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Abstract: Developments in radio detection and ranging (radar) technology have made hand gesture
recognition feasible. In heat map-based gesture recognition, feature images have a large size and
require complex neural networks to extract information. Machine learning methods typically re-
quire large amounts of data and collecting hand gestures with radar is time- and energy-consuming.
Therefore, a low computational complexity algorithm for hand gesture recognition based on a
frequency-modulated continuous-wave (FMCW) radar and a synthetic hand gesture feature gener-
ator are proposed. In the low computational complexity algorithm, two-dimensional Fast Fourier
Transform is implemented on the radar raw data to generate a range-Doppler matrix. After that,
background modelling is applied to separate the dynamic object and the static background. Then a
bin with the highest magnitude in the range-Doppler matrix is selected to locate the target and obtain
its range and velocity. The bins at this location along the dimension of the antenna can be utilised to
calculate the angle of the target using Fourier beam steering. In the synthetic generator, the Blender
software is used to generate different hand gestures and trajectories and then the range, velocity and
angle of targets are extracted directly from the trajectory. The experimental results demonstrate that
the average recognition accuracy of the model on the test set can reach 89.13% when the synthetic
data are used as the training set and the real data are used as the test set. This indicates that the
generation of synthetic data can make a meaningful contribution in the pre-training phase.

Keywords: FMCW radar; gesture sensing; machine learning; mmWave; synthetic features

1. Introduction

Low-cost, miniaturised radars have become increasingly popular in recent years. This
has led to a large number of radar-based applications. For example, automotive radar can
play an important role in collision avoidance systems. In addition to this, the potential of
the radar in the field of medical applications is also being investigated. Applications such
as weather radar and ground-penetrating radar reveal a need for such applications and
research on radar technology and algorithms is highly desirable.

Traditional human–computer interaction mediums such as buttons, mice and key-
boards are not always convenient in certain situations, such as operations in clean rooms.
Contactless human–computer interaction requires less touching and is more hygienic. It
can also further enhance the user experience. Hand gestures are an important medium for
contactless human–computer interaction [1].

The outstanding privacy-protecting character of radar makes it preferable over cam-
eras and its ability to be unaffected by light conditions is again preferable to LIDAR.
The frequency-modulated continuous-wave (FMCW) radar is able to detect the distance,
velocity and angle of several objects at the same time; hence, it is employed for hand gesture
recognition in our work. FMCW radars can suffer from mutual interference. If there are
other radars as sources of interferences, the methods in [2] for finding the range, velocity
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and angle of the target can be referred to. In this paper, only one radar is employed and
interference from other radars is not considered.

Hand gesture recognition based on FMCW radar can be grouped into two categories.
The first is based on raw data, meaning that the raw data are fed directly into a neural
network to classify the hand gestures. The second is based on features, such as range, ve-
locity and angle. These three features are obtained by certain data pre-processing methods
and then combined with machine learning methods to achieve hand gesture classification.
In this work, feature-based hand gesture recognition will be considered since the size of the
radar raw data is large and will increase the training complexity of the neural network.

1.1. Related Work of Heat Map-Based Recognition

The features of a hand gesture can be represented in the form of a heat map. Many
researchers have made various contributions to the field of heat map-based hand gesture
recognition. Heat map-based gesture recognition is a relatively common approach and
in [3–11] all authors use heat map-based recognition.

In [3], the authors conducted an experiment on gesture sensing using an FMCW radar
with a centre frequency of 25 GHz, without considering the recognition of gestures. Later
in [4], the authors collected 1714 gesture samples using FMCW radar, which contains ten
types of gesture. Then they extracted time-Doppler heat maps from the radar raw data and
trained a deep convolutional neural network model. An average recognition rate of 89.1%
was achieved. Deep convolutional networks can be very challenging to implement at the
hardware level. This is because they have a large number of weights and although it is
possible to remove some of the unimportant weights, by pruning and other methods, it
does require a lot of computational resources.

