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Abstract: We study a model for a fluid showing viscoelastic and viscoplastic behavior, which describes the
flow in terms of the fluid velocity and a symmetric deviatoric stress tensor. This stress tensor is transported
via the Zaremba-Jaumann rate, and it is subject to two dissipation processes: one induced by a nonsmooth
convex potential and one by stress diffusion. We show short-time existence of strong solutions as well as
their uniqueness in a class of Leray-Hopf-type weak solutions satisfying the tensorial component in the
sense of an evolutionary variational inequality. The global-in-time existence of such generalized solutions
has been established in a previous work. We further study the limit when stress diffusion vanishes. In this
case, the above notion of generalized solutions is no longer suitable, and we introduce the concept of
energy-variational solutions, which is based on an inequality for the relative energy. We derive general
properties of energy-variational solutions and show their existence by passing to the nondiffusive limit in
the relative energy inequality satisfied by generalized solutions for nonzero stress diffusion.

Keywords: viscoelastic fluids, viscoplasticity, weak-strong uniqueness, relative energy inequality, non-
smooth potential, vanishing stress diffusion
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1 Introduction

In a three-dimensional bounded domain Ω 3�⊂ , we consider the flow of an incompressible viscoelasto-
plastic fluid with homogeneous mass density and shear modulus, governed by the following equations

v v v v f vρ μ p T2 , 0 in Ω 0, ,t sym�( ( ) ) ( ( ) ) ( )∂ + ⋅∇ − ∇⋅ + ∇ + ∇ = ∇⋅ = × (1a)

v v v v
η

γ T1 Δ in Ω 0, ,t skw skw sym� � � � � �( ( ) ( ) ( ) ) ( ) ( ) ( )∂ + ⋅∇ + ∇ − ∇ + ∂ − ∋ ∇ ×P (1b)

v γn T0, 0 on Ω 0, ,� ( )= ⋅∇ = ∂ × (1c)

v v,0 , ,0 in Ω,0 0� �( ) ( )⋅ = ⋅ = (1d)

where T0,( ) is a time interval withT 0,( ]∈ ∞ . Equation (1a) describes the evolution of the fluid flowwith constant
mass density ρ 0> in terms of the Eulerian velocity v T: Ω 0, 3�( )× → and pressure p T: Ω 0, �( )× → ,
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subject to an external forcing f T: Ω 0, 3�( )× → . The Cauchy stress vμ p2 sym� �( )+ ∇ − decomposes into the
classical term vμ p2 sym �( )∇ − for Newtonian fluids and a second part T: Ω 0, 3 3� �( )× →

× . Here
v v vsym

1
2( ) ( )∇ = ∇ + ∇

⊤ is the rate-of-strain tensor, and μ 0> denotes a fixed constant. Since p shall
describe the physical pressure, that is, the (negative of the) spherical part of the fluid stress, we assume
� to be a symmetric deviatoric tensor field, that is, � �= ⊤ and Tr 0� = . Equation (1b) can be seen as a
Maxwell-type model for the evolution of the stress �, which we henceforth call Maxwellian stress. The
latter is transported via the Zaremba-Jaumann rate

v v v ,t skw skw� � � � �( ) ( ) ( )≔ ∂ + ⋅∇ + ∇ − ∇

▿ (2)

where v v vskw
1
2( ) ( )∇ = ∇ − ∇

⊤ . Moreover, η 0> denotes the elastic shear modulus, and � is subject to a
diffusion process induced by the term γΔ� with γ 0≥ and an additional nonlinear dissipation due to the
subdifferential �( )∂P of the nonsmooth convex potentialP. The system is completed by no-slip conditions
for v and homogeneous Neumann conditions for � (in the case γ 0> ) on the boundary as well as initial
conditions. For notational simplicity, we set ρ 1= and η 1= in what follows.

