number of trap spaces is too high for the ASP solver to handle. This was
the case in one of the mesenchymal phenotypes in Section 5.1.2, whose control problem
required the analysis of over 30000 selected trap spaces.

Our second approach would also benefit from a scalability study in order to rigorously
determine the main factors affecting its computational time and develop reduction methods
aiming at mitigating their impact. Additionally, the model checking implementation could
potentially benefit from the use of the so-called Action Restricted CTL (arCTL) [LPR07]
that allows for a restriction on the paths with a given action formula. This extension
is particularly useful for the verification of properties in models containing many input
variables [MAJTC14]. A potential improvement would be adapting the encoding of the
control problem to include the input variables as restrictions on the paths, since it would
allow us to reduce the dimension of the explored network. In this direction, we could explore
the possibility of using arCTL to encode edge interventions directly on the transitions.

90

One of the main challenges of implementing edge control in an efficient way is the large
amount of slightly different Boolean networks that our method needs to verify. Being able
to deal with an ensemble of such networks in order to check multiple edge interventions
simultaneously could significantly reduce the overall computational cost. Moreover, the
study of the interaction graph or the prime implicants of the controlled network could
help us to predict the potential effect of edge interventions [MD15, GCWR21], allowing for
instance the identification of irrelevant interventions or equivalent intervention sets.

As the EMT network studied in Section 5.1, many biological models often include dis-
crete multi-valued variables on top of the usual Boolean modeling [NCCT10, RRC+15].
Multi-valued variables can be used to represent different interactions happening at dis-
tinct activity levels [NCCT10], to capture multiple levels of the model outputs [SCP+20,
FBR+15] or to represent concentration gradients [GCT08]. Multi-valued networks can be
booleanised preserving their long-term dynamics [DRC11] and consequently can be an-
alyzed by Boolean-aimed control tools (see Section 5.1). However, booleanisation often
introduces non-admissible states, causing the state space to become larger than necessary,
and could lead to potential misinterpretations of results when translating the interventions
identified back to the original network. Consequently, having control methods directly
dealing with multi-valued networks would help to improve their efficiency. The methods
for trap space computation and value percolation are easily extendable to multi-valued net-
works, as well as the corresponding ASP encoding. Furthermore, extensions of ASP that
can deal with multi-valued networks have been developed [MSH+18] and model checking
has already been successfully applied to the multi-valued framework [AJMN+15]. Yet,
since more activity levels could significantly increase the computational time, methods for
dimensionality reduction and performance improvement tailored to our control problem
should also be developed.

Although the control methods presented in this work are primarily aimed at the asyn-
chronous dynamics, they are also valid for synchronous and generalized asynchronous up-
dates. An interesting addition to this work would be to study how our approaches would
deal with other updates, for instance block-sequential [DS20] or most permissive dynamics
[PKCH20], and how the control strategies would differ from the ones obtained here. Other
potential additions to this work would be its extension to consider different initial states
in the control problem or sequential control, as mentioned in Section 2.2.

The work presented here studies control in Boolean networks by developing two com-
petitive approaches for control strategy identification. The efficiency of the first one makes
it appropriate for a fast and practical analysis, while the exhaustivity and flexibility of the
second are suitable for a more in-depth analysis. In addition, both methods have enough
versatility to be extended to other control problems and frameworks. We think that our
approaches can help providing deeper insights into biological systems and contribute to
broaden the potential control applications.

Bibliography

[AJMN+15] Wassim Abou-Jaoudé, Pedro T. Monteiro, Aurélien Naldi, Maximilien Grand-
claudon, Vassili Soumelis, Claudine Chaouiya, and Denis Thieffry. Model
checking to assess t-helper cell plasticity. Frontiers in Bioengineering and
Biotechnology, 2, 2015.

[Aku18] Tatsuya Akutsu. Algorithms for Analysis, Inference, and Control of Boolean
Networks. WORLD SCIENTIFIC, 2018.

[BAFRM17] Emna Ben Abdallah, Maxime Folschette, Olivier Roux, and Morgan Magnin.
Asp-based method for the enumeration of attractors in non-deterministic syn-
chronous and asynchronous multi-valued networks. Algorithms for Molecular
Biology, 12(20), 2017.

