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Abstract 

In order to predict and forecast with greater accuracy, handling “missing values” in “time series” information is crucial. Complete and accurate 

historical data are essential. There are many research studies on multivariate time series imputation, however due to the lack of associated 

factors, imputation in univariate time series data is rarely taken into consideration. It is natural that “missing values” could arise because almost 

all scientific disciplines that collect, store, and monitor data use "time series" observations. Therefore, time series characteristics must be 

considered in order to develop an effective and acceptable method for dealing with missing data. This work uses the statistical package R to 

assess and measure the effectiveness of imputation methods in the context of "univariate time series" data. The “imputation algorithms” 

explored are evaluated using “root mean square error”, “mean absolute error” and “mean absolute percent error”. Four types of “time series” 

are taken into consideration. According to experimental findings, “seasonal decomposition” performs better on the time series having 

seasonality characteristic, followed by “linear interpolation”, and “kalman smoothing” provides values that are more similar to the original time 

series data set and have lower error rates than other imputation techniques. 
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I. Introduction 

Numerous disciplines, including economics (Yang, 2012), 

energy research (Mohamad et al., 2021), environmental 

studies (Hadeed et al., 2020), signal processing (Stankovic et 

al., 2014), traffic engineering (Ran et al., 2015) and ecology 

(Hossie et al., 2021), among others, can benefit from “time 

series” data analysis. In order to facilitate the implementation 

of policies or the deployment of control mechanisms, time 

series data can be analysed using a number of methodologies 

that explain emergent data patterns and forecast future 

behaviour. The accuracy of the data and the 

comprehensiveness of the supplemental information are 

requirements for information extraction from time series data. 

Missing observations can frequently happen while 

measuring, collecting, or creating data as a consequence of 

various factors, such as communication failures, data-

generating device failures and power failures. In analytical 

research, “missing data” may result in flawed and unwanted 

results, such as incorrect projections or poor policy 

judgements (Phan, 2020). Therefore, techniques to substitute 

“missing data” are required. 

In "time series", "missing data" can be replaced by either 

"imputation-based" or "model-based" techniques. The 

“model-based” techniques are different from “direct 

imputation” in that they solve likelihood equations applied to 

“missing data”. The “imputation-based” techniques on the 

other hand, estimate missing values by either completely 

removing them or replacing with appropriate values via 

general approach. In contrast to “model-based methods” for 

“multivariate time series”, most of techniques replacing the 

“missing observations” in “univariate time series” are 

“imputation-based”. The “univariate time series” imputation 

methods are classified as: “univariate algorithms”, 

“univariate time series algorithms” and “multivariate 

algorithms” for “lagged data” (Moritz et al., 2017). 

Other research, that does not explicitly take into account 

the statistical features of “time series”, highlighted many 

drawbacks of "univariate time series" imputation approaches, 

which were also noted by Moritz et al. (2015). One of the 

most popular approaches for univariate time series is "last 

observation carried forward", which combines 

"interpolation" and "arithmetic mean". In general, more 

reliable imputation techniques are needed for univariate time 

series, especially ones that can make better use of the 

statistical properties of the observations. In terms of 

imputation and prediction accuracy, we compared “mean”, 

“last observation carried forward”, “kalman smoothing”, 

“seasonal decomposition using interpolation”, “seasonal 

imputation using mean”, “moving average” and “moving 

average with exponential weighting”, “linear interpolation”, 

“spline interpolation”, and “stine interpolation” for single 

variate data, namely tsAirgap, tsNH4, and tsHeating, are all 

available in the R-package imputeTS. The same techniques 

was used on real-time consumer price index data downloaded 

from the M/o Statistics website. The precision is expressed as 
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“root mean square error”, “mean absolute error and “mean 

absolute percentage error”. 

 

II. Related work 

Fewer studies have been conducted on the imputation of 

“missing data” for “univariate time series”.  

