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Viscoelasticity is well known to cause a significant hysteresis of crack closure and opening

when an elastomer is brought in and out of contact with a flat, rigid counterface. In contrast,

the idea that adhesive hysteresis can also result under quasi-static driving due to small-scale,

elastic multistability is relatively new. Here, we study a system in which both mechanisms

act concurrently. Specifically, we compare the simulated and experimentally measured time

evolution of the interfacial force and the real contact area between a soft elastomer and a

rigid, flat punch, to which small-scale, single-sinusoidal roughness is added. To this end,

we further the Green’s function molecular dynamics method and extend recently developed

imaging techniques to elucidate the rate- and preload-dependence of the pull-off process. Our

results reveal that hysteresis is much enhanced when the saddle points of the topography

come into contact, which, however, is impeded by viscoelastic forces and may require suffi-

ciently large preloads. A similar coaction of viscous- and multistability effects is expected to

occur in macroscopic polymer contacts and be relevant, e.g., for pressure-sensitive adhesives

and modern adhesive gripping devices.

I. INTRODUCTION

Bringing two surfaces into contact and separating them again is generally associated with a net,

rate-dependent energy loss. Several processes can cause this hysteresis, in particular, physicochemi-

cal interfacial aging [1, 2], such as chain interdigitation in polymer-polymer contacts [3], viscoelastic

relaxation in the vicinity of and far from true contact [4–7], and the formation of capillaries [8–

10], to name a few. Recently, elastic multistability [11] has also received increased attention as

a potential adhesive dissipation mechanism occuring during the relative motion of nominally flat

surfaces, i.e., the discontinuous jump of small-scale asperities in and out of contact [12–17] during

quasi-static motion, or the discontinuous motion of a contact line during approach and retraction

resulting from chemical or structural surface heterogeneity [18].

Ascertaining what adhesion-hysteresis mechanism dominates under what circumstances is a

difficult task, because analytical solutions for the rate- and/or the preload dependence of the

pull-off force scarcely exist, even when only one relaxation process dominates. Moreover, it is

certainly conceivable that competing mechanisms, e.g., contact aging and contact growth, lead to

a similar, for example, logarithmic time dependence of waiting time on the pull-off force. The

validity of models and theories, irrespective of whether they are solved analytically or numerically,

should therefore be tested against information additional to load-displacement relations and their

dependence on rate, waiting time, and preload. A central quantity to be known is the time evolution
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of true contact, including its size and shape.

While small-scale features of adhesive experimental and in-silico contacts have been successfully

compared in the recent past, such as in the contact-mechanics challenge [19, 20] or to demonstrate

the breakdown of Amontons’ law at the small scale in soft-matter contacts [21], we are not aware

of related studies involving time-dependent phenomena as they occur during adhesion hysteresis.

Detailed comparisons between simulations and experiments also appear to have been conducted

only during compression but not during retraction. This may be the case because the simultaneous

incorporation of multi-scale roughness, viscoelasticity, and adhesion in simulations has only been

tackled recently [22]. Perez-Rafols et al. simulated a parabolic tip with single-wavelength rough-

ness and found contributions of viscoelasticity and waviness to adhesion hysteresis to be nearly

independent and additive as long as the viscoelasticity was confined to the edges of the wavy

contact. However, despite being cutting edge, the study lacks comparison to experiments and is

limited to one-dimensional interfaces and a viscoelastic model with single relaxation time.

The central difficulty for simulators lies in the short-range nature of adhesion, whose range of

interaction ρ critically affects not only the viscoelastic losses caused by propagating cracks [23] but

also the energy hysteresis induced by elastic instabilities [17, 24]. Unfortunately, using realistically

small values for ρ requires extremely fine discretization to be used so that lattice instabilities are

avoided [17]. The latter would lead to Coulomb friction for propagating cracks rather than to the

more realistic polynomial crack-speed dependence [25, 26]. As of now, it does not seem to be clear

how to reproduce reliably realistic dynamics of viscoelastic adhesion theory with continuum-theory

based simulations.

In this work, we study the contact between a viscoelastic film and a nominally flat, cylindrical

punch to which single-wavelength, small-scale roughness is added. Depending on the relative

orientation of different wavevectors q, which all have the same magnitude q, different patterns can

be produced for which the local height maxima form either a hexagonal or a triangular lattice. The

questions to be addressed in this study are manifold. Can simulations reproduce experimentally

observed dependencies, such as the normal force as a function of time and the concomitant contact-

area evolution? How does the unit of time, or retraction velocity, have to be renormalized for a

successful comparison between simulation and experiment when it is computationally unfeasible to

work with realistically small values of ρ? Is it possible to clearly discriminate between dissipation

due to elastic instabilities and viscoelastic crack propagation? And last but not least, can visualizing

the contact area aid the prediction of pull-off forces? The latter question can be relevant for modern

adhesive gripping devices coupled with machine learning and robotics for performance prediction

and automation [27, 28].

The remainder of this paper is organized as follows: SEC. II summarizes the ideal reference

model, the computational approach, and the experimental methods. Results are presented in

SEC. III. A detailed discussion is given and conclusions are drawn in SEC. IV.
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II. MODELS AND METHODS

A. Reference model

In this work, we compare simulations and experiments mimicking an ideal (mathematical)

reference model, which is sketched in FIG. 1. It consists of a flat, cylindrical, perfectly rigid

punch of radius a to which single-wavelength corrugation z(x, y) is added. The punch is indented

into a homogeneous, isotropic, and elastomeric film with linear viscoelasticity. Inspired by the

experimental realization, we will call this material PDMS, although the theoretical model does not

necessarily imply a specific polymer compound. It has a finite height h, infinite in-plane dimension

with a frequency-dependent Young’s modulus E(ω) and a constant Poisson’s ratio ν. Film and

punch interact through a cohesive-zone model, which is characterized by a surface energy per unit

area γ and a small but finite interaction range ρ. Punch and elastomer are frictionless and cannot

interpenetrate.

PDMS

u(x,y)

z
opp

x

z

h

u(r→∞) 2a

F(t)

FIG. 1. Illustration of the reference system. Dimensions are not to scale. However, u(x, y) and the indenter

shape represent data obtained from the simulation during compression and also the shrinkage occurring

after 3D printing.