In [5], Lien et al. developed a small, low-power radar with a center frequency of
60 GHz. In contrast to [4], a time-Doppler heat map and a time-range heat map were
extracted. With a classical random forest classifier, the average recognition accuracy of the
four micro-hand gestures was up to 92.10%.

From the raw data of the FMCW radar not only time-distance and time-Doppler heat
maps can be extracted, but also a time–angle heat maps. These three types of heat maps are
employed as the basis for hand gesture recognition in [9]. The authors adopted background
modelling to separate the static background and the moving target so that the feature heat
maps were cleaned efficiently. The average recognition rate of six gestures was over 98.93%.
The authors employed a pre-trained model, but a large number of weights of the model
made implementation on an FPGA problematic.

Similarly, the authors used the multi-stream convolutional neural network (MS CNN)
model in [11] to learn features of the dataset for on-air writing recognition. Although the
accuracy achieved was very impressive, the drawback, as before, was that the MS CNN
would require a lot of hardware resources.

Given the above references, we can state that heat map-based hand gesture recognition
can achieve encouraging results, but its disadvantages should not be ignored. Firstly,
the process of constructing a heat map is relatively complex and time-consuming. A hand
gesture is made up of several frames of data, each of which will form one or more heat
maps depending on the combination of features selected. A single hand gesture sample
can produce a large number of heat maps, which leads to complex processing. In addition,
the hand gesture features in the form of heat maps need to be further fed into a deep
convolutional network to extract features, which requires even more computational efforts.

1.2. Motivation for Synthetic Data Generation and Related Work

Machine learning-based hand gesture recognition faces data scarcity issues and only a
few open radar datasets are available. Many scientists spend a lot of effort and time collect-
ing data. In Google’s Soli project [5], its team collected 5000 samples with 5 participants.
For [10], 7200 gesture samples were collected from 20 people. The authors of [6] collected
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2750 samples, which involved 11 participants. A total of 1500 and 1200 gesture samples
were collected in [9] and [8], respectively.

In [12], the authors utilised a sparse point cloud extraction method and a Message
Passing Neural Network (MPNN)-based graphical convolution method for real-time ges-
ture recognition. Despite the reduced computational complexity, all datasets were collected
by other teams manually, which involved a lot of time and effort.

Collecting gesture samples with radar is very challenging. It is needed to perform spe-
cific hand gestures repetitively, which is time-consuming and labour-intensive. An efficient
gesture feature synthesiser would be highly beneficial.

Human motion simulation is a good start for synthetic gestures. Some researchers
have already combined human motion simulation with radar sensors. The authors have
developed a human walking model in [13]. Afterwards, in [14], this model was employed
to construct micro-Doppler spectrograms for gait analysis.

Reference [15] proposed a radar data synthesis process for four hand gestures. The au-
thors used the 3D computer graphics software Blender [16] to build a simple human hand
animation that captured the motion trajectories of the hand gestures. The motion trajec-
tories were then utilised to synthesise radar data. The drawback of this work is that only
micro-Doppler spectrograms were considered and the model was not tested with real data.

In [17], the authors proposed a radar data synthesis flow for macro-gestures. Seven
gestures were simulated as a training set, which was used to train the Multi-Layer Percep-
tron model and the real data were employed to test the model with an average recognition
accuracy of 84.2%. The drawback is that the ranges and angles of the gestures were not
taken into account.

A human target model for the flexible simulation of various modalities of gesture was
constructed in [18]. It covered the main parts of the body. In a similar way to the work
in [17], only the Doppler spectrum was simulated. A CNN model was applied to classify
eight macro-gestures with an accuracy of 80.4%.

The authors in [19] converted video footage of human activity into realistic, synthetic
Doppler radar data by means of a cross-domain conversion approach to achieve the goal of
synthesising radar training data for human activity. Other features such as range and angle
were not synthesised.

In view of this, the gesture synthetic training data generator proposed by the authors
in [20] can generate range–time heat maps, velocity–time heat maps and angle–time heat
maps. Six gestures were synthesised and real data were also employed to test their validity.
The authors used the VGG19 [21] pre-trained model to extract the features from heat maps.
After that, the XGBoost [22] and Random Forest [23] classifiers were employed to recognise
the hand gestures. The achieved average accuracy was 84.93% and 87.53%, respectively.