[BD19] C. Biane and F. Delaplace. Causal reasoning on Boolean control net-
works based on abduction: Theory and application to cancer drug discov-
ery. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
16(5):1574–1585, 2019.

[BD21] E. Borriello and B. C. Daniels. The basis of easy controllability in boolean
networks. Nature Communications, 12(5227), 2021.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT
Press, 2008.

[BPSS21] Lubos Brim, Samuel Pastva, David Safránek, and Eva Smijáková. Parallel
one-step control of parametrised boolean networks. Mathematics, 9(5):560,
2021.

[CA19] Colin Campbell and Réka Albert. Edgetic perturbations to eliminate fixed-
point attractors in boolean regulatory networks. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 29(2):023130, 2019.

[CED20] Benedito A. Carneiro and Wafik S. El-Deiry. Targeting apoptosis in cancer
therapy. Nature Reviews Clinical Oncology, 17:395–417, 2020.

91

92 Bibliography

[CFa] Laura Cifuentes Fontanals. Source code of the implementation for control via
trap spaces. https://github.com/Lauracf/trap-space-control.

[CFb] Laura Cifuentes Fontanals. Source code of the implementation for control
with model checking. https://github.com/Lauracf/model-checking-control.

[CFTS20] Laura Cifuentes Fontanals, Elisa Tonello, and Heike Siebert. Control strategy
identification via trap spaces in Boolean networks. In Alessandro Abate,
Tatjana Petrov, and Verena Wolf, editors, Computational Methods in Systems
Biology, pages 159–175, Cham, 2020. Springer International Publishing.

[CFTS22a] Laura Cifuentes Fontanals, Elisa Tonello, and Heike Siebert. Computing
trap space-based control strategies for Boolean networks using answer set
programming. AIP Conference Proceedings, 2611(1):110002, 2022.

[CFTS22b] Laura Cifuentes-Fontanals, Elisa Tonello, and Heike Siebert. Control in
Boolean Networks With Model Checking. Frontiers in Applied Mathemat-
ics and Statistics, 8, 2022.

[CFTS22c] Laura Cifuentes-Fontanals, Elisa Tonello, and Heike Siebert. Node and edge
control strategy identification via trap spaces in Boolean networks. Preprint
available at https://arxiv.org/abs/2203.13632, 2022.

[CGR12] Miguel Carrillo, Pedro A. Góngora, and David Rosenblueth. An overview
of existing modeling tools making use of model checking in the analysis of
biochemical networks. Frontiers in Plant Science, 3:155, 2012.

[CNT12] Claudine Chaouiya, Aurélien Naldi, and Denis Thieffry. Logical Modelling of
Gene Regulatory Networks with GINsim., volume 804, pages 463–79. 2012.

[CTF+10] Laurence Calzone, Laurent Tournier, Simon Fourquet, Denis Thieffry, Boris
Zhivotovsky, Emmanuel Barillot, and Andrei Zinovyev. Mathematical mod-
elling of cell-fate decision in response to death receptor engagement. PLOS
Computational Biology, 6(3):1–15, 2010.

[CZD+11] Benoit Charloteaux, Quan Zhong, Matija Dreze, Michael E. Cusick, David E.
Hill, and Marc Vidal. Protein–Protein Interactions and Networks: Forward
and Reverse Edgetics, pages 197–213. Humana Press, Totowa, NJ, 2011.

[DRC11] Gilles Didier, Elisabeth Remy, and Claudine Chaouiya. Mapping multivalued
onto boolean dynamics. Journal of Theoretical Biology, 270(1):177–184, 2011.

[DS20] J. Demongeot and S. Sené. About block-parallel Boolean networks: a position
paper. Natural Computing, 19:5–13, 2020.

Bibliography 93

[DT11] Elena Dubrova and Maxim Teslenko. A sat-based algorithm for finding attrac-
tors in synchronous boolean networks. IEEE/ACM Transactions on Compu-
tational Biology and Bioinformatics, 8(5):1393–1399, 2011.

[DW19] Anushka Dongre and Robert A. Weinberg. New insights into the mechanisms
of epithelial-mesenchymal transition and implications for cancer. Nature Re-
views Molecular Cell Biology, (20):69–84, 2019.

