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Abstract
We discuss numerical challenges in calculating stable and unstable steady states of widely 
used dynamic semiconductor laser models. Knowledge of these states is valuable when 
analyzing laser dynamics and different properties of the lasing states. The example simu-
lations and analysis mainly rely on 1(time)+1(space)-dimensional traveling-wave models, 
where the steady state defining conditions are formulated as a system of nonlinear alge-
braic equations. The performed steady state calculations reveal limitations of the Lang-
Kobayashi model, explain nontrivial bias threshold relations in lasers with several electri-
cal contacts, or predict and explain transient dynamics when simulating such lasers.

Keywords Semiconductor lasers · Modeling · Steady states · Traveling wave · Lang-
Kobayashi · Optical mode · Pathfollowing

1 Introduction

Semiconductor lasers (SLs) and coupled SL systems are beneficial in many modern appli-
cations requiring specific characteristics of dynamic or stationary emission. A variety of 
models are used for simulations of well-above-threshold dynamics of SLs. Advanced mod-
els, defined by the complex systems of 1(time)+3(space)-dimensional (1+3-D) or 1+2-D 
PDEs (Hess and Kuhn 1996; Inoue  et al. 2019), can give a deep insight into the spati-
otemporal dynamics. These models, however, typically rely on a large number of not very 
well-known parameters, require advanced numerical tools, are computationally expensive, 
and allow only limited analysis. On the other hand, in this work considered 1+1-D PDE 
(Javaloyes and Balle 2009; Radziunas 2017) and even simpler DDE/ODE models (Lang 
and Kobayashi 1980; Yamada 1989; Danckaert et al. 2002) may lack quantitative precision 
but can be quickly solved on standard computers and admit a variety of analytic and semi-
analytic methods for their analysis.

Calculating and analyzing stable and unstable steady states is crucial for understand-
ing SL dynamics (Schatz 1992; Sieber 2002; Bauer  et al. 2004; Radziunas  et al. 2015), 
estimating different lasing characteristics, or designing SLs for specific real-world 
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applications. For example, knowledge of the steady state branches and multiple stable 
states in the 1+1-D traveling wave (TW) model was explored when preparing laser state 
switching (Khoder et al. 2018), explaining state-interaction induced instabilities in single-
frequency-emitting lasers (Radziunas  et al. 2015), and suggesting methods for diminish-
ing these drawbacks (Krüger et al. 2019). Linewidth estimation of the calculated states is 
needed when designing narrow-linewidth lasers (Wenzel et al. 2021). Linear stability anal-
ysis, an inspection of damping and frequency of main carrier-photon and photon-photon 
resonances, and a study of small-signal-modulation response were crucial for designing 
directly-modulated lasers at enhanced frequency rates (Radziunas et al. 2007). Calculating 
unstable states and knowledge of their type were required when stabilizing them by inva-
sive or non-invasive optical feedback (Schikora et al. 2006) or preparing an optically excit-
able laser (Wünsche  et al. 2002). Knowledge of special steady-states determined by the 
degenerate optical mode (also known as an exceptional point) and the two-parameter bifur-
cation analysis (Sieber 2002) enabled experimental access to different dynamic regimes 
existing in the vicinity of this point. Namely, small-frequency dispersive Q-switching 
pulsations, high-frequency mode-beating-type pulsations, dynamics on tori with the state 
locking at different strong resonances (Bauer et al. 2004), chaotic regimes, or excitability 
on the ruin of the homoclinic orbit (Wünsche et al. 2002).

Below in this work, we derive systems of algebraic equations, defining stable and 
unstable steady states in rather general TW models. For simplified TW models, providing 
good approximations of the steady states of more complex models, we present semiana-
lytic algorithms for finding these states and the state branches for properly selected model 
parameters. These methods were exploited for calculation and analysis of the steady-states 
in SLs with one and two active sections.

2  Mathematical models

We consider and compare steady states in simple DDE (Lang and Kobayashi 1980) and 
1+1-D PDE (Radziunas 2017) models, used for dynamic simulations of well-above threshold 
operating multisection SLs or coupled SL systems. A few examples of such devices, namely 
a multisection laser with a pair of differently biased sections (Bauer et al. 2004), a master-
slave laser system, a laser with delayed optical feedback from an external mirror (Lang and 
Kobayashi 1980; Wünsche et al. 2002), a ring laser (Javaloyes and Balle 2009), and a single-
section laser (Schatz 1992), are shown in Fig. 1a. The models mimic dynamics of the slowly 
varying complex amplitude of the optical field � within the whole, from m distinguishable 
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Fig. 1  Schematics of typical multisection laser devices and coupled laser systems. Colored boxes (“sec-
tions”): separately contacted laser parts, whole laser diodes, passive waveguides, or air gaps. Thick black 
vertical bars in a: Laser facets and interfaces (“edges”) of different sections. Thin arrows: counterpropagat-
ing optical fields and their reflections and transmissions at section edges. b and c: External cavity diode 
laser and conventional optical feedback laser with an indication of gain and reflector response functions, 
respectively
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parts (“sections”) composed SL device cavity, coupled to the real carrier density N in ma 
“active” sections Sa of this cavity, see, e.g., pink-colored boxes in Fig. 1. Within the remaining 
mp = m − ma “passive” sections Sp , the carriers are not present (e.g., air gaps between differ-
ent coupled lasers, light-blue boxes in Fig. 1), or the field and carrier rate equations are decou-
pled (passive waveguides, yellow boxes in the same figure). � and N are vector functions of 
time and, in the PDE model case, space.