1.3. Contributions

To reduce the complexity of processing and tackle data scarcity, the main contributions
of this paper are as follows.

• A simplified gesture recognition algorithm is proposed. The features of the gestures
are represented as one-dimensional vectors instead of images.

• A simplified synthetic hand gesture feature generator is presented. As the hand gesture
features extracted from the real data are simplified to one dimension, the synthesis
processes from [15,17–20] are no longer needed. In our simplified synthetic hand
gesture feature generator, the generation of radar raw data is skipped.

• The impact of range, velocity and angle features, extracted from a real data set, on the
accuracy of gesture recognition is analysed. The experimental results reveal that all
three features have a positive effect on gesture recognition. For the evaluation scenarios
with a single feature, the average recognition rate based on the velocity feature alone
achieves the highest recognition rate on the test set, with a support vector machine
(SVM) classifier, which is 87.59%. For the different feature combination evaluation
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scenarios, the average recognition rate based on the three features yields the best result
with an average recognition rate of 98.48%.

• The impacts of the synthetic data set on the recognition accuracy of the real gesture
data set are investigated. The SVM classifier trained with the synthetic data has an
average recognition accuracy of 89.13% on the real data.

The remainder of the paper is organised as follows: Section 2 describes the FMCW
radar system. Section 3 introduces low computational complexity algorithms for extracting
features from radar raw data and Section 4 presents a synthetic hand gesture feature
generator. Section 5 presents the experiments and results. The conclusions are given in
Section 6.

2. FMCW Radar System

The system architecture of the FMCW radar is illustrated in Figure 1.

Figure 1. FMCW radar system.

The classical waveforms of FMCW radar are rectangular, upward sawtooth, triangular
and staircase voltage waves. Since the hand gesture speed is not as high as an aircraft’s,
the upward sawtooth waveform is used in our radar. Firstly, the waveform generator
generates an upward sawtooth wave as depicted in Figure 2. The bandwidth of the
waveform is B. The solid blue line represents the transmitted wave and the dashed black
line is the received wave. The frequency slope of the waveform is:

s =
B
Tc

. (1)

Figure 2. FMCW waveform.

The signal is emitted into space by the transmitter via the transmitting antennas.
Our radar has two transmitting and four receiving antennas. The distance between the
transmitting antennas is two wavelengths and the distance between the receiving antennas
is half a wavelength. A transmitted wave can also be referred to as a chirp. The equation of
the transmit chirp is given in (2):

Tx(t) = A exp (j(2π fct + πst2)). (2)
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where the amplitude of the chirp is denoted as A and the starting frequency is represented
by fc. Tc is the duration of the chirp.

When a wave encounters any object in space, it will be reflected back to the receiver.
The object could be our target or any other irrelevant object. The distance between the
target and the radar is assumed as r0, then the time delay td between the received and
transmitted waves can be represented as:

td =
2r0

c
. (3)

where c is the velocity of light.
As the waveform loses energy as it travels through the air and is bounced by objects,

there is an amplitude attenuation µ and phase shift in the received waveform. The received
wave is defined as follows:

Rx(t) = µA exp (j(2π fc(t−
2r0

c
) + πs(t− 2r0

c
)2)). (4)

In the next step, the received and transmitted waves will be mixed in a mixer and
passed through a low-pass filter to remove the high-frequency components and preserve
the low-frequency signal. The remaining signal at this stage is known as the intermediate
frequency signal or beat signal. As shown in Figure 2, the slope and time delay of the
waveform are s and td, respectively, and the frequency of that beat signal can then be given
as fb:

fb = std =
2Br0

cTc
. (5)

The beat signal can be defined as follows:

B(t) = µA2 exp (j(2π fc
2r0

c
+ πs

4r0

c
t− πs(

2r0

c
)2))

= µA2 exp j(πs
4r0

c
t + 2π fc

2r0

c
− πs(

2r0

c
)2)

= µA2 exp (j(2πstdt + 2π fc
2r0

c
− πs(

2r0

c
)2︸ ︷︷ ︸

φ(t)

))

= µA2 exp (j(2π fbt + φ(t)))

= µA2 exp (j(
4πBr0

cTc
t + φ(t))).