[FBR+15] Åsmund Flobak, Anäıs Baudot, Elisabeth Remy, Liv Thommesen, Denis Thi-
effry, Martin Kuiper, and Astrid Lægreid. Discovery of drug synergies in gas-
tric cancer cells predicted by logical modeling. PLOS Computational Biology,
11(8):1–20, 2015.

[FNCT06] Adrien Fauré, Aurélien Naldi, Claudine Chaouiya, and Denis Thieffry. Dy-
namical analysis of a generic Boolean model for the control of the mammalian
cell cycle. Bioinformatics, 22(14):e124–e131, 2006.

[GCBP+13] Luca Grieco, Laurence Calzone, Isabelle Bernard-Pierrot, François Radvanyi,
Brigitte Kahn-Perlès, and Denis Thieffry. Integrative modelling of the influ-
ence of MAPK network on cancer cell fate decision. PLOS Computational
Biology, 9(10):1–15, 10 2013.

[GCT08] Aitor González, Claudine Chaouiya, and Denis Thieffry. Logical modelling
of the role of the Hh pathway in the patterning of the Drosophila wing disc.
Bioinformatics, 24(16):i234–i240, 2008.

[GCWR21] Alexander J. Gates, Rion Brattig Correia, Xuan Wang, and Luis M. Rocha.
The effective graph reveals redundancy, canalization, and control pathways
in biochemical regulation and signaling. Proceedings of the National Academy
of Sciences, 118(12):e2022598118, 2021.

[GK73] Leon Glass and Stuart A. Kauffman. The logical analysis of continuous,
non-linear biochemical control networks. Journal of Theoretical Biology,
39(1):103–129, 1973.

[GKK+11] Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max Ostrowski,
Torsten Schaub, and Marius Schneider. Potassco: The potsdam answer set
solving collection. AI Commun., 24(2):107–124, 2011.

[GKKS12] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub.
Answer Set Solving in Practice. Morgan & Claypool Publishers, 2012.

[JPI20] Michalina Janiszewska, Marina Candido Primi, and Tina Izard. Cell adhe-
sion in cancer: Beyond the migration of single cells. Journal of Biological
Chemistry, 295:2495– 2505, 2020.

94 Bibliography

[Kau91] Stuart Kauffman. The Origins of Order: Self-Organization and Selection in
Evolution. 1991.

[KBS15] H. Klarner, A. Bockmayr, and H. Siebert. Computing maximal and minimal
trap spaces of Boolean networks. Natural Computing, 14:535–544, 2015.

[KHNS18] H. Klarner, F. Heinitz, S. Nee, and H. Siebert. Basins of attraction, commit-
ment sets and phenotypes of Boolean networks. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, page 1, 2018.

[KPC13] Junil Kim, Sang-Min Park, and Kwang-Hyun Cho. Discovery of a kernel
for controlling biomolecular regulatory networks. Scientific Reports, 3:2223,
2013.

[KS15] Hannes Klarner and Heike Siebert. Approximating attractors of Boolean
networks by iterative CTL model checking. Frontiers in Bioengineering and
Biotechnology, 3:130, 2015.

[KSS16] Hannes Klarner, Adam Streck, and Heike Siebert. PyBoolNet: a Python
package for the generation, analysis and visualization of Boolean networks.
Bioinformatics, 33(5):770–772, 2016.

[KSSV13] Roland Kaminski, Torsten Schaub, Anne Siegel, and Santiago Videla. Min-
imal intervention strategies in logical signaling networks with ASP. Theory
and Practice of Logic Programming, 13(4-5):675–690, 2013.

[KTF+21] Hannes Klarner, Elisa Tonello, Laura Fontanals, Florence Janody, Claudine
Chaouiya, and Heike Siebert. Detection of markers for discrete phenotypes.
In The 12th International Conference on Computational Systems-Biology and
Bioinformatics, CSBio2021, page 64–68, New York, NY, USA, 2021. Associ-
ation for Computing Machinery.

[Lif19] Vladimir Lifschitz. Answer Set Programming. Springer Nature Switzerland
AG, 2019.

[LPR07] Alessio Lomuscio, Charles Pecheur, and Franco Raimondi. Automatic verifi-
cation of knowledge and time with nusmv. pages 1384–1389, 01 2007.

[LSB11] Yang-Yu Liu, Jean-Jacques Slotine, and Albert-László Barabási. Controlla-
bility of complex networks. Nature, 473:167–173, 2011.