While the viscoelastoplastic model (1) is expressed in terms of a fluid flow, it is actually inspired from
geodynamics, where similar models are used to describe the deformation of solids such as the motion of
rocks in the Earth’s lithosphere. Let us mention that the model might also be used for deeper parts of the
Earth’s mantle. Note that (1) combines a Jeffreys-type rheology in the shear part with an ideally rigid model
in the volumetric part, and the analysis presented in this article might be seen as a first step toward the
investigation of more complex models (cf. Section 5).

The Zaremba-Jaumann derivative (2) is a so-called corotational derivative and describes only one
possible choice for the objective stress rate. Other objective tensor derivatives, like Oldroyd or Truesdell
derivatives, can also be used for the description of stress evolution and seem to be more popular in the field
of fluid dynamics. However, the present model (1) is motivated from geodynamics, where the Zaremba-
Jaumann derivative is a common choice (see [2,14–16,24–26,32,36]); for a theoretical justification for this
stress rate, see also [5, p. 494]. Moreover, it is crucial in the mathematical analysis of (1) since the Zaremba-
Jaumann rate preserves the attribute of � being symmetric and trace free if the initial condition is so, and it
(formally) guarantees the identity

t
x x xd

d
1
2

d : d : d .t

Ω

2

Ω Ω

� � � � �∣ ∣∫ ∫ ∫= ∂ =

▿

This property can be used to reveal information on the evolution of the total quadratic energy

vt x t x t x1
2

, 1
2

, d ,
Ω

2 2�( ) ⎛
⎝

∣ ( )∣ ∣ ( )∣ ⎞
⎠

∫≔ +E

which consists of the kinetic energy associated with v and the stored elastic energy associated with �. More
precisely, smooth solutions v, �( ) to (1) formally satisfy the energy-dissipation balance

v f vt μ γ x τ τ: d d 0 , d
t t

0 Ω

sym
2 2

0

� � �( ) ( ∣( ) ∣ ( ) ∣ ∣ ) ( )∫∫ ∫+ ∇ + ∂ + ∇ = + ⟨ ⟩E P E (3)

for all t T0,[ )∈ . This shows that the total energy is dissipated by three processes: the direct fluid viscosity with
parameter μ 0> , the nonsmooth stress-dissipation potential, and the stress diffusion with parameter γ 0≥ .

The main nonstandard feature of system (1) is the occurrence of the set-valued subdifferential �( )∂P in
(1b), the meaning of which will be specified in the following. Observe that the energy-dissipation balance
(3) suggests to examine (1) in an L2 framework and we thus seek stress tensors t� �( )= taking values in the
space L LΩ Ω : , Tr 0δ

2 2 3 3� � � �( ) { ( ) }= ∈ = =
× ⊤ . The dissipation potential P is now defined to be a convex

and lower semicontinuous function from L Ωδ
2( ) to ,( ]−∞ ∞ that has a minimum at the zero tensor �. For

simplicity, we henceforth assume that L: Ω 0,δ
2( ) [ ]→ ∞P with 0�( ) =P . This is not a restriction since

“vertical” displacements of the potentialP do not change problem (1). By definition, the convex subdiffer-
ential ∂P of P is then given by
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L x LΩ : ˜ : ˜ d for all ˜ Ω .δ δ
2

Ω

2� � � � � � � � �( )
⎧

⎨
⎩

( ) ( ) ( ) ( ) ( )
⎫

⎬
⎭

∫↦ ∂ ≔ ∈ ≥ + − ∈P P P

Such nonsmooth dissipation potentials allow us to include plastic effects and creep in the model, and
related viscoelastoplastic fluid models are used in geodynamics to describe rock deformation in the litho-
sphere; see [15,24], where

x x
a σ

σ
d , 2

if ,

if .Ω

2
yield

yield

P P� � �
� �

�

( ) ( ( )) ( )
⎧

⎨
⎩

∣ ∣ ∣ ∣

∣ ∣
∫= =

≤

∞ >

P (4)

Here a 0> is a constant, and the yield stress σ 0yield > determines the transition to plastic behavior. One
readily verifies thatP defined in this way has the aforementioned properties. Further examples for possible
choices of P can be found in [12].