(6)

In the final step, the beat signal is digitalised by an analogue-to-digital converter (ADC).

3. Feature Extraction from Radar Raw Data

In this section, the process of extracting gesture features from the radar raw data
is presented.

3.1. Range and Velocity Extraction

As illustrated in Figure 3, the structure of a frame of radar raw data has three dimen-
sions, namely range, chirps and antennas. There are eight virtual antenna channels in one
frame of the data. Each antenna channel has M chirps and each chirp has N range bins.
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Figure 3. Processing chain for feature extraction from radar raw data.

To derive range and velocity information, a Fast Fourier Transform (FFT) is applied to
the range and chirp dimensions. As depicted in Figure 3, after the range FFT, the range
information of the target is highlighted. Then after the Doppler FFT, the range-Doppler
(RD) matrix is formulated and the velocity information of the target is enhanced.

FMCW radar detects not only dynamic objects but also static ones. The radar data
contain static clutter and static backgrounds, which can be disruptive to gesture recognition.
Therefore, it is mandatory to take measures to combat irrelevant noise and static background.

Background modelling based on the Greedy bilateral smoothing (GreBsmo) [24] is
employed to remove static clutter and static background objects, while the dynamic objects
are retained. The data X can be decomposed to the background L, clean data S and noise G.

X = L + S + G. (7)

After obtaining the RD matrices, the RD matrix for the first antenna channel is selected
and saved in the data container. After executing the data for a whole hand gesture,
the background modelling is carried out. The two heat maps in Figure 3 indicate the
contribution of background modelling. After background modelling, the RD heat map
becomes clean and only the target object remains. Thus the range and velocity of the target
can be located more accurately in the RD matrix. It is assumed that the moving target in
the data set has only one hand and is the main component. The index of that best bin can
be derived by finding the maximum value in the RD matrix. Once the index is found, it is
possible to calculate the range and velocity of the target.

3.2. Angle Extraction

The target bin is defined as the index of the RD matrix where the target is located.
The best bin is searched along the antenna index. The bins being extracted are a 1 × 8 vector,
denoted by e.

By performing Fourier beam steering (FB) [25,26] on e, angle information is derived.
The virtual beam steering matrix is represented as:

V(Θ, q) = exp (j2π(−Q− 1
2

+ q)
∆d
λ

sin (
π

180
Θ)). (8)

where Q is the total number of virtual antennas, q ∈ {1, 2, 3, . . . , 8}. λ stands for the
wavelength. ∆d is the spacing distance between the receiving antennas and its value is 1

2 λ.
The scanning scope of the angle Θ is [−90, 90] and the step size is 1.

I = V · eT . (9)
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It is assumed that there is only one target and therefore the angle corresponds to the
maximum value in I, as depicted in Figure 4.

Figure 4. Fourier beam steering.

The processing sequence of our approach makes the angle estimation more stable and
accurate. By selecting the best bins in the RD matrices, the angle information of irrelevant
objects will be excluded. This is exactly the opposite of the processing order of unmanned
aerial vehicle (UAV) swarms detection using the radar in [27,28]. In contrast to UAV swarm
detection, only one target is taken into account in gesture recognition and a linear array of
antennas is used in the radar.

In contrast to heat map-based gesture recognition, a gesture sample has 32 frames
only, leading to a 1 × 96 feature vector. The features of a sample are shown in Figure 5.
The overall process of extracting features from the radar raw data is shown in Algorithm 1.