Typically, dynamic SL models are given by the systems of equations governing the evolu-
tion of fast fields � and relatively slow carriers N:

Vector P(|� |2) , defined by a set of squared moduli of field vector components, represents 
the local or global photon number or power within the whole optical field, separate opti-
cal modes, or different polarization components. Typically, P(|� |2) enters functions �� 
and N  with small (nonlinear gain compression) prefactors and is linear with respect to its 
arguments. Complex propagation factor � consists of the static and dynamically varying 
parts �0 and �� . �0 in all m laser parts is defined by field losses and built-in or temperature-
induced nonuniformities of the refractive index. In the ma active sections determined �� is 
mainly defined by the carrier-dependent refractive index change and gain (vector) functions 
nR(N) and g(N), which can be extended by field power-depending nonlinear corrections. 
Fsp is a Langevin spontaneous emission term. Since the carrier dynamic is usually slow, 
and the gain compression impact is small, changes of the propagation factor � within short 
and even moderate time intervals are also small. Thus, in more complex models, freezing 
𝛽 = 𝛽⋆ (obtained during time integration of the model equations at the fixed time instant, 
for example) and analyzing by operator H(𝛽⋆) determined linear with respect to � field 
equation (1), one can extract interesting information on the structure of the optical fields, 
which remains almost preserved within these short or moderate time intervals (Radziunas 
and Wünsche 2005).

In some ODE models (standard or multimode rate equations (Yamada 1989; Danckaert et 
al. 2002)), instead of complex vector � the real photon number function is used. N  and H , 
in this case, are scalar-, vector-, or matrix-functions of carrier and photon numbers. In DDE 
models, � (t) is defined by a single or several ( s′ ) complex components, while m′-component 
real vector-function N(t) represents possibly multilevel carrier dynamics in active sections. N  
is a real vector-function, whereas H , besides the simple scalar- or matrix-type functional part, 
also includes a time-delay operator D� . A most prominent representative of DDE models for 
SLs with s� = m� = 1 is a Lang-Kobayashi (LK) system for lasers with delayed optical feed-
back (Lang and Kobayashi 1980), see Fig. 1c. A normalized version of this model is deter-
mined by

(1)
d

dt
� =H(�)� + Fsp,

(2)
d

dt
N =N(N,P(|� |2),� ,� ∗),

(3)where � = �0 + ��(N,P(|� |2)).

(4)H = ��(N) + �D� , �� = (1 + i�H)N, N = �(I − N − (1 + 2N)|� |2),
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where g = N , nR = �HN . �H , � , I are the linewidth enhancement factor, feedback rate, and 
bias current; � is the delay time, whereas the small parameter � , the ratio of photon and 
carrier lifetimes, indicates a slow-fast nature of the SL model.

In 1+1-D PDE models, typically used for describing narrow-waveguide edge-emitting 
lasers, � is a (vector-) function determining the field distribution along the whole SL 
device cavity. The field operator H accounts for the spatial derivative �z along the longi-
tudinal coordinate z and the boundary-interface-conditions (BIC), given by a set of field 
reflection-transmission relations at the edges of all m SL device sections, see thick vertical 
bars (edges) and corresponding thin red and blue arrows (transmission and reflection of the 
counterpropagating fields) in Fig. 1a. The vector function N can also depend on z within 
the active sections Sa , indicating a local carrier density in this way. In simpler PDE mod-
els, one neglects spatial hole burning of carriers (Schatz 1992) and considers sectionally-
uniform components of N, sectionally-averaged N  and P , and, thus, section-wise constant 
propagation factor � in Eq. (3). In this case, the carrier rate equations (2) for correspond-
ing ODE, DDE, and PDE models are nearly identical. Different versions of the 1+1-D 
PDE traveling wave (TW) model (Javaloyes and Balle 2009; Radziunas 2017) are used to 
simulate and analyze the spatiotemporal dynamics in various multisection SLs, including 
those schematically represented in Fig. 1. A simplest scaled TW model (Radziunas et al. 
2006) of a solitary SL (lower right scheme in Fig. 1a) for � (z, t) = (�+

E
,�−

E
)T and a single-

component spatially-uniform N(t) is defined by

where l, � , �0 are scaled diode length, coupling factor of the counterpropagating fields �+
E

 
and �−

E
 in the presence of Bragg grating (BG), and complex scaling-induced factor. r0 and 

rl are complex field reflection factors at the laser facets, whereas the remaining parameters 
are the same as in the LK model (4) case.