[MAJTC14] P.T. Monteiro, W. Abou-Jaoudé, D. Thieffry, and C. Chaouiya. Model check-
ing logical regulatory networks. IFAC Proceedings Volumes, 47(2):170–175,
2014. 12th IFAC International Workshop on Discrete Event Systems (2014).

Bibliography 95

[MBT+22] Arnau Montagud, Jonas Béal, Luis Tobalina, Pauline Traynard, Vigneshwari
Subramanian, Bence Szalai, Róbert Alföldi, László Puskás, Alfonso Valencia,
Emmanuel Barillot, Julio Saez-Rodriguez, and Laurence Calzone. Patient-
specific boolean models of signalling networks guide personalised treatments.
eLife, 11:e72626, 2022.

[MD15] David Murrugarra and Elena S. Dimitrova. Molecular network control
through boolean canalization. EURASIP Journal on Bioinformatics and Sys-
tems Biology, 2015(1):9, 2015.

[MSH+18] Mushthofa Mushthofa, Steven Schockaert, Ling-Hong Hung, Kathleen Mar-
chal, and Martine De Cock. Modeling multi-valued biological interaction net-
works using fuzzy answer set programming. Fuzzy Sets and Systems, 345:63–
82, 2018.

[MSH+19] Hugues Mandon, Cui Su, Stefan Haar, Jun Pang, and Löıc Paulevé. Sequen-
tial reprogramming of Boolean networks made practical. In Luca Bortolussi
and Guido Sanguinetti, editors, Computational Methods in Systems Biology,
volume 11773, pages 3–19, Cham, 2019. Springer International Publishing.

[MVCAL16] David Murrugarra, Alan Veliz-Cuba, Boris Aguilar, and Reinhard Lauben-
bacher. Identification of control targets in Boolean molecular network models
via computational algebra. BMC Systems Biology, 10(1):94, 2016.

[NCCT10] Aurélien Naldi, Jorge Carneiro, Claudine Chaouiya, and Denis Thieffry. Di-
versity and plasticity of th cell types predicted from regulatory network mod-
elling. PLOS Computational Biology, (9):1–16, 2010.

[PAM22] Daniel Plaugher, Boris Aguilar, and David Murrugarra. Uncovering poten-
tial interventions for pancreatic cancer patients via mathematical modeling.
Journal of Theoretical Biology, 548:111197, 2022.

[PKCH20] Löıc Paulevé, Juraj Kolčák, Thomas Chatain, and Stefan Haar. Reconciling
qualitative, abstract, and scalable modeling of biological networks. Nature
Communications, 11:4256, 2020.

[RRC+15] Elisabeth Remy, Sandra Rebouissou, Claudine Chaouiya, Andrei Zinovyev,
François Radvanyi, and Laurence Calzone. A Modeling Approach to Ex-
plain Mutually Exclusive and Co-Occurring Genetic Alterations in Bladder
Tumorigenesis. Cancer Research, 75(19):4042–4052, 09 2015.

[RZG+21] Jordan C. Rozum, Jorge Gómez Tejeda Zañudo, Xiao Gan, Dávid Deritei,
and Réka Albert. Parity and time reversal elucidate both decision-making in
empirical models and attractor scaling in critical boolean networks. Science
Advances, 7(29):eabf8124, 2021.

96 Bibliography

[SCP+20] Gianluca Selvaggio, Sara Canato, Archana Pawar, Pedro T. Monteiro,
Patŕıcia S. Guerreiro, M. Manuela Brás, Florence Janody, and Claudine
Chaouiya. Hybrid epithelial–mesenchymal phenotypes are controlled by mi-
croenvironmental factors. Cancer Research, 80(11):2407–2420, 2020.

[SKK10] Regina Samaga, Axel Von Kamp, and Steffen Klamt. Computing combinato-
rial intervention strategies and failure modes in signaling networks. Journal
of Computational Biology, 17(1):39–53, 2010.

[SP20] Cui Su and Jun Pang. CABEAN: a software for the control of asynchronous
Boolean networks. Bioinformatics, 37(6):879–881, 2020.

[SP21] Cui Su and Jun Pang. Target control of asynchronous boolean networks.
IEEE/ACM Transactions on Computational Biology and Bioinformatics,
pages 1–1, 2021.