Numerical values of the reference model are a = 375 µm, h = 2 mm, E(0) = 2 MPa, E(∞) =

2 GPa, ν = 0.495, and γ = 50 mJ/m2, which are admittedly our best guesses for the values of the

laboratory version of the reference model. The precise frequency dependence of E(ω) as well as the

interaction range cannot be well matched between the laboratory and the in-silico realization of

the reference model, which is why we abstain from defining reference values here. The experimental

range of adhesion can certainly be classified as short-ranged, while that used in the simulations is

merely as short-ranged as computationally feasible.

Two different height topographies are added to the punch, a triangular (tri) and a hexagonal

(hex) one. Redefining prefactors compared to previous work [29], they are given by

zhex(x, y − λ/2)

z0(hex)
=

4

9

{
3

2
+ 2 cos

(√
3

2
qx

)
cos

(
1

2
qy

)
+ cos (qy)

}
(1a)

ztri(x, y)

z0(tri)
= 2− zhex(x, y)

z0(hex)
, (1b)

where q = 2π/λ is the wave vector and λ = 150 µm. The amplitude of the undulations—

defined as half the difference between maximum and minimum—are set to z0(hex) = 9.2 µm and
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z0(tri) = 4 µm. Resulting punch profiles are shown in FIG. 2. Different amplitudes were chosen,

because the jump into contact of saddle points occurs much earlier for hexagonal than for triangu-

lar corrugations [29]. With these choices of z0, the radii of curvature of the asperities turned out

to be Rc ≈ 150 µm for both profiles. Moreover, the dimensionless surface energy γ̃ ≡ γ/vfullela , where

vfullela is the areal elastic energy in full, static contact, vfullela , are approximately γ̃(tri) ≈ 0.32 and

γ̃(hex) ≈ 0.061 for the respective, periodically repeated wave patterns. These values are less than

1/2, which has been identified as the (approximate) dividing line between sticky and non-sticky

for many surfaces with a symmetric height distribution [30].

FIG. 2. Top view of the flat indenter with (a) triangular and (b) hexagonal waviness. Height and lateral

dimensions are not to scale.

The indenter is moved from non-contact at different constant velocities vext ranging from 0.5

to 25 µm s−1 into the elastomer until a target force, or preload, Fpl, is reached, at which point the

velocity is reverted quasi-instantaneously to initiate detachment. The preload is varied between 1

and 10 mN for the hexagonal and between 40 and 80 mN for the triangular surface.

A brief note on the choice of the frequency- and wavenumber-independent Poisson’s ratio is in

order. Real elastomers deviate from ideal incompressibility at high frequency much more than at

low frequency, i.e., their Poisson’s ratio falls from just below 0.5 at ω → 0 to typically around 0.3 for

large ω [31, 32]. In the present study, we can ignore this effect, because the film thickness clearly

exceeds the punch radius, which means that all relevant modes, other than the center-of-mass

mode, can be treated as if the film was semi-infinite. In this case, the contact modulus, E∗(ω) =

E(ω)/
{

1− ν2(ω)
}

, which is not very sensitive to the frequency dependence of the Poisson’s ratio,

becomes the central elastic parameter determining the viscoelastic response.

B. Numerical model and methods

The solution of the dynamics defined implicitly in SEC. II A requires some idealizations to be

given up, while other specifications can be perfectly realized, at least to numerical precision. The

latter include linear elasticity, the topographies, velocities, loads, and any other specified number.

Compromises are related to the numerical solution of the problem, which include the necessity to

discretize space and time as well as the use of periodic boundary conditions for reasons of efficiency.
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1. Reproducing viscoelastic properties using GFMD

The time evolution of the elastic bottom layer can be cast as

ũ(q, t) =

t∫
−∞

dt′ G̃(q, t− t′) f̃(q, t′), (2)

where ũ(q, t) is the spatial Fourier transform of the displacement field as a function of time t,

f̃(q, t) is the spatial Fourier transform of the external force per unit area acting on the elastomer,

and G̃(q, t− t′) is the Green’s function conveying the effect that this force, or stress, at time t′ ≤ t
has on the displacement at time t. Formally, G̃(q, t) is given by

G̃(q, t) =
2

q

∞∫
−∞

dω
1

E∗(ω)
eiωt. (3)

The time dependence of the Green’s functions G̃(q, t) or the response functions they produce can

be represented via Prony series, which in turn can be realized through rheological models, as that

depicted in FIG. 3, where stiffness (kn) and damping (ηn) terms are introduced. An appropri-

ate choice of weights κn = kn/k0 and relaxation times τn = ηn/kn allow the target frequency

dependence κ(ω) = E(ω)/E(0) to be approximated through

κ(ω) = 1 +

N∑
n=1

κn

{
ω2τ2n

1 + ω2τ2n
+ i

ωτn
1 + ω2τ2n

}
. (4)

An example of a system producing such a target dependence is shown in FIG. 4a.

k0 η0

k1

u1

η1

k2

u2

η2

kN

uN

ηN

u0

f(t)

m

...

FIG. 3. Illustration of the rheological model employed, which consists of one Kelvin-Voigt element (k0, η0)

and N Maxwell elements (kn, ηn) in parallel plus an inertial mass m. In GFMD, each mode ũ(q)=̂u0 is

represented with such a model.

An inertia m and damping η0 were added to the rheological elements, which allowed us to

implement the final rheological model into a Green’s function molecular dynamics (GFMD) [33]

based code. The two added elements alter the frequency dependence to

κGMFD(ω) = κ(ω)− ω2m

k0
+ iω

η0
k0
. (5)
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FIG. 4. (a) Frequency-dependent target stiffness k(ω) as a function of frequency ω using kn+1 = 60.8kn,

τn+1 = τn/6, and N = 5. Dotted lines show the relaxation process of individual Maxwell elements and

the gray line a ω0.8 power law. (b) Associated response function u(t) to a point force f(t) = f0Θ(t) using

different auxiliary masses leading to different eigenfrequencies ωGFMD =
√
k∞/m. In each case, the auxiliary

damping was chosen to satisfy the condition for critical damping η0 = 2mωGFMD.

By replacing k0 with k0(q) = qE∗/2 for each ũ(q, t), all kn and ηn turn into kn(q) and ηn(q), with

the exception of η0(q), whose parametrization will be discussed separately.