In their article "A Method for Improving Imputation and 

Prediction Accuracy of Highly Seasonal Univariate Data with 

Large Periods of Missingness," Chaudhry et al. (2019) used 

LTE spectrum data, which is highly seasonal and univariate. 

They used Kalman filtering, which is defined as Kalman 

smoothing on an ARIMA model's state space representation, 

and MICE. They converted the univariate data to multivariate 

for MICE imputation. They evaluated their proposed method 

using mean absolute percentage error (MAPE) metrics. 

In his article titled "Imputation Methods in Time Series 

with a Trend and a Consecutive Missing Value Pattern", 

Wongoutong et al. (2021), compared ten real datasets to 

assess how well imputation methods performed under three 

different scenarios involving artificial missing data in “time 

series” with different ratios of missing values. The evaluation 

of six methods to impute “missing values”—"interpolation", 

"kalman", "moving average", "last observation carried 

forward", "mean" and "linear trend at point"— were explored 

in terms of "root-mean-square error" and "mean absolute 

percentage error". The "interpolation", "kalman" and "linear 

trend at point" imputation methods outperformed the other 

three by an average of 80% when compared to the "mean" 

imputation method and 30-60% when compared to the "last 

observation carried forward" and "moving average" methods. 

They came to the conclusion that for "time-series" with trend, 

"interpolation", "kalman" and "linear trend at point" 

performed better for imputing successive "missing values". 

Han et al. (2022) proposed a “univariate imputation” 

approach for integrating decomposition method with 

imputation algorithms in their article titled "Univariate 

imputation method for recovering missing data in wastewater 

treatment process." To cope with the nonstationary properties 

of wastewater treatment process data, the “time series” is first 

divided into “seasonal”, “trend”, and “remainder” using 

“seasonal-trend decomposition”. Second, estimates of its 

missing values are provided by using “support vector 

regression” to roughly estimate “nonlinearity” of “trend” and 

“remainder”, respectively. Based on its periodic pattern, a 

“self-similarity decomposition” is used to fill the “seasonal 

component”. Third, the imputation result is created by 

combining all of the imputed results. The imputation 

performance is then assessed using six time series of the 

wastewater treatment process and based on two indicators, 

compared to seven other methods. The experimental findings 

show that, the suggested “univariate imputation” is better for 

“time series” of wastewater treatment processes with various 

missing ratios. 

In their article "On imputation approaches in univariate 

time series," Rantou et al. (2017) used the statistical 

programme R to assess the effectiveness of “imputation 

algorithms” in case  of “univariate time series data”. The 

“imputation methods” are evaluated by three fundamental 

types of “time series” and error metrics namely; “mrse” and 

“mape”. 

In their work "Local Average of Nearest Neighbors: 

Univariate Time Series Imputation," Flores et al. (2019) 

introduced two imputation techniques for the “missing data” 

in “univariate time series”. These algorithms have used two 

“algorithms” based on “means” of “nearest neighbours”. The 

first is the neighbourhood average. Neighbors determines the 

“missing value” by averaging the values of the neighbour 

before it and the neighbour after it. The second one is “Local 

Average of Neighbors Neighbors+(LANN+)” that uses the 

distance between neighbours.  

In their article "Efficiency of Imputation Techniques in 

Univariate Time Series," Twumasi-Ankrah et al. (2019) used 

“imputation method” for “univariate time series” missing 

values, depending on specific error metric and characteristics. 

 

III. Missing Data Mechanism 

The distribution of the gaps will depend on what produces 

missing data. In two ways, comprehending this distribution 

might be beneficial, can be used as information for choosing 

suitable “imputation algorithm” and by using a realistic 

simulator that will eliminates “missing data” from the test 

dataset. A simulator of this kind will assist in producing data 

for which, the real value is known, so that effectiveness of 

“imputation algorithm's” can be evaluated. 

“Missing data” mechanisms specify the relationship 

between variables that are observed and those that are 

missing. There are three basic groupings: "missing entirely at 

random (MCAR)", "missing at random (MAR)", and 

"missing not at random (MNAR)". A variable is missing if it 

is neither dependent on observed variables and nor on itself. 