[SPP19] Cui Su, Soumya Paul, and Jun Pang. Controlling large boolean networks with
temporary and permanent perturbations. In Maurice H. ter Beek, Annabelle
McIver, and José N. Oliveira, editors, Formal Methods – The Next 30 Years,
volume 11800, pages 707–724, Cham, 2019. Springer International Publishing.

[SVLM20] L. Sordo Vieira, R.C. Laubenbacher, and D. Murrugarra. Control of intracel-
lular molecular networks using algebraic methods. Bulletin of Mathematical
Biology, 82(2), 2020.

[Tho81] R. Thomas. On the relation between the logical structure of systems and their
ability to generate multiple steady states or sustained oscillations. In Jean
Della Dora, Jacques Demongeot, and Bernard Lacolle, editors, Numerical
Methods in the Study of Critical Phenomena, pages 180–193, Berlin, Heidel-
berg, 1981. Springer Berlin Heidelberg.

[WFT+15] Spencer C. Wei, Laurent Fattet, Jeff H. Tsai, , Yurong Guo, Vincent H. Pai,
Hannah E. Majeski, Albert C. Chen, Robert L. Sah, Susan S. Taylor, Adam J.
Engler, and Jing Yang. Matrix stiffness drives epithelial–mesenchymal tran-
sition and tumour metastasis through a twist1–g3bp2 mechanotransduction
pathway. Nature Cell Biology, 17:678–688, 2015.

[WIS+22] Silke D. Werle, Nensi Ikonomi, Julian D. Schwab, Johann M. Kraus, Felix M.
Weidner, K. Lenhard Rudolph, Astrid S. Pfister, Rainer Schuler, Michael
Kühl, and Hans A. Kestler. Identification of dynamic driver sets control-
ling phenotypical landscapes. Computational and Structural Biotechnology
Journal, 20:1603–1617, 2022.

Bibliography 97

[YGTZA18] Gang Yang, Jorge Gómez Tejeda Zañudo, and Réka Albert. Target control in
logical models using the domain of influence of nodes. Frontiers in Physiology,
9:454, 2018.

[ZA13] Jorge G. T. Zañudo and Réka Albert. An effective network reduction approach
to find the dynamical repertoire of discrete dynamic networks. Chaos: An
Interdisciplinary Journal of Nonlinear Science, 23(2):025111, 2013.

[ZA15] J. G. T. Zañudo and R. Albert. Cell fate reprogramming by control of intra-
cellular network dynamics. PLOS Computational Biology, 11(4):1–24, 2015.

[ZSL+09] Quan Zhong, Nicolas Simonis, Qian-Ru Li, Benoit Charloteaux, Fabien
Heuze, Niels Klitgord, Stanley Tam, Haiyuan Yu, Kavitha Venkatesan, Danny
Mou, Venus Swearingen, Muhammed A Yildirim, Han Yan, Amélie Dricot,
David Szeto, Chenwei Lin, Tong Hao, Changyu Fan, Stuart Milstein, Denis
Dupuy, Robert Brasseur, David E Hill, Michael E Cusick, and Marc Vidal.
Edgetic perturbation models of human inherited disorders. Molecular Systems
Biology, 5(1):321, 2009.

[ZSY+08] Ranran Zhang, Mithun Vinod Shah, Jun Yang, Susan B. Nyland, Xin Liu,
Jong K. Yun, Réka Albert, and Thomas P. Loughran. Network model of
survival signaling in large granular lymphocyte leukemia. Proceedings of the
National Academy of Sciences, 105(42):16308–16313, 2008.

[ZYA17] J.G.T. Zañudo, G. Yang, and R. Albert. Structure-based control of complex
networks with nonlinear dynamics. Proceedings of the National Academy of
Sciences, 114(28):7234–7239, 2017.

Acknowledgments

First of all, I would like to thank my supervisor, Heike Siebert, for her support, encouragement
and guidance through all of my doctoral studies.

I would like to express my gratitude to Elisa Tonello for her support, useful discussions
and invaluable mathematical insights.

I also thank the other wonderful members of the Discrete Biomathematics group, Melania
Nowicka, Hannes Klarner and Robert Schwieger, for all the discussions, shared moments and
support during the different phases of my PhD.