The resulting equations of motion for each mode and its associated extra degrees of freedom

un(q, t) read:

m(q)¨̃u(q, t) + η0(q) ˙̃u(q, t) + k∞(q)ũ(q, t) = f̃(q, t) +
N∑
n=1

kn(q)un(q, t), (6a)

ηn(q)u̇n(q, t) = kn(q){ũ(q, t)− un(q, t)}, n ∈ 1...N, (6b)

with k∞(q) ≡∑N
n=0 kn(q), which is nothing but k∞(q) = E(∞)k0(q)/E(0), where only one of the

two “arrays” k0(q) and k∞(q) needs to be stored in memory. Even for a single Maxwell element,

the solution of the equations of motion turned out simpler and more stable (but not necessarily

faster) than our previous extension to GFMD [34], which was similar in spirit to that proposed

by van Dokkum and Nicola [35] in that the first-order time derivatives of the external forces were

needed. Our current approach rather resembles that pursued by Bugnicourt et al. [36], who used

Zener instead of Maxwell models and a conjugate gradient (CG) minimization method for the

solution of the instantaneous or high-frequency response instead of the auxiliary masses.

Before proceeding, a few additional notes of clarification might be in order. First, tildes on

the un(q, t) are omitted, as they are not subjected to an inverse Fourier transform. Second, the

equations of motion solved in conventional GFMD are recuperated by setting N = 0, while the

standard linear solid is obtained when using N = 1 and (infinitesimally) small values for m and η0.

Third, the presented methodology is readily extended to more general situations, even if the above

treatment merely targets the specialized problem defined in SEC. II. For example, if the elastic

properties were anisotropic in the xy-plane, as they would be if the elastomer were prestrained

in x but not in y direction, the coefficients k0(q) and thereby kn(q) and ηn(q) would be functions

of the vector q and not merely of its amplitude. Similarly, if the elastic properties changed with

depth, as is the case when the crosslinking and thus the stiffness depends on the depth [37],
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but similarly when the elastomer is confined by a hard wall [38, 39], the term k0(q) = qE∗/2

would have to be replaced or multiplied with an appropriate q-dependent function. Last but

not least, using N Maxwell elements does not imply a single time step to take N times longer

than a conventional GFMD time step, because the most demanding operation is the fast Fourier

transform. For example, using N = 5 Maxwell elements per mode only increases the CPU time

per time step by roughly 50%, compared to a regular GFMD time step for a discretization of

2, 048× 2, 048. Relative costs on memory are clearly larger. The reason why we do not go beyond

five Maxwell elements in this study is that almost four decades of relaxation times can be covered

when choosing τn+1 = τn/6, which requires the time step ∆t to be chosen very small assuming τ1

to remain fixed. Mimicking an even broader relaxation-time spectrum would impose further and

eventually unfeasible demands on the used time step ∆t.

While the values of k0(q) as well as kn(q) and ηn(q) for n ≥ 1 are predetermined by κn, τn,

and E∗, the remaining parameters m(q) and η0(q) should be chosen such that they provide a

compromise between accuracy and efficiency. The goal must be to find the high-frequency elastic

response as quickly as possible, albeit without making it necessary to dramatically reduce ∆t.

Under the made assumption that E(ω) does not depend on q, each free surface mode must have

the same response function. This implies m(q) ∝ k0(q), which is the choice made in so-called mass-

weighted GFMD [40]. The period associated with the resulting frequency ωGFMD =
√
k∞(q)/m(q)

is best chosen such that it is not much larger than 1/τmin = 1/τN = 1/min(τn). We found the

“aggressive”choice of ωGFMDτmin = 2π to be sufficient. If, however, the pulling velocity is so large

that the time step ∆t is no longer limited by τmin but by a large pulling velocity, e.g., by the

ratio of a characteristic height amplitude and the pulling velocity, we recommend to set m such

that ωGFMD∆t ≈ π/10 as to achieve a numerically stable but fast relaxation of the high-frequency

response to its exact solution. After realizing that the left-hand side of EQ. 6a represents a

damped harmonic oscillator, η0(q) is set to satisfy the condition for critical damping, i.e., η0(q) =

2m(q)ωGFMD.

As a consequence of the just-made choices, the target viscoelastic response, for example, to an

indenter exerting a force on a single (grid) point starting at time t0, is mimicked quite accurately

at times satisfying t > t0 + τmin, which can be achieved within one or two dozen time steps. The

validity of this claim is demonstrated in FIG. 4b for our system with N = 5 Maxwell models. It can

be seen that even ωGFMDτmin = 2π leads to quite satisfactory results, although the time step, ∆t

was set by default to ∆t = τmin/20. The ratio k∞/k0 was reduced from its reference value of 1,000

to 250 because this made the κ(ω) dependence at small ω be closer to the real PDMS [7] when

using a single Maxwell element. When using five Maxwell elements, in addition to the k0 spring,

we can produce a response function E′(ω) that roughly scales proportional to ωβ with β ≈ 0.8

at an intermediate frequency ωint defined through E′(ωint) =
√
E′(0)E′(∞), where E′(ω) is the

storage modulus, i.e., the real part of the complex function E(ω). A single element yields β ≈ 2,

while experimental systems are close to β ≈ 0.5.
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2. Modeling adhesion

The adhesive and repulsive interaction between elastomer and indenter is modeled by the co-

hesive zone model (CZM) proposed in Ref. [17]. Assuming their two surfaces with nominal surface

energy γ to have a gap g(x, y), the interaction potential Γ(g) is given by

Γ(g) = −γ ·


{1 + cos(πg/ρ)}/2 for 0 ≤ g < ρ{

1− (πg/ρ)2/4
}

for g < 0

0 else

, (7)

where ρ is the range of adhesion. Our CZM allows two surfaces to overlap marginally but penalizes

the overlap with a harmonic function. Enforcing a strict non-overlap constraint might be possible,

albeit only at a much enhanced numerical cost, since this would certainly require all internal modes

un(q) to be Fourier transformed. Moreover, the quadratic dependence of the potentials implies

an upper bound for the stiffness of the equation to be solved, thereby ensuring stable integration

with an appropriately chosen time step. The maximum adhesive stress σth = max(dΓ/dg) that

can locally occur using this model is γπ/(2ρ).

The range of adhesion is generally chosen such that it is as small as possible for a given dis-

cretization but not so small that lattice pinning and subsequent instabilities of the grid points at

a propagating crack front would occur. This can be achieved when the maximum curvature of the

potential is set to approximately 0.2qrefE
∗, where qref ≡ 2πn/L, n being the number of discretiza-

tion points parallel to one spatial direction and L the linear dimension of the periodically repeated

simulation cell [17]. Given a default choice of L = 1.5 mm and discretizations of the elastomer

surface into grid points whose number ranged from 2, 048× 2, 048 to 4, 096× 4, 096, ρ turned out

to lie in between 0.187 and 0.264 µm, which is not only much more than typical Lennard-Jones

interaction ranges of 3 Å but also exceeds recent estimates [41], which were obtained from exper-

imentally measured pull-off forces between ruby and diamond, by a little more than a factor of

ten.