For instance, a house's number of fireplaces is independent of 

itself. It is MNAR if the missingness of a variable is related 

to itself. For instance, the proximity to the market may be a 

key consideration when renting or purchasing a home because 

it is quite convenient to get there on walking. It is MAR if the 

absence of a variable depends on another variable. The use of 

correlations with other variables by imputation algorithms is 

made possible by MAR, which leads to better results than 

MCAR and MNAR. For instance, if a home lacks a garage, 

the garage's capacity or quality will always be lacking 

(Baddoo et al. 2021). 
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The picture of “missing data” mechanisms for 

“univariate”, “temporal series” appears little  different as the 

data only appears to have one variable, while time is 

implicitly assumed that is considered to be a variable when 

developing a dataset's mechanism. Another distinction is that 

“time series” imputation methods can use “time series” 

properties also besides variables to estimate missing values. 

As a result, it is much simpler to estimate “missing values” 

for MCAR data. MAR and MCAR are essentially equivalent 

for “univariate time series” imputation. 

 

IV. Time series imputation for univariate data 

A "univariate time series", is a “time series” that has only one 

observation that is progressively recorded at equal time 

intervals. Imputation is the process of substituting estimations 

for “missing data”. The following studies employs 

“imputation techniques” for “univariate time series”;  

 

4.1 Mean Imputation 

Mean of the “observed values” of the “non-missing 

observations” is calculated that replaces “missing values” 

with mean. This method comes from R's imputeTS packages. 

It uses the function "na_mean" to substitute the “missing 

values” in “time series”. The following formula is used to 

estimate the value; 

 

𝑥𝑖 = ∑ 𝑦𝑖
𝑘
𝑖=0 /𝑛𝑘                                 (1) 

 

where  nk is the number of observations and yi,  is the observed 

values. 

 

4.2 Last Observation Carried Forward (LOCF)  

On orderly sorted dataset, algorithm locates the first “missing 

value” and then it is imputed with non-missing value 

immediately preceding the missing data. The method in R 

employs imputeTS package, and the function is "na_locf" 

(Phan et al., 2020). 

 

4.3 Kalman smoothing  

The estimates of unknown variables are produced by a series 

of measurements that are observed over time, including 

inaccuracies and noise. These estimates, which use joint 

probability distribution over the variables for each timeframe, 

are more precise than those based on a single measurement 

alone. The algorithm follows two steps. For the prediction 

phase, Kalman smoothing generates estimates of the current 

state variables along with their uncertainty. When the 

subsequent measurement is taken, these estimates are updated 

using a weighted average, with a higher weight given to more 

precise estimates. It is iterative algorithm. Without requiring 

any prior knowledge, it may operate in real time using only 

the most recent input measurements, the previously 

calculated state, and its uncertainty matrix. It assumes that the 

errors have “normal distribution” (Jeong, 2021).The “kalman 

smoothing” to operate on state-space models is of the form; 

 

𝑦𝑡 = 𝑍𝛼𝑡 + 𝜖𝑡𝜖𝑡 ~𝑁(0, 𝜎2)                       (2) 

 

𝛼𝑡1 = 𝑇𝛼𝑡 + 𝑛𝑡𝑛𝑡  ~ 𝑁(0, 𝜎1
2)                   (3) 

 

where   𝛼𝑡  ~ 𝑁(𝑎𝑡 , 𝜎𝑡
2) 

 

where yt = observed data and αt = unobserved. 

The measurement equation, yt means the “observed data” 

is related to the “unobserved” states, 𝛼𝑡1, transition equation, 

implies the “unobserved” states evolve over time in a 

particular way.“Kalman smoothing” uses “algorithm” to find 

best estimates of 𝛼𝑡. The “kalman smoothing” has been 

applied to the entire time period to get the estimates of the 

states 𝑎𝑡 , 𝜎𝑡
2  at t=1,2,. ,T. It employs imputeTS package and 

the function “na_kalman” to replace “missing values” in R. 