I would like to thank Alexander Bockmayr and Martin Vingron for the useful insights, en-
couragement and support provided during TAC meetings. I would also like to thank Claudine
Chaouiya, Florence Janody, Denis Thieffry and Élisabeth Remy for many useful discussions
and valuable biological and mathematical insights.

Many thanks to all the colleagues and friends that have accompanied me during this
journey. Last but not least, I thank my family and my partner for their continuous support
along the way.

98

Summary

Understanding control mechanisms present in biological processes is crucial for the develop-
ment of potential therapeutic applications, for instance cell reprogramming or drug target
identification. Experimental approaches aimed at identifying possible control targets are usu-
ally costly and time-consuming. Mathematical modeling provides a formal framework to
study biological systems and to predict potential successful candidate interventions. A com-
mon modeling framework is Boolean modeling, which stands out for its ability to capture the
qualitative behavior of the system using coarse representations of the interactions between
the components, overcoming the usual parametrization problem.

The main goal of this thesis is the study of the control problems present in biological
systems and the development of efficient and complete approaches for control strategy iden-
tification. In particular, we aim at developing methods to identify sets of minimal controls
that are able to induce the desired states in biological systems modeled by Boolean networks.
With the goal of making our approaches attractive for application, we establish two key fac-
tors: efficiency and diversity. We want our approaches to be able to deal with state-of-the-art
networks in a reasonable amount of time while providing as many different optimal control
sets as possible. With these factors in mind, we developed two different approaches.

Our first method is based on value percolation, one of the most simple and efficient ap-
proaches to control strategy identification in Boolean networks. Percolation-based methods
can be implemented efficiently but are limited and might miss many control strategies. Our
approach introduces the use of trap spaces, regions of the state space closed under the dynam-
ics. This allows us to increase the number of control strategies identified while still benefiting
from an efficient implementation. Our second approach focuses on exhaustivity and flexibility.
Based on model checking techniques, it allows us to identify all the minimal control strategies
for a given target. This approach is also able to deal with more complex control problems,
since it can handle any type of target. To overcome the higher computational costs associated
with the comprehensiveness of the method, we also introduce several reduction techniques to
improve its performance.

In the last chapter, we show the applicability of our approaches to different biological
systems. We study the control strategies obtained for a network modeling the epithelial-to-
mesenchymal transition, considering different control targets and types of interventions. We
also explore the relevance of the intervention strategies identified in the biological context.
Finally, we compare our approaches to other current control methods in different Boolean
networks.

99

Zusammenfassung

Das Verständnis von Kontrollmechanismen in biologischen Prozessen ist von entscheiden-
der Bedeutung für die Entwicklung potenzieller therapeutischer Anwendungen, z. B. die
Reprogrammierung von Zellen oder die Identifizierung von Zielstrukturen für Medikamente.
Experimentelle Ansätze zur Identifizierung möglicher Kontrollziele sind in der Regel kost-
spielig und zeitaufwändig. Die mathematische Modellierung bietet einen formalen Rahmen
zur Untersuchung biologischer Systeme und zur Vorhersage potenziell erfolgreicher Interven-
tionskandidaten. Ein etablierter Formalismus ist die boolesche Modellierung, die sich durch
ihre Fähigkeit auszeichnet, das qualitative Verhalten des Systems mit Hilfe grober Darstel-
lungen der Wechselwirkungen zwischen den Komponenten zu erfassen und so das übliche
Parametrisierungsproblem zu überwinden.

Das Hauptziel dieser Arbeit ist die Untersuchung der Kontrollprobleme in biologischen
Systemen und die Entwicklung von effizienten und vollständigen Ansätzen zur Identifikation
von Kontrollstrategien. Insbesondere geht es um die Entwicklung von Methoden zur Identi-
fizierung von Mengen minimaler Steuerungen, die in der Lage sind, die gewünschten Zustände
in biologischen, durch boolesche Netzwerke modellierten Systemen zu induzieren. Um unsere
Ansätze für die Anwendung attraktiv zu machen, legen wir zwei Schlüsselfaktoren fest: Ef-
fizienz und Vielfalt. Unsere Methoden sollen in der Lage sein, biologische Netzwerke von
aktuellem Interesse in angemessener Zeit zu bearbeiten und dabei so viele verschiedene opti-
male Kontrollsätze wie möglich bereitzustellen. Mit Blick auf diese Faktoren haben wir zwei
verschiedene Ansätze entwickelt.