Algorithm 1: Feature extraction from radar raw data.
Data: Radar raw data: Data
Result: Range, velocity and angle feature vectors
initialisation;
for f rame_counter = 1, 2, . . . , 32 do

Perform range FFT to the Data;
Perform Doppler FFT to the Data;
Data_container(:,:, f rame_counter) = Data (:,:,1);

end
Perform background modelling ;
for f rame_counter = 1, 2, . . . , 32 do

Locate the peak in the clean RD matrix, compute range and velocity;
Extract bins along antenna dimension;
Perform Fourier beam steering;
Locate the peak, compute the angle;

end

Figure 5. An example of gesture “push pull”.
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4. Synthetic Feature Generator

To match the gesture features with the real data, a synthetic generator of hand gestures
is adapted. In this section, the workflow of the gesture feature synthesiser is proposed as
illustrated in Figure 6a.

4.1. Generator Architecture

Our work uses Blender to animate hands. Blender provides the armature API and
Python scripting. Python scripts make it easier to produce a large number of hand gestures.
In Blender, the skeletal structure and joints of the hand are constructed, as depicted in
Figure 6b.

(a) (b)
Figure 6. (a) The workflow of the gesture feature synthesiser; (b) an example of hand animation.

Human hands vary in size and have different habits of movement. Therefore, the sim-
ulator can reproduce different joint types and the hand can be simulated with varying
velocities, angles and start–stop positions. The trajectories are fed into Matlab to calculate
the features of the hand movement, namely range, velocity and angle.

4.2. Feature Extraction

The process of extracting features from a trajectory is illustrated in Algorithm 2.
Figure 7 displays the radar and hand in the 3D space. The orange dot represents the radar
with the location represented as (xr, yr, zr). The position of one joint is denoted as (xi, yi, zi).
The distance between these two points in space is calculated by (10):

d =
√
(xi − xr)2 + (yi − yr)

2 + (zi − zr)2. (10)

Figure 7. Target and radar in the coordinate system.
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The distance from each joint of the simulated hand to the radar is calculated according
to (10) and averaged as the distance between the hand and the radar for one frame.

For velocity, the initial value of velocity is set to 0. The formula for the calculation
is given in (11). dk is the distance between the radar and the hand in the current frame.
dk−1 is the distance in the previous frame while Tm represents the duration of a frame.
The difference between the distances of adjacent frames divided by the frame duration
gives the hand velocity in the current frame.

v =
dk − dk−1

Tm
, k ∈ {2, 3, . . . , 32}. (11)

Algorithm 2: Synthetic feature extraction.
Data: Trajectories: Target_pos
Result: Range, velocity and angle feature vectors
initialisation;
for f rame_counter = 1, 2, . . . , 32 do

if f rame_counter == 1 then
v(1) = 0;
d( f rame_counter) = Euclidean distance(Target_pos( f rame_counter,:),
Rad_pos);

θ( f rame_counter) = 180
π arctan ( Target_pos( f rame_counter,1)

Target_pos( f rame_counter,2) ).;

else
d( f rame_counter) = Euclidean distance(Target_pos( f rame_counter,:),
Rad_pos);

v( f rame_counter) = d( f rame_counter)−d( f rame_counter−1)
Tm

;

θ( f rame_counter) = 180
π arctan ( Target_pos( f rame_counter,1)

Target_pos( f rame_counter,2) ).;

end
end

Our radar can only detect the azimuth of the object. In Figure 7, the radar and the hand
are projected onto the same plane. The grey dot is the projection of the hand. The projection
of the radar is then at the origin of the coordinate system and the azimuth angle θ between
radar and a joint is derived by (12). The angle between the hand and the radar is averaged
over all joints of the hand.

θ =
180
π

arctan(
xi

yi
). (12)

To make the synthesised hand gesture features more realistic, random noise is added
to the extracted features.

4.3. Recognition Pipeline

The features of the hand gestures are fed directly into the support vector machine
(SVM) [29] after they have been extracted based on the approach described previously.
The support vector machine algorithm is particularly efficient in terms of memory and it
performs better if there is a significant margin of separation between hand gestures.