3  Spectral problem and characteristic equation

The field equations (1) with neglected Fsp for optically uninjected SL usually are rotation-
ally-invariant. Let us assume that the propagation factor � or, more precisely, its correction 
�� is fixed, 𝛿𝛽 = 𝛿𝛽⋆ , and the optical fields are given by

Here � is a time-independent normalized complex vector with the same s′ components as 
the field function � , e.g., � ≡ 1 in the LK model (4). The real and imaginary parts of the 
complex frequency � stand for the optical frequency (relative to the central frequency �0 ) 
and damping of the field. When squared, a nonnegative real scalar factor f represents the 
photon number or field intensity. Finally, � is a real phase factor that can be selected arbi-
trarily in rotationally invariant systems. Substitution of the Ansatz (6) into the field equa-
tions (1) implies the spectral problem

(5)
H =

�
−𝜕z + 𝛿𝛽(N) + 𝜁0∕l − i𝜅∕l

−i𝜅∕l 𝜕z + 𝛿𝛽(N) + 𝜁0∕l

�
, 0 < z < l,

boundary conditions 𝛹+
E
(0, t) = r0𝛹

−
E
(0, t), 𝛹−

E
(l, t) = rl𝛹

+
E
(l, t),

N = 𝜇
�
I − N − (1 + 2N)⟨�𝛹 �2⟩[0,l]

�
, ⟨𝜉⟩[a,b]

def
=

1

b−a
∫ b

a
𝜉(z)dz,

(6)� (t) = fei��ei�t.
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for the complex eigenfrequencies � and eigenvectors � , formulated for the fixed 𝛿𝛽⋆ . Typi-
cally, this problem implies a complex algebraic equation

whose roots � are eigenfrequencies of the spectral problem (7). To find the (simple) roots 
� , we use the homotopy method, Newton’s iterative procedure, and exploit our software 
LDSL-tool (Radziunas xxx). For each � solving Eq. (8), a corresponding eigenvector � 
is a scaled nontrivial solution of Eq. (7). Thus, � can be interpreted as a vector-function of 
the provided 𝛿𝛽⋆ and �1.

In DDE models, (7) is an �-dependent system of s′ linear equations w.r.t. � , whereas 
� in (8) is the determinant of this system. In 1+1-D PDE models, (7) still is a system of 
ODEs along the longitudinal coordinate z, possibly supplemented with several z-depending 
algebraic equations. For TW models (Radziunas 2017) relying on the first-order derivatives 
�z only, this system within each laser section can be reduced to a couple of linear 1-st order 
ODEs for counterpropagating optical fields �+

E
 and �−

E
 , determining 𝛿𝛽⋆ - and �-depend-

ent C0-semigroup. At least for the piece-wise constant 𝛿𝛽⋆ (a natural approximation during 
the numerical treatment of model equations) these semigroups can be represented by ana-
lytic transfer matrices Mj(z

�, z��;𝛿𝛽⋆,𝛺) , translating the vector �(z) from z′′ to z′ within any 
device section Sj . Combining sectional matrices Mj with all BIC allows deriving Eq. (8) 
for simple linear (Radziunas and Wünsche 2005) and a variety of nontrivial (e.g., ring) SL 
device configurations (Radziunas 2015), whereas the vector � at any z can be written as an 
analytic function of 𝛿𝛽⋆ and �:

Here z⋆ is an appropriately selected edge of one of the SL device sections, whereas the 
fixed vector 𝜃⋆ satisfies the BIC at this edge and imposes the same scaling for all vector 
functions �(z) . For example, z⋆ and 𝜃⋆ in linear SL cavities can be the front facet of the SL 
device and the fixed vector satisfying reflecting boundary conditions at this facet, respec-
tively (Radziunas and Wünsche 2005). For more complex cavities, the selection of z⋆ and 
𝜃⋆ is less trivial and should be made with care.

We also note that T  defined in Eq. (9) is an analytic function of arbitrary 𝛿𝛽⋆ and � . 
Only those vector functions � defined by (𝛿𝛽⋆,𝛺) satisfying the characteristic Eq. (8) can 
fulfill all BIC imposed on the optical fields.

4  Steady state equations

Each steady state of the dynamic SL model (1-3) is the solution having the form

(7)i𝛺𝛩ei𝛺t = H(𝛽0 + 𝛿𝛽⋆)𝛩ei𝛺t

(8)𝜒(𝛺;𝛿𝛽⋆) = 0,

(9)𝛩(z) = T(z, 𝛿𝛽⋆,𝛺)
def
=M(z, z⋆;𝛿𝛽⋆,𝛺) 𝜃⋆.

(10)(𝛹 (t),N(t)) = (f̃ ei𝜙�̃�ei�̃�t, Ñ).

1 When the algebraic ( am ) and geometric ( gm ) multiplicity of the eigenfrequency � is larger than 1, the 
reconstruction of � is not unique. For gm < am , the reconstructed eigenvectors can be supplemented with 
the generalized eigenvectors of the related Jordan matrix.
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Here �̃� and Ñ are time-independent complex and real vector functions, f̃  is a nonnegative 
real constant, whereas � is an arbitrary phase factor. In contrast to typical stationary states 
of the dynamical systems, complex optical fields of the steady states rotate in time with a 
constant real relative optical frequency �̃�.