To meaningfully compare simulations and experiments, it is necessary to assess whether the

adhesive interactions used in the model are short- or long-ranged. This can be done using a

(generalized) Tabor parameter, which is defined as the ratio µT = ρc/ρ, where ρc is a characteristic

interaction range at which the cross-over from short- to long-ranged adhesion takes place. Assuming

that γ/E∗ and a characteristic radius Rc are the only two independent length scales that can be

constructed from the model, the only possible dependence of µT on the two length scales is

µT =
1

ρ
Rβc

( γ

E∗

)1−β
, (8)

assuming either a flat punch with radius Rc or an indenter whose shape is a power law in the

radius, i.e., h(r) = Rc(r/Rc)
n/n. It will be shown in a separate work that the exponent β turns

out to be β = (n− 1)/(2n− 1) so that β = 1/3 for a parabolic (n = 2) and β = 1/2 a flat-punch

(n → ∞) indenter. These two limiting cases agree with the definition of the conventional Tabor

parameter for a parabolic indenter [42] and for the parameter allowing one to assess if the high-

velocity retraction of a flat-punch indenter fails through crack propagation or through uniform
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bond breaking. They correspond to the limits of µT � 1 and µT � 1, where the high-frequency

rather than the small-frequency modulus is used in the calculation of the Tabor parameter [43].

The numerical Tabor parameters at the scale of local parameters turns out to be µT ≈ 2 for

either profile when using the default discretization of 4, 096×4, 096 and thus ρ = 0.187 µm. This is

because the radii of curvature associated with the peaks of the (ideal) profiles have similar values,

namely Rc = 163 µm (triangular)and Rc = 142 µm (hexagonal). While µT ≈ 2 produces (quasi-

static) load-displacement curves similar to short-range adhesion [17, 44], it must be considered

long-ranged on approach [17, 24]. Consequently, simulations cannot be expected to reproduce

experimental results with close-to-perfect precision, at least not using currently available methods

and computers. If surfaces were not corrugated, the generalized Tabor parameter for the flat

punch would be reasonably large, i.e., µT ≈ 10 for the 2, 048 × 2, 048 resolution and µT ≈ 14 for

4, 096×4, 096. It may also be of interest to calculate the Tabor parameter at a coarse scale, i.e., the

one that is obtained when using the measured quasi-static pull-off force (from which an effective

surface energy can be constructed) and the given range of adhesion while assuming a perfectly flat

punch. For the hexagonal surface, these “effective” Tabor parameters turn out to be 0.880 and

1.24 for 2, 048×2, 048 and 4, 096×4, 096, respectively. The triangular variant shows a 40% smaller

quasi-static pull-off force and hence an equally reduced effective Tabor parameter.

3. Refinements and corrections

A few adjustments were made to the numerical model in order to facilitate the comparison

between simulations and experiments. Firstly, the velocity inversion was not abrupt but happened

over a few but sufficiently many time steps to yield a smooth force-distance relation. Secondly,

the 3D printing process introduces deviations from the ideal reference model, most notably an

undesired macroscopic curvature, which was reflected in the numerical model. This curvature is

a result of shrinkage induced by cross-linking during UV-curing. In selected simulations, we also

accounted for the quasi-discrete height steps of ∆z = 0.2 µm, which result from the layer-by-layer

nature of the printing process. Final results were only marginally affected by this since ∆z is of

similar order of magnitude as our interaction ranges ρ = 0.187 to 0.264 µm and the steps in the

topography are not very sharp.

A final technical aspect deserves mentioning. For reasons of computational efficiency, the buffer

between the indenter and its periodic image should be made as small as possible but large enough

so that the stress field on the indenter is not significantly affected. This is achieved quite well with

our choice of L = 4a. However, the center-of-mass ũ(q = 0) of a periodically repeated surface

deviates from u∞ = u(r � a) that would be obtained in a real system without periodic boundary

conditions (PBC) and with respect to which the indenter penetration is measured. An example

for this difference is depicted in the form of the dashed and solid red lines in FIG. 5a. Given that

a/h = 5 yields a contact stiffness only 20% in excess of the semi-infinite case [45, 46], the system

can be approximately treated as semi-infinite so that the correction

u∞ ≈ 6u(Lx/2, Ly/2)− 5u(Lx/2, 0) (9)

can be used, which was originally identified for sharp indenters in square simulation cells [44].
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FIG. 5. a) Illustration of the different displacements considered for compliance correction. b) Linear fit of

u∞ for stiffness evaluation.

The described adjustment can also be thought of as a correction of an unwanted finite stiffness in

the system, which does not always require a change of the experimental/numerical procedure. If the

mismatch between ideal and measured indenter penetration, uideal and uind, is caused by a quasi-

static elastic stiffness kcc, it can be accounted for by adding the missing displacement during data

post-processing. The procedure is analogous to correcting for an experimental machine stiffness

kM:

uideal(t) ≈ uind(t) + F (t)/kcc − F (t)/kM. (10)

Simulated displacements are adjusted using the kcc term, while experimental displacements are

corrected with the kM term. Each time, the respective other stiffness is considered to be infinite.

One thing to keep in mind with this method is that the occurrence of local instabilities, e.g. pull-

off events, generally depends on the mechanical stability of the system. The effect of kcc on these

phenomena cannot be eliminated afterwards [47, 48]. For a viscoelastic system, it may also be detri-

mental that a measurement performed at constant speed uind(t) = vextt implies that duideal(t)/dt

varies over time as (1/kcc)dF (t)/dt or (−1/kM)dF (t)/dt. Consequently, this alternative compli-

ance correction can be useful to approximately extract the correct slope dF (t)/duideal(t) from both

experimental and numerical data, but leaves other systematic errors in the curve unaltered.

Strictly speaking, the difference between u∞ and ũ(q = 0) in simulations is of viscoelastic

rather than quasi-static nature. However, especially for a small driving velocity, the macroscopic

displacement changes very slowly compared to local displacements, so that it can be approximated

as quasi-static and we can determine the associated stiffness kcc from a linear fit. From FIG. 5b,

we find that

uideal(t)− uind(t) = u∞(t) = F (t)/kcc (11)

is almost perfectly fulfilled across the whole load-displacement curve for vext = 1 µm s−1 with

kcc = 3.862 mN µm−1. For larger values of vext, viscoelastic effects become non-negligible and the

data points extracted from simulations form a hysteresis around the linear fit.