5. Experiment and Evaluation
5.1. Radar Settings

The radar used for the experiments is a Texas Instruments (TI) AWR1642 [30], which
operates at a starting frequency of 77 GHz and a maximum bandwidth of 4 GHz. It has two
transmitting and four receiving antennas. The specific parameters used for the experiments
are listed in Table 1. This radar also needs a raw data acquisition board. For this reason, we
use TI DCA1000EVM [31].
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5.2. Dataset

Two datasets are collected in this study, a real dataset based on AWR1642 and a
synthetic dataset synthesised by the gesture feature simulator. There are six hand gestures
in the dataset as shown in Figure 8: “grab”, “to left”, “to right”, “move close”, “move
away” and “push pull”. These are gestures that are commonly used in daily life. The real
data set contains 250 samples of each gesture gathered from two participants in an indoor
environment. Our low computational complexity approach takes an average of 0.0157 s to
extract features from the raw data of each sample. The synthetic data set has 2700 samples
per gesture.

Table 1. Radar parameters.

Parameter Value

Starting frequency 77 GHz
Transmitting antennas 2
Receiving antennas 4
Number of range bins 64
Number of chirps per frame 255
Bandwidth 3.8 GHz
Chirp duration 38 µs
Frequency slope 100 MHz/µs
Frame duration 71 ms
Number of frames per gesture 32

(a) Grab. (b) To left.

(c) To right. (d) Move close.

(e) Move away. (f) Push pull.

Figure 8. Hand gesture type.

5.3. Feature Comparison

Next, features from the real dataset and synthetic features are analysed and compared.
The features of the hand gestures are illustrated in a 3D scatter plot. For readability, only
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five samples of each gesture are displayed. A gradient colour has been used for the feature
scatter plot, from dark to light. The starting frame of the feature for each sample is the
darkest colour and the last frame is the lightest colour.

Figure 9a,b indicate the features of the real “grab” and the synthetic “grab”. This
gesture does not change much in terms of range, velocity and angle and that is because the
grabbing, with the fingers slowly closing together, does not change much in motion.

(a) Real “grab”. (b) Synthetic “grab”.

(c) Real “to left”. (d) Synthetic “to left”.

(e) Real “to right”. (f) Synthetic “to right”.

Figure 9. Comparison of “grab”, “to left” and “to right”.

“To left” gesture is compared in Figure 9c,d. The real “to left” and the synthetic “to left”
both have a drastic change in the dimension of the angle. A trend from larger to smaller
angles can be seen on both figures. The hand moves from right to left and there will surely
be a changing of angle relative to the radar. In contrast, there is not a lot of variation but
a small decreasing and increasing trend in the range. This comes from the fact that the
midpoint of the gesture is closer to the radar than the start and end points. Some small
variation is expected because human movements are not perfectly aligned with the radar.
The same is true for the velocity because only movements towards or away from the radar
will influence the measured velocity.



Sensors 2023, 23, 308 12 of 18

The change in angle features for “to right” is the opposite of “to left” in Figure 9e,f.
The real “to right” angle changes from a negative to a positive value. The other features of
the gesture are identical to the “to left” gesture.

Figure 10a,b present the 3D features of the real “move close” and the synthetic “move
close”. The characteristic element of this gesture is the change of the range from larger to
smaller values. This is because the hand is gradually moving closer to the radar. The ve-
locity changes from zero to a negative value and then back to zero when the movement is
finished. There is almost no change in angle. Some variation can be observed because the
target is not perfectly positioned to move directly towards the radar.

(a) Real “Move close”. (b) Synthetic “Move close”.

(c) Real “Move away”. (d) Synthetic “Move away”.

(e) Real “Push pull”. (f) Synthetic “Push pull”.

Figure 10. Comparison of “move close”, “move away” and “push pull”.

For the “move away” gesture, the range between the hand and radar gradually
increases as the hand moves in Figure 10c,d. In addition, the trend of the velocity is the
opposite of that of “move close”. The angle does not have much variation and the little
variation observed behaves in the opposite manner of “move close”.

“Push pull” is a combination of “move close” and “move away”. The hand first
approaches the radar and then moves away. The distance decreases and then increases.
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The corresponding velocity changes towards positive and negative values. The angle does
not change obviously. The feature of “push pull” in Figure 10e,f is in the form of a closed
circle. There is a high similarity between the real and synthetic features.