To derive the steady state defining system, one has to neglect Fsp , insert Ansatz (10) 
into Eqs. (1-3), and replace the resulting spectral problem by Eq. (8):

Here we used P(|f�|2) = f 2P(|�|2) , and reorganized arguments of function N  . With tilde 
̃ denoted functions N, P, � and constants f, � represent solutions of Eqs. (11) and (12) and, 
thus, define the steady states (10) of the SL model (1-3).

For DDE models, � is a preselected vector with s′ components determining the scaling 
of � . Thus, P in (12) is known, and the steady state defining system (11) consists of one 
complex characteristic equation and m′ real equations, relating two real constants f 2 , � and 
m′-component real vector N. The roots of this nonlinear system define the steady states of 
the DDE models. In LK-type models, these steady states are best known as external cavity 
modes, ECMs.

In the case of 1+1-D PDE models (or, more precisely, the TW model), P(z) and N(z) are 
real vector functions, representing local photon and, possibly, multilevel carrier densities 
in ma active sections of the SL device. Eqs. (11,12) is a system of algebraic and functional 
(z-dependent) equations, which can hardly be resolved on the functional level. Thus, we 
treat it on the discrete level, induced, e.g., by the numerical method during model simula-
tions with LDSL-tool (Radziunas xxx). Namely, we assume that

• all active sections are subdivided into mD small subintervals sa = [z�
a
, z��

a
];

• N(z) is constant within each sa and is fully defined by m′
D
 real numbers;

• for any z from sa spatial average ⟨P(���2)⟩sa = P(⟨���2⟩sa ) is used instead of P(|�(z)|2) 
in Eq. (12), s.t. P(z) is fully defined by m′′

D
≥ mD real numbers.

As a consequence, 𝛿𝛽⋆ = 𝛿𝛽(N, f
2P) and N  are piece-wise constant w.r.t. z, and evalua-

tion of T(z, 𝛿𝛽⋆,𝜔) from Eq. (9) for z = z�
a
 and z′′

a
 is sufficient for finding an exact value or 

numerical approximation of P(⟨���2⟩sa ) . Thus, P can be expressed as a function of 𝛿𝛽⋆ 
(i.e., N and f 2P ) and � , whereas the steady-state defining system (11,12) can be rewritten 
as a system of nonlinear algebraic equations

Here, one complex equation � = 0 (equivalent to two real equations), m′
D
 real equations 

N = 0 , and m′′
D
 real equations involving P relate two real constants f 2 , � , and m�

D
+ m��

D
 

real constants defining real vector-functions N and P. Once the system (13) is solved, the 
reconstruction of �̃� in Eq. (10) is performed using transfer matrices and function T  (9). To 
solve numerically (Radziunas xxx) this system, we use the homotopy method, Newton’s 
iterations, and exploit analytic expressions for partial derivatives of all algebraic functions 
in Eqs. (13).

Figure  2 represents calculations of ten steady states in monolithically integrated 
external cavity (EC) diode laser (DL), schematically represented in Fig.  1b. The TW 

(11)�(�;��(N, f
2P)) = 0, N(N, f 2P,�) = 0,

(12)P = P(|�|2).

(13)�(�,N, f 2P) = 0, N(N, f 2P,�) = 0, P = P(�,N, f 2P).
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model and the basic set of parameters within the active and dispersive reflector sec-
tions are identical to those used for simulations of Fig. 4 in Ref. (Wenzel et al. 2021), 
except for in the present case used linear gain and refractive index functions, related 
by nR(N) = �Hg(N) (Radziunas 2017). In contrast to Ref.  (Wenzel  et al. 2021), here 
we used an additional 2mm-long passive waveguide section, which induced a coexist-
ence of multiple stable steady states. We assume a single carrier level (i.e., m�

D
= mD ) 

and account only for a combined photon density in both counterpropagating fields, 
P(|�|2) = |�+

E
|2 + |�−

E
|2 with m��

D
= mD . For mD = 100 subintervals in the single 1mm-

long active section, we have 202 real algebraic equations in (13) relating the same num-
ber of variables defining the steady states of the (discretized) TW model.

Curves of different colors in panels (a) and (b) of Fig. 2 show distributions of the car-
rier density Ñ and field intensity f̃ 2P̃ within the active section for ten calculated steady 
states. The reconstructed counterpropagating field intensities |f̃ �̃�+

E
|2 and |f̃ �̃�+

E
|2 along 

the whole cavity of two stable steady states are given in panel (c). Panel (d) shows the 
intensity of the complex EC reflection spectrum R(�) , which is the response of the pas-
sive reflector, consisting of the passive waveguide and BG, to the incident monochro-
matic wave ei�t . A similar (instantaneous) response G(�,�) of the active part of the 
ECDL (including possible reflection and transmission of the fields at the interface to the 
EC) depends additionally on the instant value of the factor � , see Ref. (Radziunas et al. 
2015) and schematics in Fig. 1b and (c). Finally, large empty bullets in Fig. 2e show the 
relative frequency �̃� and corresponding threshold gain 

⟨ g(Ñ)

1+𝜀f̃ 2P̃

⟩
Sa

 of these states. Only 
two of the calculated steady states with the lowest gain values were stable in the consid-
ered case, which was confirmed by transient simulations of the dynamic TW model.