We note that a more elaborate method was tried, where the change of uind over time in the

simulation is continuously adjusted so that the extrapolated uideal is moving at the desired veloc-
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ity. But we did not find this to provide any noticeable improvement over the simple compliance

correction described above.

C. Experimental methods

The development of optical observation techniques has benefited a wide range of applications,

notably for assessing the true contact area between solids. Frustrated total internal reflection

started to be applied to image the contact in the 1960s [49, 50]. Similar setups are routinely

employed nowadays to measure stress distributions [51], contact area of rough surfaces [20, 52], or

to visualize the contact formation and separation of fibrillar microstructures [27, 28, 47, 53, 54].

Despite the successful use of this technique to determine multiple contact properties, obtaining high

contrasts is limited to observing the contact of an opaque specimen through a transparent counter-

surface. Another technique that was employed for contact measurement is the optical interference

observed as Newton’s rings [50, 55, 56]. This technique became more and more relevant in contact

mechanics and tribology after Krick et al. [57] employed it to develop an in-situ optical micro

tribometer, which allowed them to visualize the intimate contact between solids during loading

and sliding experiments. In this work we use a new approach for contact observation based on

the coaxial lighting principle, as illustrated in FIG. 6. Using light from a collimated light source

(collimated LED, Thorlabs, New Jersey, USA), a parallel light beam is created for homogenous

lighting. The parallel beam is scattered at the contact points between indenter and substrate,

reducing the intensity that is reflected back to the camera. This enhances the contrast between

contact and non-contact areas compared to non-parallel or transmitted light. It also makes it easy

to keep the optics in focus, because the reflecting surface remains static during the experiment.

In preparation of the 3D printing process, the computer-generated topographies shown in FIG. 2

were converted to STL file format, vertically sliced into slabs with an adaptive thickness of 0.2 to

1.0 µm and laterally hatched with a fixed width of 0.5 µm. The resulting models were then printed

by a two-photon lithography direct laser writing device (Photonic Professional GT2, Nanoscribe,

Karlsruhe, Germany), using a 25x objective, writing speed of 100 mm s−1, and a laser power of

40 mW. The printing material was a commercial photoresist (IP-S, Nanoscribe, Karlsruhe, Ger-

many) used in dip-in mode, with an elastic modulus of EIP-S = 1.34 GPa. After being printed,

the indenter topographies were measured using a confocal microscope (MarSurf CM expert, Mahr,

Göttingen, Germany).

The substrate was fabricated from PDMS (Sylgard 184, Dow, Midland, MI, USA) by mixing the

base and the curing agent in a ratio of 10:1. The pre-polymer was degassed using a Speed-Mixer

(DAC600.2 VAC-P, Hauschild Engineering, Hamm, Germany) with 2350 rpm at 1 mbar for 3 min

and then cured at 95 °C for 1 h. FIG. 6 shows the employed custom setup for tack tests with optical

contact imaging. The normal displacement was controlled by a SMARPOD hexapod (SmarAct,

Oldenbug Germany) and the force was measured by a 2 N load cell. The PDMS substrate was

glued to the bottom of a transparent sample holder containing a mirror allowing the side-mounted

optical system to see through. This holder was mounted to a modular positioning system with six

degrees of freedom (SmarAct, Oldenbug Germany) for precise surface alignment using two side-
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FIG. 6. Schematic representation of the experimental setup.

view cameras. The whole mechanical setup was measured to have an effective machine stiffness

of kM = 38.1 kN m−1. Videos of the contact evolution during the tack tests were recorded at

50 frames per second using a digital camera (DFK 33UX273, Imaging Source Europe GmbH,

Bremen, Germany). All experiments were performed in a laboratory with regulated temperature

of 21.0(2) °C and relative humidity at 50(5) %.

III. RESULTS

A. 3D printing

We first analyze optical images of the experimental topographies obtained by the 3D printing

process. FIG. 7a shows the difference between targeted and measured height profile exemplarily for

the triangular surface. The main deviation between them is a mean curvature, which is supposedly

due to shrinkage of the resin after 3D printing. This global curvature was reflected in the topogra-

phies used for the simulations. Ignoring it substantially reduces the agreement between simulations

and experiment, because stresses in the flat-punch solution are largest where the correction is most

noticeable. Ideal, simulated, and experimental height profiles are compared in FIG. 7b.

B. Tack tests for the triangular surface

FIG. 8 shows the measured and simulated load-displacement curves obtained for the triangular

surface. The loading process, shown as a gray dashed line, is smooth and rather insensitive to the

approach velocity. The more interesting detachment parts of the curves are highlighted in color.

Experiments and simulations show similar trends: Two bulges occur at small velocity vext and small

preload Fpl. A bulge located at slightly compressive force is related to the detachment of saddle

points—as revealed in more detail further below—while the bulge at tensile force relates to the

final pull-off process. Their locations approach each other when either vext and/or Fpl is increased.

Ultimately, they merge into a single minimum, whose value corresponds to the (negative) pull-
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FIG. 7. a) Deviation of an experimental line profile from the ideal model and b) absolute heights of model,

simulated and experimental indenter, shown exemplarily for the triangular pattern. The curvature correction

shown in a) proved necessary for a successful comparisons between simulations and experiments.

off force. Although experimental and simulated curves agree only semi-quantitatively, the tensile

pull-off force is increased from about Fpo = 2.5(5) mN for a preload force of Fpl = 40 mN to up to

Fpo = 14(2) mN for Fpl = 80 mN in both cases.

To match the pull-off force satisfactorily not only for the preloads Fpl = 40 mN and Fpl = 80 mN

but also for Fpl = 60 mN, the relaxation time for the intermediate preload was adjusted from τ =

200 µs to τ = 80 µs, while keeping E∞/E0 = 250 constant. The need for different relaxation times

for the three preloads—in fact, the numerically produced Fpl = 40 mN and 80 mN unloading curves

could have been further improved by choosing individual relaxation times for them—indicates that

the numerical approach to the viscoelasticity is not yet ideal. We believe the two main deficiencies

to be the relatively large range of adhesion used in the simulations, see also the discussion at

the end of SEC. II B 2, and the approximation of a quite complex Prony series representing the

frequency-dependent viscoelastic modulus with a single Maxwell element. We were thus surprised

that minor tweaking of one single parameter for one preload was sufficient to achieve the given

level of semi-quantitative agreement, the more so as minor changes to the viscoelastic properties

turn out to have large effects.