5.4. Feature Distribution

To show the distribution of features for one gesture from the entire data set, the distri-
bution of features for the gesture “push pull” is illustrated in Figure 11.

(a) Range of real “push pull”. (b) Range of synthetic “push pull”.

(c) Velocity of real “push pull”. (d) Velocity of synthetic “push pull”.

(e) Angle of real “push pull”. (f) Angle of synthetic “push pull”.

Figure 11. Box-plot for feature distribution of real and synthetic “push pull”.

This “push pull” distribution is based on 250 samples in the real data set and 2700 sam-
ples in the synthetic data set. It can be concluded from Figure 11a,b that the distribution
zone of the range features for most of the “push pull” samples first decreases and then
increases over time. The distribution of synthetic range features is relatively wider; this
is due to the richness of the hand start and end position variations during the simulation
of the trajectory. The synthetic data are purposefully created with as much variation as
possible while still performing the hand gesture. The goal of this is to represent as many
different ways to perform this gesture as possible. The speed of the real gestures seems to
be higher than most of the synthetic data but the velocity of the real gesture is still included
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in the synthetic data. The velocity pattern for this gesture can be seen in both data sets.
For the angle, the synthetic data cover a wider range of values; this will lead to a better
classification performance if the gesture is performed from different angles. The overall
pattern is similar to the real data. It can be seen that the real gesture was usually measured
directly from the front. The synthetic data also cover the gesture if it is performed at
an angle.

5.5. Feature Impact Analysis

From the radar raw data, three features have been extracted, namely range, velocity
and angle. In this subsection, the effect of feature combinations on the accuracy of gesture
recognition will be analysed. To analyse the impact of one type of feature, a data set
containing a single feature is fed into the SVM for training and testing. A total of 50% of
the real data set was randomly selected as the training set and the other 50% as the test set.

The experiment is repeated ten times and the recognition rates for the test set are
summarised in Figure 12 and Table 2. As can be seen in the figure, velocity plays a
significant role. For velocity alone, the average recognition accuracy in the test set was as
high as 87.59%.

Figure 12. Accuracies based on single feature.

Table 2. Comparison of accuracy based on a single feature.

Feature Type Average Accuracy Standard Deviation

Only range 70.69% 1.59%
Only velocity 87.59% 1.23%
Only Angle 69.28% 0.78%

Furthermore, the combination of features is evaluated. The results based on the
combination of different features are illustrated in Figure 13 and Table 3. Recognition rates
based on multiple features are higher compared to a single feature. The average accuracy
based on the three features is as high as 98.48%. The combination of velocity and angle can
achieve accuracies of up to 98.15% on the test set.

From the outcomes, it can be derived that the velocity is more recognisable among the
three features. However, based on velocity alone, the recognition rate of gestures is below
90%. When range and angle are also taken into account, the recognition accuracy on the
test set is improved considerably.
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Figure 13. Accuracies based on multi features.

Table 3. Comparison of accuracy based on feature combination.

Feature Combination Average Accuracy Standard Deviation

Range + velocity 89.43% 0.76%
Velocity + angle 98.15% 0.42%
Range + angle 91.37% 0.87%

Range + velocity + angle 98.48% 0.52%

5.6. Synthetic Feature Impact Analysis

Three evaluation scenarios are defined. Scenario I is a random selection of 2% of the
real data as the training set and the rest of the real data are used as the test set. Scenario II
uses the synthetic data set as the training set and the entire real data set as the test set.
Scenario III takes 2% of the real data and the entire synthetic data set as the training set and
the remaining 98% of the real data set as the test set.

The recognition accuracy of the SVM on the test set is given in Figure 14 and Table 4.
The experiment is repeated ten times.

Figure 14. Accuracy of test set.

Table 4. Comparison of accuracy.