Unsere erste Methode basiert auf der Wertperkolation, einem der einfachsten und effizien-
testen Ansätze zur Berechnung von Steuerungen boolescher Netze. Auf Perkolation basierende
Methoden können zwar effizient implementiert werden, lassen aber möglicherweise viele Kon-
trollstrategien außer Acht. Unser Ansatz führt die Verwendung von Trap-Spaces ein, d.h.
Regionen des Zustandsraums, die unter der Dynamik abgeschlossen sind. Dadurch können
wir die Anzahl der identifizierten Kontrollstrategien erhöhen und gleichzeitig von einer effizien-
ten Implementierung profitieren. Unser zweiter Ansatz konzentriert sich auf Vollständigkeit
und Flexibilität. Auf der Grundlage von Modellprüfungstechniken können wir alle mini-
malen Kontrollstrategien für ein bestimmtes Ziel identifizieren. Dieser Ansatz ist auch in der
Lage, komplexere Steuerungsprobleme zu behandeln, da er mit jeder Art von Ziel umgehen
kann. Um die mit der Vollständigkeit der Methode verbundenen höheren Rechenkosten zu
überwinden, führen wir mehrere leistungsverbessernde Reduktionstechniken ein.

Im letzten Kapitel zeigen wir die Anwendbarkeit unserer Ansätze auf verschiedene biolo-
gische Systeme. Wir untersuchen die Kontrollstrategien, die wir für ein Netzwerk erhalten,
das den Übergang von Epithel- zu Mesenchymzellen modelliert, wobei wir verschiedene Kon-
trollziele und Arten von Eingriffen berücksichtigen. Wir untersuchen auch die Relevanz der
ermittelten Interventionsstrategien im biologischen Kontext. Schließlich vergleichen wir un-
sere Ansätze mit anderen aktuellen Kontrollmethoden angewandt auf verschiedene boolesche
Netzwerke.

100

Erklärung

Selbstständigkeitserklärung

Name: Cifuentes Fontanals

Vorname: Laura

Ich erkläre gegenüber der Freien Universität Berlin, dass ich die vorliegende Dissertation
selbstständig und ohne Benutzung anderer als der angegebenen Quellen und Hilfsmittel ange-
fertigt habe. Die vorliegende Arbeit ist frei von Plagiaten. Alle Ausführungen, die wörtlich
oder inhaltlich aus anderen Schriften entnommen sind, habe ich als solche kenntlich gemacht.
Diese Dissertation wurde in gleicher oder ähnlicher Form noch in keinem früheren Promo-
tionsverfahren eingereicht.

Mit einer Prüfung meiner Arbeit durch ein Plagiatsprüfungsprogramm erkläre ich mich ein-
verstanden.

Datum: 27.10.2022

Declaration of authorship

Name: Cifuentes Fontanals

First name: Laura

I declare to the Freie Universität Berlin that I have completed the submitted dissertation
independently and without the use of sources and aids other than those indicated. The
present thesis is free of plagiarism. I have marked as such all statements that are taken
literally or in content from other writings. This dissertation has not been submitted in the
same or similar form in any previous doctoral procedure.

I agree to have my thesis examined by a plagiarism examination software.

Date: 27.10.2022

101

	Introduction
	Boolean networks and control
	Boolean networks and dynamics
	Value percolation

	Controlled function and control strategies

	Control via trap spaces
	Permanent control strategies
	Transient control strategies
	Implementation
	Basic introduction to Answer Set Programming
	Problem encoding
	Main algorithm
	Further considerations: minimality and running times

	Application
	Target: apoptotic phenotype
	Target: minimal trap spaces
	Running times
	Other updates

	Discussion

	Exhaustive approach
	Control by completeness
	Introduction to model checking
	Control with model checking
	Implementation
	Main algorithm
	Reduction methods

	Application
	Target: apoptotic phenotype
	Target: minimal trap spaces

	Discussion

	Application
	Case study: EMT network
	Attractor control: steady states
	Target control: phenotypes
	Subset control: avoidance of hybrid phenotypes

	Comparison of methods
	Attractor control
	Target control

	Discussion
	Bibliography
	Summary
	Zusammenfassung
	Erklärung