The algorithm for the location of the steady states in the general TW model was 
developed during the recent study of SL emission’s linewidth (Wenzel  et al. 2021) in 
ECDLs (Radziunas  et al. 2015; Krüger  et al. 2019). In many applications, however, 
simplified TW with sectionally-averaged N, N  , and P (where a set of mD subintervals 
sa is reduced to ma sections Sa ) or even more simple DDE (such as LK-) models are 
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Fig. 2  Stable (solid) and unstable (dashed) steady states in ECDL. Each state is indicated by the same color. 
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ties of forward and backward propagating fields in the whole cavity for two stable states. d: Intensity reflec-
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sufficient. In the basic TW model, where only a single carrier rate equation per active 
section is used ( m��

D
= ma ), and the dependence of �� on P is not important ( �� and, 

thus, T  are the functions of N and (N,�) , respectively), the vector variable P is defined 
by (N,�)-dependent function P and can be eliminated from Eq. (13). The steady-state 
defining system is reduced to one complex � - and ma real N -equations, together defin-
ing real ma-component vector Ñ and real factors �̃� and f̃ 2.

Study of these low dimensional algebraic systems, including calculation of the steady 
states and their continuation with the change of model parameters, can be performed using 
standard numerical path-following techniques. For example, small black bullets in Fig. 2e 
are the steady states of the corresponding basic TW model for considered ECDL. Dashed 
and dotted black curves in the same figure are branches of these states calculated for tuned 
field phase shift and losses in the passive waveguide of the device, respectively. Even 
though the basic model neglects the nonuniformity of carrier densities (see Fig. 2a) and 
the gain compression, in the considered case it was perfectly suited for the identification of 
frequency and gain of the steady states of more general TW model (cf. large colored and 
small black bullets in Fig. 2e). In the remainder of this work, we shall exploit the basic TW 
model for location and analysis of the steady states in SLs with one or two active sections.

5  SL device with a single active section

Once the basic TW model describes dynamics in SLs with a single active section ( ma = 1 ), 
the steady state-defining system (13) can be written as

where � , � , and I are model parameters actively used for location of the steady states. � is 
a function of only two real unknowns � and N, and each steady state is fully defined by a 
real-valued triple (�̃�, f̃ 2, Ñ) . By resolving complex characteristic equation in (14) we find a 
set of pairs (�̃�, Ñ) . Substitution of each such pair into the remaining equation allows find-
ing the corresponding f̃ 2 , which can be tuned by changing bias current parameter I. Only 
nonnegative f̃ 2 can represent steady states. Bias current Ith , at which f̃ 2 is zero, is a thresh-
old current of this state.

For a variety of SLs (such as the ECDL from Fig. 1b, for example), the characteristic 
equation can be replaced by an equivalent resonance condition, formulated exploiting in 
the previous Section mentioned complex response functions G(�,�) = G(N,�) and R(�) 
(Radziunas 2017, Radziunas et al. 2015):

For example, this formulation is exploited to analyze the simplest nontrivial device, which 
is a Fabry-Perot (FP) laser with optical feedback from the EC; see Fig. 1c and Ref. (Radzi-
unas et al. 2019) for the parameter values used in the considered example. The EC response 
is defined by R(�) = �ei�e−i�� , where �ei� = rme

�0,ecc0� is the ratio of delayed back-reflected 
and emitted field amplitudes, rm is the field amplitude reflection at the external mirror, c0 
is the speed of light in vacuum, whereas � , � , and � are the field roundtrip time in the EC, 
feedback level, and phase shift, respectively. Eq.  (15) for real frequencies � now can be 
split into two real equations

(14)�(�,N;�, �) = 0, N(N, f 2,�;I) = 0,

(15)�(�,N) = 0 ⇔ G(N,�)R(�) = 1.
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which for any pair (�,N) uniquely define the feedback factors � and � . The first and the 
second equations are independent on � and � , such that they determine two-dimensional 
manifolds in three-dimensional (N,�, �) - or (N,�,�)-space, respectively. The intersection 
of these manifolds at fixed feedback level (FFL) � or fixed feedback phase (FFP) � (modu-
lus 2� ) define curves in (�,N) plane.