The beginning of the mathematical analysis of viscoelastic fluid models, also using objective deriva-
tives different from the Zaremba-Jaumann rate (2), can be dated back to the middle 1980s; see [10,17,27–29]
for example. Since all objective derivatives come along with strong nonlinearities, the first result on global
existence of weak solutions was only established several years later by Lions and Masmoudi [23], who
studied system (1) for γ 0= and a quadratic dissipation potential such that a� �( )∂ =P for some a 0≥ . In
this case, (1b) becomes a transport equation, and existence can be deduced from the propagation of
compactness in L2. This tool is no longer available when P is nonlinear and nonsmooth. For such poten-
tials, large-data global existence can be achieved for diffusive regularizations of the tensorial transport
equation, as recently demonstrated in [3,8,12]; see also [37,38] for similar results for fractional diffusion.
Eiter et al. [12] considers problem (1) with γ 0> and proves global existence of generalized solutions
composed of a weak formulation for (1a) and a variational inequality for (1b) (cf. Definition 3.1). In the
present article, we continue this analysis in two directions.

In the first part, we investigate the case γ 0> , complementing and refining the existence analysis of
generalized solutions in [12]. Here, our main results are the short-time existence of strong solutions (see
Theorem 3.4) as well their uniqueness among generalized solutions (see Theorem 3.5). The presence of the
nonsmooth dissipation potential P renders the construction of (local) strong solutions a nontrivial and
interesting question. Indeed, some care has to be taken to derive a priori estimates compatible with the
nonsmoothness ofP, and our construction strongly relies on the fact that γ 0> . Concerning our uniqueness
result, we note that the generalized solutions as considered here comprise the family of Leray-Hopf weak
solutions of the Navier-Stokes equations, and hence the uniqueness of generalized solutions seems to be
out of reach. The main step in the proof of the weak-strong uniqueness principle mentioned above is the
derivation of an evolutionary inequality for the relative energy

v v v v, ˜, ˜ 1
2

˜ 1
2

˜
L LΩ
2

Ω
2

2 2� � � �( ∣ )
( ) ( )

= ‖ − ‖ + ‖ − ‖R

of the form

v v v v v v v vt t t t e s e, ˜ , ˜ , ˜, ˜ , ; ˜, ˜ d , ˜ 0 , ˜ 0v v
t

τ s

0

˜, ˜ d
0 0

˜, ˜ d
s

t t

0� � � � � � � �
� �

( ( ) ( )∣ ( ) ( )) ( ( ∣ ) ( )) ( ∣ ( ) ( ))( ) ( ) ( )
∫

∫ ∫
+ + ≤R W F RK K K

(5)

for t T0,( )∈ , see (38), which allows us to compare generalized solutions v, �( ) with (more regular) test
functions ṽ, �̃( ). HereF contains more or less the (nonlinear) differential operator associated with problem
(1) applied to the test function ṽ, �̃( ), and ( )W K consists of terms describing the relative dissipation as well
as terms arising from the nonlinearities in (1). It further depends on the nonnegative functionK, which we
call the regularity weight since it determines the class of admissible test functions ṽ, �̃( ) such that (5) is
meaningful.

In the second part, we study the problem without stress diffusion, that is, when γ 0= . Our interest in
this case stems, among other things, from the original models used in geodynamics [15,24], where stress
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diffusion does not appear. Moreover, the limit γ 0→ in the model (1)may be seen as the passage to infinite
Péclet number (sometimes also called Brenner number). If γ 0= (and ρ η 1= = ), problem (1) reduces to the
system

v v v v f vμ p T2 , 0 in Ω 0, ,t sym�( ) ( ( ) ) ( )∂ + ⋅∇ − ∇⋅ + ∇ + ∇ = ∇⋅ = × (6a)

v v v v Tin Ω 0, ,t skw skw sym� � � � �( ) ( ) ( ) ( ) ( ) ( )∂ + ⋅∇ + ∇ − ∇ + ∂ ∋ ∇ ×P (6b)

v T0 on Ω 0, ,( )= ∂ × (6c)

v v,0 , ,0 in Ω.0 0� �( ) ( )⋅ = ⋅ = (6d)