 

4.4 Seasonally Decomposed Missing Value Imputation  

The algorithm starts with a “Loess Seasonal Decomposition” 

of “time series”. "Time series" is split into "seasonal", "trend" 

and "irregular". The original series' "seasonal" component is 

then removed. In a subsequent step, the deseasonalized series 

is subjected to the selected imputation algorithm, such as 

na_locf, na_ma, etc. As a result, the algorithm is unaffected 

by "seasonal" patterns. The "seasonal" component is 

reintroduced into the de-seasonalized series after the NA gaps 

are replaced. It uses impute TSpackage in R with function 

"na_seadec". 

 

4.5 Moving Average (MA) Imputation 

The average is calculated using the same number of data 

points on either side of the central value in this algorithm. 

This means that if a "missing value" occurs at position i of a 

"time series" data set, the average is computed using 

observations i-1, i-2, and i+1, i+2.The package imputeTS and 

method "na_ma" are used in R. 

The weighting factors decreases exponentially in an 

“exponential weighted moving average”. The observations 

immediately adjacent to a central value i have a weight of 1^2, 

the observations further away (i-2, i+2) have a weight of ½^2, 

the observations further away (i-3,i+3) have a weight of ½^3, 

and so on.  

 

4.6 Imputation by Interpolation 

The na_nterpolation function with the parameters "linear," 

"spline," or "stine" interpolation is used by the imputeTS 

package. The "least square principle" minimises the sum of 

http://www.ijritcc.org/
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squares of errors for a polynomial of a given degree. The 

algorithm for "linear interpolation" is as follows: 

If k is the number of “missing data” points in a given “time 

series” dataset, and a1, a2,...ak-1 are constants, and yt represents 

the “missing observation” at time t, consider fitting a 

polynomial of fixed degree k. 

yt = a0 + a1t + a2t2 +...... + ak-1tk                              (4) 

This is calculated using the time series data's observed values. 

The matrix approach is used to obtain the values of a0, a1, 

a2...ak-1. Missing values are calculated at each iteration, 

t=1,2,3,.., T. 

 

V. Error Metric 

We evaluate the effects of three error metrics on imputation 

strategies. 

5.1 Root Mean Square Error (RMSE) 

It measures the spread of predicted errors over actual data 

points means, that it indicates how far or close an estimated 

model's predicted values are to the actual data points(Bokde 

et al., 2018). The formula is as follows: 

RMSE=√∑ (𝑌 − 𝑌

𝑁
)𝑁

𝑖=1

2

                    (5) 

where N is the sample size,  Y is the actual data and 𝑌 is the 

predicted data. 

 

5.2 Mean Absolute Error (MAE) 

It is the average of absolute errors, which is the, magnitude of 

difference between the actual and predicted values. It tells 

how large an error is from the predicted, is expected on 

average. 

MAE=
1

𝑁
∑|𝑌 − 𝑌|                             (6)    

 

5.3 Mean Absolute Percentage Error (MAPE) 

It measures the, percentage forecast error. It is used to 

calculate the forecast accuracy using: 

MAPE=(
1

𝑁
 ∑

|𝑌 − 𝑌|

|𝑌|
) 𝑋 100%      (7) 

 

VI. Experimental Analysis 

The performance of 10 imputation algorithms is examined in 

this study using three reference time series datasets from the 

imputeTS package (Moritz et al, 2015) and one real time 

series data set downloaded from M/o Statistics & PI, Govt. of 

India website, http://www.mospi.gov.in. These datasets are 

widely used in the literature having well-known properties by 

all time series data. 

 

6.1 Datasets 

Following are the four datasets that were used in this study: 

1.Air passengers: The dataset comes from "Time series 

analysis: forecasting and control" (Box et al., 2015) and 

includes 144 monthly total passengers of international airline 

from 1949 to 1960. The dataset shows a strong trend as well 

as seasonality. There are two time series provided for 

comparing imputation algorithm results with this series.One 

series with no missing values that can be used as the basis for 

further analysis and the “imputation algorithm” can be 

applied on another NA-based series. 