The sensitivity of the load-displacement curves w.r.t. range of adhesion and the viscoelastic

model will be scrutinized after establishing that the semi-quantitative agreement between exper-

imental and simulated load-displacement curves is not fortuitous: experimental and simulated

contact topographies evolve in concert, as is revealed exemplarily in FIG. 9 for the preload of

Fpl = 40 mN and the retraction velocity of vext = 1 µm s−1. In the simulations representing two

differently parametrized single-relaxation time models, dark gray means contact (negative gap),

medium gray is experimentally indistinguishable from contact (0 ≤ g . 500 nm), while light gray

is non-contact and very light gray the background color. The gray shades in the real-laboratory,

optical images do not allow us to determine the true interfacial separation to a high precision. Yet,

very dark pixels can be assumed to indicate contact, while less dark and bright pixels certainly

imply non-contact. Hence, the medium-gray color level was introduced to represent gaps smaller

than the medium wavelength of visible light, which we expect to appear quite dark in the optical
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FIG. 8. Load-displacement curves recorded during the detachment of the triangular surface at different

velocities. The left column always shows experimental results, while the right column shows single-relaxation

time simulations. From the first to the last row, the preload is increased from 40 to 60 and then 80 mN.

Semi-quantitative agreement is achieved across the board, despite a slight mismatch in macroscopic contact

stiffness.

images. To better visualize details of the gap distribution in the in-silico surface, heat maps of the

interfacial stresses are included in FIG. 9 and in later related figures for the hexagonal surface.

Experiments and simulations reveal similar characteristics: at the point of maximum preload,

contact occurs in all peaks but only in those saddle points that are close to the outer rim, despite

the slightly convex macroscopic surface curvature. The snapshots in the last two columns of FIG. 9

were taken right before and after the bulge in the force-displacement curve near a displacement of

6 µm. Hence, we can associate this bulge with the saddle-point detachment at the outer rim of the

corrugated punch whenever it did occur.

Similar qualitative agreement of the contact evolution in real-laboratory and in-silico was found

for all load-displacement curves shown in this study. Nonetheless, quantitative differences exist:

for example, while the initial experimental and simulated frames at the maximum preload in the

left column of Fig. 9 look astoundingly similar, given that the simulations cannot be seen as short-

range adhesion on approach, the experimental contact barely changes to the next shown image.

In contrast, the in-silico contact reveals a noticeable retardation or aftereffect from the moments
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FIG. 9. Contact observation during retraction in a tack test at 1 µm s−1 and a maximum compressive load

of Fpl = 40 mN. The upper row shows experimental data, while the two center rows represent simulations

using different relaxation time τ and range of adhesion ρ. The darker areas represent points with interfacial

separations less than 500 nm, while the lighter areas represent larger gaps. The last row shows the pressure

distribution associated with the previous row. tpl denotes the time between first contact and preload for

the respective row. The times for the last two columns are located just before and past the bulge in the

force-displacement curve on the compressive part of the unloading curve, i.e. at u ≈ 5 µm and u ≈ 7.5 µm,

respectively. Similar features are observed in all cases, e.g., the loss of contacts start with the saddle points

at the edges and contact exists in all asperities but in no saddle point before the maximum tensile force

during detachment is reached, i.e., at a displacement near −1 µm.

of high compression during the initial decompression in that the contact keeps growing slightly.

We attribute this to the necessity of large viscoelastic relaxation times for a proper reproduction

of the dissipation caused by moving cracks. This makes the response to simple indentation be

too sluggish so that aftereffects of the compression branch are noticeable shortly after inverting

the direction of motion. Upon further decompression, the trend reverses and the contact evolves

slightly more slowly in the experiments than in the simulations: the destruction of contact at the
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saddle points between the last two columns of FIG. 9 happens earlier in the simulations than in

the experiments.

To elucidate the role of the range of adhesion on the dynamics, we contrast the contact forma-

tion obtained in two simulations based on slightly different models, which both assume a single

relaxation time and the same E∞/E0 ratio. The second model uses a range of adhesion that is

reduced by a factor of 1/
√

2 w.r.t. the first model while the relaxation time was divided by 2.5 to

achieve close agreement between the dynamics of the two models. A slightly different redefinition

of the relaxation time might have lead to even better agreement. However, even with the made

choice, the second and the third row of FIG. 9, representing the first and second single-relaxation

time model, respectively, barely allow the naked eye to distinguish the contact break-up between

the two models. Only the second contact images, taken at a time 1.125 tpl, where tpl is the time

elapsed between initial contact and maximum compressive load, differ slightly: in the given time

of 0.125 tpl, the contact with the smaller relaxation time has grown more than the other one.

The reason why changing the viscoelastic relaxation time can be “compensated” by a change

in the range of adhesion ρ during the retraction process is an interplay between the range of

adhesion and the viscoelastic properties of the elastomer [23, 25]. The dissipation caused by the

propagating opening cracks must be reproduced in simulations in order to yield accurate load-

displacement curves. Since steeper slopes at the contact edge imply larger (relative) velocities in a

moving crack and thus enhanced dissipation, a shorter range of adhesion, leading to steeper slopes,

can be compensated by shorter relaxation times used in the viscoelastic model.
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FIG. 10. Load-displacement curves obtained for the triangular surface exposed to a preload of (a) 40 mN

and (b) 60 mN using different rheological models. The detachment speed is 1 µm s−1 in all cases. Larger

stiffness at small frequencies leads to larger pull-off forces.

To elucidate the role of viscoelasticity, three different vicoelastic models were considered in
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addition to the purely elastic model reflecting the quasi-static limit. Their frequency-dependent

contact moduli are depicted in FIG. 10a with model 1 having a single relaxation time of τ = 400 µs

and E∞/E0 = 250, while model 2 and 3 contain five relaxation times—with ratios and weight

chosen as described in SEC. II B and τmin = 40 µs. Moreover, E∞/E0 = 8 in model 2 and

E∞/E0 = 250 in model 3. Panels b through d of FIG. 10 reveal that all three viscoelastic models

increase the adhesion hysteresis with respect to the quasi-static model, which shows a rather small

pull-off force of 0.7 mN independent of the preload. While the effect is relatively minor for model 2

with its relatively small E∞/E0 ratio, the preload sensitivity is largest for model 3 with a large

E∞/E0 ratio and a tail of the “excess”-E(ω) extending to small frequencies. Interestingly, the

changes to the viscoelastic model in that range of frequencies seems to have a larger impact than

the change associated with the high-frequency end of the spectrum. For the intermediate preload

of 60 mN, the maximum tensile force occurs at negative displacement and is clearly associated with

the detachment of saddle-points rather than with that of asperity peaks.