Scenarios Average Accuracy Standard Deviation

Scenario I: 2% real data 89.21% 4.43%
Scenario II: Synthetic data 89.13% 0.00%

Scenario III: Mixed 94.43% 0.82%
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The red line represents the accuracy of scenario I on the test set. It can be seen that
the high fluctuation is due to a low amount of real data and the quality of the selected
data varies. If the 2% randomly selected real samples from the real data set cover a large
variation and have a high quality, then it is likely to yield good results on the test set. If the
randomly selected samples have low quality or little variation, there is a chance that worse
results can be obtained on the test set. The results for scenario II are indicated by the blue
line. The blue line is stable because the test set and training set have not changed. The green
line represents the result of scenario III. These results are the best among the scenarios.
This shows that the synthetic data are able to enhance data sets of real data to achieve a
performance that is higher than the individual data sets.

The average accuracy of ten attempts for the three scenarios is given in Table 4. When
the SVM classifier uses only the synthetic data set as the training set, the model has an
average accuracy of 89.13% on the test set. When the synthetic data set is combined with a
small amount of real data, better performance can be obtained, with an average recognition
rate of 94.43%.

One more advantage of synthetic data is that they cover a wider range of possible
gestures. The training and test sets are very similar, so a small amount of real data can lead
to high performance in the test set. A test set that differs in these features but still includes
valid gestures may result in poorer performance for a model trained on real data. Synthetic
data has a wider range of feature values, so it is able to generalise better and cover different
test sets in a better way.

5.7. Comparison with Other Works on Synthetic Feature Generators

In Table 5, a comparison with other works is summarised. Previous work such
as [17] combined animation modelling in Blender with a simulated FMCW radar sensor
to simulate velocity–time heatmap features for seven types of macro-gesture. In [18],
the human model was constructed and Doppler spectrograms for eight macro-gestures
were simulated. The authors synthesised six activities in [19] by transforming the data from
the camera into Doppler heat maps. The number of samples in their test set is 720.

Table 5. Comparison with other works.

Ref. Sample Size Real Samples Testset Average Accuracy

[17] - 1050 84.2%
[18] - 3354 80.4%
[19] - 720 81.4%
[20] 8–12 KB 1500 87.53%

This work 1 KB 1500 89.13%

Reference [20] simulated range–time, velocity–time and angle–time heatmap features
for six types of hand gestures by combining gestures constructed in Blender and a simulated
FMCW radar. For both, the classifiers were trained with synthetic data sets and the models
were tested with real data sets. However, this does not suit our features extracted from the
radar raw data.

The features of our sample are saved in a csv [32] file. In Table 5, it can be observed
that the features extracted from a sample of [20] are 8 to 12 times larger than the features
extracted by our new approach. Compared to [17–20], the average recognition accuracy on
the real data set is higher, which indicates the strength of this work. In addition to this, our
synthetic feature generator does not contain radar signal simulation, which reduces the
computational effort significantly. More importantly, the dataset extracted by our method
does not need to be fed further into the machine learning algorithm for feature extraction.
This will help to save hardware resources significantly.
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6. Conclusions and Future Work

In this work, a low computational complexity hand gesture feature extraction method-
ology based on FMCW radar and a synthetic hand gesture feature generator are proposed.

The impact of range, velocity and angle on the accuracy of gesture recognition is
analysed. The combination of the three features leads to the highest accuracy.

Compared to other works, our synthetic gesture feature process avoids the generation
of radar raw data and is more straightforward. In contrast to heat map-based recognition,
additional feature extraction can be skipped in the training phase.

The synthetic data set is used to train a SVM classifier to recognise six different
hand gestures in the real data set, which are acquired with an AWR1642 FMCW radar.
The algorithm achieves an average recognition accuracy of 89.13% on the real data set.
By combining a small amount of the real data set with the synthetic data set, an average
recognition accuracy of 94.43% is obtained on the real data set. Thus, we demonstrate the
effectiveness of our raw data pre-processing approach and feature synthetisation process.

In the future, more gesture types, different frequency bands and cross-platform gesture
recognition should be investigated. We would like to verify the performance of our selected
models in different aspects in future work, for example, by adding more datasets with
different characteristics.
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