 

2. Wastewater system:  The “time series” was created using 

data from the 2014 GECCO Industrial Challenge (Martina et 

al., 2014). It has 4552 rows, measured in 10-minute 

increments from 30.11.2010 to 01.01.2011. There are two 

time series provided for comparing imputation algorithm 

results with this series. One series with no missing values that 

can be used as the basis for further analysis, and another is 

NA-based series that is used for “imputation algorithms”. The 

dataset shows significant seasonality but no trend. 

 

1. Heating systems supply temperature: The "time 

series" was created using data from the GECCO 

Industrial Challenge 2015. (Moritz et al., 2015), and 

it was measured in 1 minute steps from 18.11.2013 

- 05:12:00 to 13.01.2015 - 15:08:00. There are 

606837 rows in the Time Series. "Recovering 

missing information in heating system operating 

data" was the topic of this Challenge. The goal is to 

effectively substitute "missing values" in sensor data 

from a heating system. There are two time series 

provided for comparing imputation algorithm results 

with this series. One series with no missing values 

that can be used as the basis for further analysis and 

another NA-based series that is used for “imputation 

algorithms”.There is no trend or seasonality in the 

dataset. 

 

 
Figure 1: Loess seasonal decomposition of Consumer Price I

ndex Dataset 

 

4.Time series of consumer price index: The data has been 

downloaded from M/o Statistics & PI, Govt of India website, 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 2s 

DOI: https://doi.org/10.17762/ijritcc.v11i2s.6148 

Article Received: 22 November 2022 Revised: 26 December 2022 Accepted: 28 January 2023 

___________________________________________________________________________________________________________________ 

 

290 

IJRITCC | January 2023, Available @ http://www.ijritcc.org 

http://www.mospi.gov.in. It is a time series data yearly 

measured from 2013 to 2021. It has 108 rows. Missing values 

around 10 % has been  artificially simulated. These missing 

values are then imputed and compared with the actual data. 

The dataset exhibits strong trend and seasonality (Figure 1). 

 

6.2 Line plot to visualize the missing values distribution  

The  “ggplot_na_distribution” function  from imputeTS pack

age   depicts the   distribution of “missing values” within “ti

me series”. As a result, “time series” is plotted and whenever 

there is  NA, the back  color  appears  differently. The plot fo

r time series data can be seen below (Figure 2). 

 

 
Figure 2: Distribution of Missing Values for Consumer Price 

Index Dataset 

(Time Series with Highlighted Missing Region) 

 

6.3 Missing Values Statistics 

Summary statistics for the "missing values" distribution in 

"univariate time series" are printed by the "statsNA" function 

in imputeTS package and it is summarized for each dataset in 

Table1. 

 

Table 1:Summary of Datasets 

Dataset Length 

of 

Time 

Series 

Missing 

Values 

Percentage of 

Missing 

Values 

No 

of 

Gaps 

Avg Ga

p Size 

 

Longest NA gap (seri

es of consecutive NA

s) 

Most frequent gap size 

 

tsAirgap 144 13 9.03 11 1.1818 

 

3 in a row 

 

1 NA in a row (occurri

ng 10 times) 

tsNH4 4552 883 19.4 155 5.6968 

 

157 in a row 

 

1 NA in a row (occurri

ng 68 times) 

tsHeating 60683

7 

 

57391 

 

9.46 2087 

 

27.4993 

 

258 in a row 

 

2 NA in a row (occurri

ng 104 times) 

tscpi 108 10 9.26 9 1.1111 2 in a row 

 

1 NA in a row (occurri

ng 8 times) 

 

 

VII. Conclusions 

Given that most statistical techniques assume that the data is 

complete and free of “missing values”. Missing data 

constitute the first challenge when developing prediction 

models. It might not be viable or even optimal to handle 

missing data in “univariate time series” using typical 

“imputation algorithms”. Since they differ from multivariate, 

non-time series datasets in several ways, “univariate time 

series” need specific consideration. To carry out an effective 

imputation, time dependencies must be used in place of 

covariates. 