C. Tack tests for the hexagonal surface

The tack tests on the hexagonal surface were carried out similarly as on the triangular surface,

however using smaller preloads. The resulting load-displacement curves are shown in FIG. 11, this

time only for two velocities but including the loading part. The vext = 1 µm s−1 contact evolution

is depicted in FIG. 12 with an emphasis on the loading rather than the detachment process.

The force-displacement curves on separation contain only one minimum at all investigated

velocities for the hexagonal surface. The extra bulge related to the saddle-point detachment in the

triangular surface has disappeared for the hexagonal pattern, because their detachment coincided

in all investigated cases with that of the asperity peaks. This is because saddle points are almost

as high as the peaks in the hexagonal lattice. In fact, they are so high that contact formation of

saddle points between asperities occurs shortly after (0.7 µm) contact formation at the peaks even

in the quasi-static limit on approach. This, in turn, is due to the fact that the height of the contact

line of a zero-load isolated asperity (in the Hertzian, i.e., parabolic approximation) almost extends

down to a height where the corrugated profile crosses over from convex to concave. Due to the

large dissipation of a propagating closing crack, viscoelastic saddle-point contact formation is far

from being instantaneous.

While the detachment curve shows fewer features for the hexagonal than for the triangular

patterning, the opposite is true for the contact formation, at least as far as the in-silico realization

of the default model is concerned. First, strong aftereffects occur in the simulations for small

preloads right after velocity inversion for vext = 25 µm s−1. They result in what could be called

an “anti-hysteresis”—though the ordinary hysteresis that occurs during the later portion of the

detachment process will always ensure that a closed loop dissipates and does not produce energy.

We thus abstain from postulating that design principles for energy-harvesting nano-scale machines

could be deduced. Instead, we relate the strong retardation effects during compression once more to

the large relaxation times, which are needed to better match the dissipation of propagating cracks

in the experiments. Second, once the saddle points have made contact, the interfacial stiffness,
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FIG. 11. Load-displacement curves obtained during detachment at different velocities for the hexagonal

pattern. The left column shows experimental results, while the right column shows single-relaxation-time

simulations. The preload increases from 1 to 5 and then to 10 mN from the first to the last row,. A quasi-

static reference calculation with the same adhesive interaction resulted in a pull-off force of 1.2 mN and a

tensile force of 0.8 mN immediately after the jump-into-contact instability. Preload effects are distinctly

reduced compared to the triangular surface in experiment and simulation alike.

defined as the slope of the force-displacement curve, is much enhanced once the saddle points have

made contact. This is best revealed in the vext = 1 µm s−1 curve of the largest investigated preload

in panel f of FIG. 11 near a compressive load of F = 5 mN. In fact, the contact image reveals

saddle-point formation in the lower row of FIG. 12 near that load.

Increasing the preload past the point of saddle point formation changes the load-displacement

relation for the hexagonal pattern only moderately, particularly little between panels c and e of

FIG. 11, corresponding to Fpl = 5and 10 mN, respectively. This can be rationalized by the contact

image obtained at the maximum tensile force in the last column of FIG. 12, where most saddle

points are still in contact. Those panels also corroborate the statement made at the beginning of

the results section that correcting for the “macroscopic” surface curvature induced during cooling

after the printing process was needed to achieve reasonable or, depending on viewpoint, good

agreement between the laboratory and in-silico samples: the contact area close to the rim of the

punch is noticeably reduced by the “macroscopic” curvature correction.
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FIG. 12. Contact observation during a tack test at 1 µm s−1 and a maximum compressive load of 10 mN.

The upper row is taken from the experiment, the center row from a simulation with a single relaxation time

(τ = 400 µs and ρ = 2.642 µm) and the last two rows from a quasi-static simulation with the same range of

adhesion ρ. Gray scales as in FIG. 9. Frames are taken from the approach part of the tack test, except for

the last ones, which reflect the moment of maximum tensile force. In real-laboratory and in-silico contacts,

all maxima are always in contact while saddle points close to the rim only come into contact with increasing

load. The attachment of saddle points and asperities is clearly separated on approach, but their detachment

occurs quasi-simultaneously.
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IV. DISCUSSION AND CONCLUSIONS

This work addressed the interplay between viscoelastic hysteresis in contact mechanics and the

hysteresis due to elastic multistability being responsible for the quasi-discontinuous snap into and

out of individual contact patches observable during quasi-static driving. To elucidate the coaction

of viscoelastic and multistability effects, we studied numerically and experimentally a flat punch to

which small-scale corrugation—in the form of either a hexagonal or a triangular height profile—was

added. The two height spectra are identical although the profiles are their mutual inverses, i.e.,

the phases of the height Fourier coefficients are shifted by π. This makes the saddle points, which

are located between two maxima and which turn out crucial for the contact mechanics, be closer

to the asperity summits in the hexagonal than in the triangular lattice.

Contact of an ideal flat punch forms quasi-instantaneously so that both viscoelastic losses due to

closing cracks and multi-stability effects are negligible on approach. Consequently, preload effects

of ideal-punch detachment are minor. However, the detachment requires a crack to propagate from

the rim to the center, which leads to a viscoelasticity-enhanced work of separation at intermediate

pull-off velocities [23, 58]: the work of separation approches 2γA at very small and very large

velocities, assuming high- and low-frequency contact moduli to be well defined.

After small-scale roughness was added to the flat punch, the wavelength of the pattern being

one fifth of the punch diameter, strong preload effects occurred at intermediate operating velocities

but not under quasi-static driving. Thus, preload and multi-stability effects are intertwined in the

corrugated punches. The preload effects were distinctly larger for the triangular than for the

hexagonal pattern. Specifically, the pull-off force for the hexagonal lattice saturated at roughly

6 (experiment) and 7 mN (simulation) once the preload had reached 5 to 10 mN at an operating

velocity of 25 µm s−1. These two forces were roughly two and ten times larger, respectively, for the

triangular pattern. Despite these quantitative differences, pull-off forces saturated in both cases

once the preload had been large enough to induce contact at the saddle points and retraction

was fast enough so that saddle-points were still in contact at the point of maximum tensile force.