The FFL curves for several values of � are shown by solid colored lines in Fig. 3. Vari-
ables �� and �N on the axes are nonscaled frequency and carrier density relative to those 
of one of the solitary SL resonances. For small and moderate � , we see closed FFL loops 
around each resonance of the solitary laser. At the critical feedback level �c , which is the 
field amplitude reflection �rc� =

√
0.05 at the diode edge facing the EC, the two-dimen-

sional manifold defined by the first equation in (16) has multiple saddle points resulting 
the collision of the adjacent loops at infinitely large �N . For even larger feedback, a sin-
gle periodically modulated FFL curve is formed. For comparison, thin dashed curves in 
Fig. 3 show corresponding ellipses of ECMs in the properly normalized Lang-Kobayashi 
model (Radziunas et al. 2006). Obviously, the standard LK model can only account for a 
single solitary laser resonance. One can see that closed loops of two models around the 
selected resonance are in good agreement for small feedback levels but rapidly diverge 
when 𝜂 > 0.1 . Behind �c , the ECM ellipses and FFL curves have different topologies.

The intersection of multiple fixed feedback phase (FFP) curves determined by the 
second equation in (16) with FFL curves for given � and � define all steady states of the 
model. A subset of such states calculated for the TW model with included material gain 
dispersion (Radziunas 2017) is shown by black dots on the orange � = 0.1 level curves in 
Fig. 3b. All but one FFP curve in this diagram either bypass the selected FFL, or cross it 
twice, defining node-type (lower crossing) and saddle-type (upper crossing) steady states 
(“modes” and “antimodes” in LK-model language), or touch the FFL curve, indicating the 
saddle-node bifurcation positions (dash-dotted curve in the same diagram). The remain-
ing single FFP curve (solid black line in this diagram) terminates at the solitary laser 
resonance, where � vanishes. It is noteworthy that the LK and TW models in the close 
vicinity of the solitary laser resonance in the considered case with � = 4.5 ns have nearly 
the same minimal feedback levels enabling the saddle-node bifurcation ( � ≈ 1.063 ⋅ 10−4 

(16)� = |G−1(N,�)|, � = �� − arg
(
G(N,�)

)
mod(2�),

Fig. 3  Steady states in the FP laser with optical feedback in relative frequency-carrier density domain. 
a: States for several feedback levels � and arbitrary phase � close to two solitary SL resonances. Colored 
solid and dashed: TW and corresponding LK models, respectively. b: Same states for several � ≤ 0.1 (solid 
colored) and � = 0 but arbitrary � (solid gray/black) close to the solitary SL resonance. Thick dots at 
� = 0.1 curves: steady states for � = 0 . Black dash-dotted: saddle-node bifurcation positions
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and ≈ 1.064 ⋅ 10−4 ) and the feedback level ( � ≈ 3.87 ⋅ 10−4 and ≈ 3.86 ⋅ 10−4 ) admitting 
a steady state at the mode degeneracy (Sieber 2002), also known as the exceptional point.

Due to the simplicity of the field equations in the considered laser, nearly all curves 
in Fig. 3 have analytic parametric representations. In more general cases, given, e.g., by 
a distributed feedback (DFB) laser with a passive dispersive reflector (Radziunas 2017), 
or an ECDL considered above, see black curves and bullets in Fig. 3e, we still exploit the 
splitting of the resonance equation (16) ( �ei� = e2�0,phlph with lph denoting the length of the 
middle phase-tuning section in this case) but rely on more involved formulas and numeri-
cal path-following techniques (Radziunas xxx).

6  SL device with two active sections

Let us consider the basic TW model, describing the dynamics of SLs with two active sec-
tions ( ma = 2 ). An example of such a device is the ECDL, see Fig.  1b, with the active 
Bragg grating section. The parameter set exploited below was already used to calculate the 
steady states in Fig. 2e. The missing material parameters of now active BG are identical to 
those of the amplifying section. The steady-state defining system (13) in this case can be 
rewritten as

Besides relating elements of the steady state-defining quadruplet (f̃ 2, �̃�, Ñ1, Ñ2) , the first, 
second, and third equations of this system depend on the bias currents I1 , I2 in both active 
sections and the field phase tuning factor � ∝ ℑ�0,ph in the middle passive waveguide 
section, respectively. These parameters are explored when constructing the steady-state 
branches and analyzing the dynamics of the whole TW model. Being linear with respect 
to f 2 , I1 , and I2 in the basic TW model, the first two equations in (17) can be resolved with 
respect to these factors:

The complex characteristic equation does not depend on f 2 , and for considered ECDL can 
be split into two real equations, similar to those of Eq. (16):

where G1 and G2 are responses of both active sections to through the internal section side 
injected monochromatic field. Like in the previously considered case, the first of these 
new equations does not depend on � and can be used for the definition of 2-D steady-state 
manifolds (SSM) in (�,N1,N2)-space, see the semitransparent surface in Fig. 4a. The sec-
ond real equation for each regular point of this surface uniquely determines the phase � . 
For fixed � , the characteristic equation defines multiple mode threshold density (MTD) 

(17)N1(N1,N2, f
2,�;I1) = 0, N2(N1,N2, f

2,�;I2) = 0, �(�,N1,N2;�) = 0.

(18)
{

N1 = 0

N2 = 0
⇒

{
Ij = Jj(N1,N2, f

2,�), j = 1, 2

f 2 = F1(N1,N2,�;I1) = F2(N1,N2,�;I2)
.