 

 

 

 

 

 

 

Table 2: Comparison of accuracy  

Method Air Passenger Waste Water 

Management 

Heating System Supply 

Temperature 
Consumer Price Index 

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE 

Mean 34.63 8.90 0.0318 

 

3.79 

 

1.44 0.1108 5.69 

 

1.43 0.0234 5.34 

 

1.30 0.0010 

LOCF 10.66 2.81 0.0104 2.01 

 

0.45 0.0619 3.44 

 

0.63 0.0116 0.38 

 

0.10 0.0007 

http://www.ijritcc.org/
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Kalman 

Smoothing 

3.21 0.75 0.0028 1.29 

 

0.37 

 

0.2055    0.18 0.04 0.0003 

Seasonal 

decomposition 

1.92 0.47 0.0018 0.83 

 

0.22 

 

0.1688 

 

2.66 

 

0.45 

 

0.0080 0.11 0.03 0.0002 

seasonal 

imputation using 

mean 

34.77 

 

9.33 0.0345 3.29 

 

1.25 0.1024 4.61 1.09 0.0184 5.26 1.27 0.0010 

Simple moving 

average 

9.67 

 

2.37 0.0085 1.36 

 

0.34 0.0413 2.82 

 

0.46 0.0081 

 

0.32 0.090 0.0006 

Exponential 

weighted 

moving average 

8.90 

 

1.92 0.0070 1.20 

 

0.29 0.0368 2.80 

 

0.45 

 

0.0080 

 

0.21 0.05 0.0004 

Linear 

interpolation 

6.09 

 

1.57 0.0057 1.06 

 

0.26 0.0326 2.39 

 

0.38 0.0065 0.13 0.04 0.0003 

Spline 

interpolation 

5.50 1.40 

 

0.0052 

 

2.06 

 

0.49 0.1187 5.64 

 

0.68 0.0265 0.15 0.37 0.0003 

Stine 

interpolation 

6.04 

 

1.51 0.0056 1.16 

 

0.29 0.0351 2.45 

 

0.36 0.0064 0.11 0.03 0.0002 

The methods namely “mean”, “last observation carried 

forward”, “kalman smoothing”, “seasonal decomposition 

using interpolation”, “seasonal imputation using mean”, 

“moving average” and “moving average with exponential 

weighting”, “linear interpolation”, “spline interpolation” and 

“stine interpolation” has been applied on tsAirgap, tsNH4, 

and tsHeating data, available in the R-package imputeTS. The 

precision is expressed as “rmse”, “mae” and “mape” (Table 

2). “Seasonal decomposition” performs better than other 

techniques on the time series having seasonality characteristic 

namely tsAirgap and tsNH4 having seasonality followed by 

“linear interpolation”, and “kalman kmoothing”. The same 

techniques were also applied on real data i.e. consumer price 

index data that exhibhits strong seasonality. In this case, also 

“seasonal decomposition using interpolation” followed by 

“linear interpolation” performs better. Also, plots at figure 3 

and figure 4 clearly shows that imputed values are quite close 

to the truth values in case of consumer price index data. 

 
Figure 3: "Imputed Values for Consumer Price Index Data ", 

(Visualization of missing value replacements in case of seas

onal decomposition) 

 
 

Figure 4: "Imputed Values for Consumer Price Index Data ", 

(Visualization of missing value replacements in case of Kal

man Filtering) 

 

The primary goal of this paper was to compare and 

quantify the performance of “imputation techniques” while 

dealing with “univariate time series”. When handling 

“missing data” in “univariate time series”, the results of our 

experiment indicates that seasonal decomposition perfoms 

well with the data having seasonality characteristics followed 

by “linear interpolation” and  “kalman structural models 

using smoothing” as the most effective algorithms. 
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