Since the saddle-point heights are rather close to (far from) the height maxima in the hexagonal

(triangular) lattice, preload effects saturated earlier in the hexagonal than in the triangular system,

although the hexagonal amplitude was chosen more than twice that of the triangular corrugation.

A purely spectral approach to our system assuming random phases, as pursued in Persson’s

contact mechanics theory [59, 60], would not be in a position to reproduce or predict the observed

trends. In the quasi-static case, the hexagonal surface pattern even shows a substantially larger

pull-off force than the triangular one, despite its 2.3 times larger height amplitude. In principle,

phase-correlation effects can be included into the theory [61, 62], which might fix this shortcom-

ing. Furthermore, Persson’s rough surface contact theory only takes either viscoelasticity [59] or

adhesion [60] into account, but not (yet) both simulataneously. Both effects have to be accounted

for in a proper description of our system.

Can our results be rationalized with bearing-area models (BAMs), such as the popular approach

by Fuller and Tabor [63] for nominally flat, adhesive contacts? BAMs assume the highest asperity

to come into contact first and out of contact last, the second-highest peak to come into contact

second and out of contact second last, and so on and so forth. The load-displacement laws of the
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individual peaks, whose shapes are approximated as paraboloids, are then added up to yield a

global load-displacement curve. While BAMs are commonly done for quasi-static contact loading,

generalization to dynamics seems to be straightforward, e.g., by “feeding” the time-dependent

force-displacement relation of an isolated asperity contact at the given operating velocity into the

model. For our system, the radii of curvature of the hexagonal and the triangular lattice turned out

quite similar. (The minor curvature corrections w.r.t. the ideal model changes things quantitatively

but not qualitatively.) Thus, the depinning force of a corrugated (ideal) punch would be expected

to scale linearly with the number of maxima given fixed heights and fixed radii of curvature at a

fixed operating velocity. Since the number density of maxima in the hexagonal lattice is twice that

of the triangular lattice, BAMs predict roughly twice the adhesion force for our hexagonal than for

our triangular patterned punch, again assuming identical velocities in both cases. Finite-size effects

and cut-off asperities at the rim of the punch renormalize that ratio but do not affect the trend.

Unfortunately, things turn out the other way around in the viscoelastic case, i.e., the triangular

surface with the fewer peaks has clearly greater (viscoelastic) pull-off forces, due to the pivotal

role of saddle points. Obviously, BAMs approximating each peak as parabolic intrinsically fail to

account for saddle points, which is why we are beyond sceptical on studies reporting models in the

spirit of Fuller and Tabor to be quantitative for nominally flat contacts, even if agreement can be

fudged during the post-diction of experimental data.

This leaves numerical approaches, such as the here-reported number-crunching exercise, as the

least problematic non-experimental tool to tackle adhesive problems similar to that investigated

here. Nonetheless, number-crunching is not entirely unproblematic either. We also gauged the

model parameters on the experiments that were reproduced, even if the few adjustable parame-

ters were kept constant and not readjusted when preloads, patterns, and operating velocities were

changed—except for one set of experiments, specifically those using a 60 mN preload on the tri-

angular pattern, for which the relaxation time was changed by a factor of 2.5. One problem in

the attempt to make quantitative predictions is the multi-scale nature of the dissipation during

viscoelastic crack propagation. The range of adhesion critically affects the dissipation of moving

cracks, which must be reproduced correctly to model the formation and the failure of adhesive

contacts reliably [23, 25, 26, 64]. This means that the vicinity of the crack must be resolved

with a computationally unfeasible large resolution or the viscoelastic properties of the elastomer

relaxation times must be rescaled, which, however, implies that the time-dependent response of

the elastomer to a point indenter would no longer be correct. For experimental in-situ contact

observation, one challenge was to keep the focus on a moving indenter and to obtain good contrast

between contact and non-contact with a lateral resolution close to the wavelength of light. Another

difficulty was to remove artifacts from the confocal-microscopy measurements of the height profiles,

which would have been even more challenging if the surfaces had had relevant roughness on finer

length scales [65].

Despite all difficulties related to the numerical modeling, we would argue that the simulations

matched the experiments not only qualitatively but almost quantitatively, that is, both force-

distance relationships and contact images correlated quite well between simulations and experi-

ments. This was accomplished not for fortuitous reasons but because (a) the simulations captured

all the essential ingredients of real contacts, (b) imperfections in the 3D printing process were
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accounted for so that the adhesion at pull-off originated on the contact rim for the triangular

pattern but in the center of the contact for the hexagonal pattern. It is noteworthy that this was

achievable entirely within linear response theory, neglecting in-plane stresses as well as large dis-

placement effects. For the observed system, we would expect these phenomena only change results

quantitatively but not qualitatively as in other systems [66, 67].

Due to the good correlation between experimental and simulation results, we are confident

that any (qualitative) conclusion drawn in this work is on solid grounds. This makes us hopeful

that simulations like the ones presented here will soon be in a position to address systems beyond

the demonstrator model considered here, such as pressure-sensitive adhesives or hydraulic seals

in contact with surfaces having complex and not only single-sinusoidal micro-scale roughness.

Likewise, optically studying the time evolution of contacts, in particular their saddle points, as

done in this work, bears much promise to predict if a given contact is close to detachment.
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[34] S. Sukhomlinov and M. H. Müser, Appl. Surf. Sci. Adv. 6, 100182 (2021), arXiv:2104.15056.

[35] J. S. Van Dokkum and L. Nicola, Model. Simul. Mater. Sci. Eng. 27, 10.1088/1361-651X/ab3031 (2019).

[36] R. Bugnicourt, P. Sainsot, N. Lesaffre, and A. A. Lubrecht, Tribol. Int. 113, 279 (2017).

[37] M. H. Mueser, H. Li, and R. Bennewitz, Lubricants 7, 1 (2019).

[38] G. Carbone and L. Mangialardi, J. Mech. Phys. Solids 56, 684 (2008).

[39] G. Carbone, B. Lorenz, B. N. Persson, and A. Wohlers, Eur. Phys. J. E 29, 275 (2009).

[40] Y. Zhou, M. Moseler, and M. H. Müser, Phys. Rev. B 99, 1 (2019).
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