(19)
0 = 𝜒(N1,N2,𝜔;𝜑) = 𝜂ei(𝜑−�̃�𝜏)G1(N1,𝜔)G2(N2,𝜔) − 1

⇒

{ ||G1(N1,𝜔)G2(N2,𝜔)
|| = 𝜂−1

𝜑 = 𝜔𝜏 − arg
(
G1(N1,𝜔)G2(N2,𝜔)

)
mod(2𝜋)

,
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curves on this surface, each determined by pairs (N1,N2) at which the imaginary part of 
the complex frequency of optical mode vanishes, � ≡ ℜ� = � . These MTD curves, given 
by solid black lines in Fig. 4a, can be found by standard path-following algorithms, pro-
vided one or several points on each such curve are known2. Moreover, MTD curves are 
essential in explaining the slow-fast SL model dynamics. In the case of ultimately slow 
carrier dynamics, several segments of these curves define low-dimensional exponentially 
attracting center manifolds containing all regular and irregular attractors of the considered 
dynamical system (Sieber 2002). The carrier densities (N1,N2) on these specially cho-
sen MTD curve segments imply vanishing ℑ� of the corresponding mode and damping 
( ℑ𝛺 > 0 ) of all remaining modes. In the present example, the center manifolds are defined 
by the “outer” (lower-left) border of the (N1,N2)-plane projection of the MTD curve set; 
see thick MTD curve segments for modes I, II, and III in Fig. 4b. For (N1,N2) belonging 
to the remaining “inner” segments of the MTD branches, at least one mode has negative 
damping, ℑ𝛺 < 0 . Since the carrier dynamic of our system is relatively slow, we expect 
that (N1,N2)-plane projections of calculated transients should be accumulated around the 
outer borders of such MTD-curve representation.

Each triplet (�̃�, Ñ1, Ñ2) on the 2-D SSM and on MTD curves in particular, together with 
an arbitrarily chosen non-negative factor f̃ 2 , defines a steady state of the basic TW model 
with properly chosen parameters I1 , I2 , and � . Whereas � is determined by the last equa-
tion in (19) and the triplet alone (e.g., � = 0 at black solid MTD curves in Fig. 4a), bias 
currents I1 and I2 are defined by the quadruplets and the functions J1 and J2 from Eq. (18). 
For vanishing f̃ 2 , these are pairs of current thresholds, allowing to reach the threshold den-
sities (Ñ1, Ñ2) of the selected mode but not big enough to excite this mode. A correspond-
ing lasing threshold representation of MTD curves is shown in Fig. 4c. The laser is off for 
small injections, which are left and beneath all curves in this diagram. By increasing one 
or both currents, we can reach and cross one of the outer lasing threshold curves, which 
causes switching on the lasing. In our example, depending on the relation of the currents, 
we can switch on the lasing by crossing the branches of modes I, II, or III, see thick black 

Fig. 4  Steady states in ECDL with an active Bragg grating section. a: Roots (�,N1,N2) of characteristic 
equation � = 0 for arbitrary (surface) and fixed (solid black curves) phase � . Green-red-blue bullets: steady 
states, calculated for (20, 2), (50, 2), and (50, 50) mA bias currents in amplifier and grating sections, respec-
tively. Corresponding thin solid curves: shift of these states with the change of � . Bottom plane: projection 
onto (�,N1)-domain. b: Same as (a), projected onto (N1,N2) plane. Yellow-orange curves: projections of 
three calculated transients. c: Corresponding lasing threshold curves for different modes

2 To find these initial points, we fix several values of N2 and apply algorithms discussed in the previous 
Section to the function � of two remaining variables (�,N1).
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segments in Fig. 4c, which become excited in the first part of the switching-on process. 
A switching-on of the laser by setting (I1, I2) = (20, 2) mA (which is just slightly above 
threshold, see Fig. 4c) is represented by the lowest yellow-orange-brown curve in Fig. 4b. 
This curve is the projection of the calculated 40-ns transient trajectory onto (N1,N2)-plane. 
At the initial stage, the system reaches the threshold of Mode I and, shortly afterward, 
Modes IV and II, such that all these modes are excited. Initially excited Mode I dominates, 
and the calculated trajectory follows its MTD curve, relaxing to by the bias-currents deter-
mined stable steady-state on it (green bullet in Fig. 4b).

In general, each triplet on the 2-D SSM alone defines the steady states for multiple sets of 
currents I1 and I2 , related to each other by a real nonlinear equation F1 = F2 from (18). This 
equation is fulfilled along 1-D curves on the 2-D SSM for fixed (but not arbitrary) pairs (I1, I2) . 
Green, red, and blue thin solid curves in Fig. 4a are examples of these by the phase �-para-
metrized steady state branches calculated for three different sets (I1, I2) . Solid bullets at the 
intersections of these thin curves with the solid thick black MTD curves represent the steady 
states of the TW model for a corresponding couple of bias currents and � = 0 . Projection 
of all these steady state branches and MTD curves onto the bottom (�,N1)-plane implies the 
steady state representations reminding those of Fig. 2e. Another projection of the steady states 
and the MTD curves onto the (N1,N2)-plane is shown in Fig. 4b.

For fixed � , a monotonic change of a single bias current typically causes a gradual shift 
of the steady-state triplets along the MTD curves but can also imply the creation or annihi-
lation of the steady state pair on the MTD curve in the saddle-node bifurcation. Tuning of 
the bias current can also lead to the Hopf-bifurcations of the steady states, which are par-
ticularly expected close to the intersection of MTD curve projections in (N1,N2)-plane, see 
Fig. 4b. Separation of frequencies �̃� of the involved MTD branches defines the periodic-
ity of the generated orbit. Such mode-beating pulsations available for large bias injection 
regions are of practical interest and were studied, for example, in Ref. (Bauer et al. 2004). 
In the present example, starting from the Mode I-defined stable steady-state at (20, 2) mA 
currents, green bullet in Fig. 4b, we alternated a slight step-wise increase of I1 with tran-
sient simulations. In the beginning, we could observe a slow upwards shift of the still stable 
steady state along the MTD branch of Mode I in Fig. 4b. At I1 ≈ 24.6mA, already slightly 
behind the crossing of MTD branches of Modes I and II, the steady state underwent Hopf 
bifurcation and could not be traced along the MTD curve of Mode I anymore. Instead, a 
newly stabilized steady state on the MTD branch of Mode II could be observed and traced.

A middle yellow-orange-brown curve in Fig. 4b represents a calculated 3-ns long trajectory 
after a large-step switch of the bias currents from (20, 2) mA (green bullets) to (50, 2) mA (red 
bullets). At the initial stage after the bias switch, nearly all field power is contained in Mode I, 
and the trajectory follows the MTD branch of Mode I, trying to converge to the steady state (red 
bullet) on this branch. This state is unstable, Modes II and III start to contribute to the total field 
power, and the trajectory first turns towards the steady state on the MTD branch of Mode III 
and, later, of Mode II, exhibiting mode-beating oscillations on the way.

A next switch of the bias currents to (50, 50)mA, see the upper yellow-orange-brown 
curve in Fig. 4b, however, was not leading to the stable steady-state (blue bullet) on the 
outer MTD branch of Mode III, but to the “inner” state still determined by the same 
Mode II, even though Mode III at the achieved carrier densities has negative damping, 
ℑ𝛺 < 0 . In this case, Hopf bifurcation by a further small-step increase of I2 could not 
be found, and two stable steady-states determined by Modes II and III were coexist-
ing. We explain this contradiction to our original assumption of the close vicinity of 
the attractors to outer MTD branches in (N1,N2)-plane projections by insufficient slow-
ness of the carrier dynamics in the considered system. Indeed, halving the spontaneous 
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recombination parameters (doubling carrier lifetime) and bias currents does not affect 
the MTD branches or the steady state locations but destabilizes the previously stable 
“inner” state determined by Mode II. A sequence of transient simulations combined 
with a small-step increase of I2 starting from the Mode II-defined stable steady-state, 
the red bullet in Fig. 4b, has confirmed the existence of Hopf bifurcation before reach-
ing the blue-bullet-defined position on the MTD branch of Mode II.

7  Conclusions

In conclusion, we discussed algorithms and challenges in calculating (stable and unsta-
ble) steady states in the TW model of the SLs. Approximation of the continuous func-
tions by the piece-wise constant ones allows replacing the steady-state-defining func-
tional equalities with a system of algebraic equations, resolvable using the homotopy 
method and Newton’s iterative procedure. We have also shown that the steady states 
of the basic simplified TW model relying on the sectional averages of the carrier and 
photon densities can provide good approximations of the states in more general models. 
We have shown how stable and unstable steady states of the basic TW model govern-
ing the dynamics of the SL device with ma active sections can be defined by ma + 2 real 
nonlinear equations relating the same number of real steady state defining variables. We 
compared the steady states of the TW and LK models in the numerical example of the 
FP laser with optical feedback (case of ma = 1 ). Constructed using a first-order approxi-
mation of the characteristic equation �(�, ��) at the solitary SL resonance (Radziunas et 
al. 2006), the LK model is in good agreement with the TW model when feedback is 
small, and a single-mode operation of the solitary SL is pronounced. For multimode 
SLs or SLs with a feedback ratio � exceeding the field amplitude reflection at the diode’s 
facet facing EC, this good agreement is lost, and the usage of the LK model becomes 
questionable. For the ECDL with active Bragg grating section (case of ma = 2 ), we con-
structed the mode threshold density branches. These branches can be used to define all 
steady states of the system and derive nontrivial relations of bias currents at both active 
sections needed to switch on the laser device. Several transient simulations have shown 
how calculated trajectories approach and follow predominantly outer MTD branches in 
(N1,N2) projection plane. The existence of the attractors on the inner MTD branches 
and, thus, multistability are possible due to the  insufficient slowness of the carrier 
dynamics. Finally, we note that steady-state calculations do not provide direct infor-
mation about their stability and other properties, such as the linewidth or small signal 
modulation response, but they still are extremely useful for the understanding of laser 
dynamics.
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