As mentioned above, stress diffusion serves as a regularization making existence results accessible by
means of parabolic theory. When γ 0= , the energy estimate (3) no longer controls the gradient of � in
L TΩ 0,loc

2 ( [ ))× , and it becomes unclear how to pass to the limit along approximate solutions in the term
v vskw skw� �( ( ) ( ) )∇ − ∇ in (6b) associated with the Zaremba-Jaumann derivative. In this article, we provide

a framework allowing us to treat the case γ 0= . It relies on the rather weak notion of energy-variational
solutions to (6) (cf. Definition 4.1), which is based on an inequality for the relative energy v v, ˜, ˜� �( ∣ )R ,
adapting the aforementioned relative energy inequality (5) for generalized solutions when γ 0> . Under a
convexity assumption, we may pass to the limit γ 0→ in this inequality using weak lower semicontinuity
arguments. This allows us to construct an energy-variational solution to (6) as the limit of a sequence of
generalized solutions v ,γ γ�( ) to (1) for γ 0> , see Theorem 4.2.

The idea to base a solution concept on a relative energy estimate goes back to Lions [22, Def. 4.1], who
introduced the notion of dissipative solutions for the incompressible Euler equations. A dissipative solution
does not fulfill the differential equation in a distributional sense, but rather satisfies a relative energy
inequality with respect to any sufficiently smooth test function. After the seminal work by Lions, this
concept has been adopted in other contexts as well, e.g., in the context of viscous electro-magneto-hydro-
dynamics [1], liquid crystals [19], and nematic electrolytes [4].

Another generalized solution concept, which is often used in the context of fluid dynamics, is the
notion of so-called measure-valued solutions [11]. Measure-valued solutions carry more information than
dissipative solutions, but this is achieved by increasing the degrees of freedom: In every point in time and
space the solution carries an infinite dimensional measure. The expectation of every measure-valued
solution fulfills the dissipative formulation [7], which is identified as a desirable quantity in the case of
liquid crystals [18]. Moreover, the concept of dissipative solution is amenable from a numerical point of
view. In the case of anisotropic fluids, a structure-preserving finite element scheme was proven to converge
to a dissipative solution, but the convergence to a measure-valued solution seems to be out of reach
[4, Rem. 3.7]. Particularly, the high-order regularizations used to prove convergence to a measure-valued
solution [19] are not amenable from a numerical standpoint. Moreover, in contrast to the set of weak
solutions, the set of dissipative solutions is convex and weakly-∗ closed in case of convex energy and
dissipation potential. This can be used to define selection criteria choosing a certain dissipative solution in
order to achieve uniqueness [20], see also Remark 4.4.

The article at hand extends previous concepts of dissipative solutions in two directions. First, we do not
fix the regularity weight K in the relative energy estimate (5) defining energy-variational solutions. This
allows us to consider different classes of test functions and lets us derive different results for different
choices of the regularity weightK. For one class, we preserve the weak formulation of the Navier-Stokes-
like part in the generalized formulation (see Proposition 4.3), and for another choice, we can deduce the
convexity of the solution set (see Remark 4.4). As mentioned above, this convexity property may be used to
select a unique physically relevant solution [20,21]. Second, we refrain from dropping the term ( )W K in (5),
which for suitable K is nonnegative and usually estimated by 0. By choosing K such that the relevant
terms in ( )W K are convex and lower semicontinuous, they can be kept when passing to the limit γ 0→ ,
thus making the solution concept more selective (see Remark 4.2).
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The structure of this article is as follows. We first introduce the general notation and prepare some
auxiliary results in Section 2. In Section 3, we recall the existence theorem for generalized solutions to (1) in
the case γ 0> and show the local-in-time existence of strong solutions. Subsequently, we prove that strong
solutions are unique in the class of generalized solutions. For this purpose, we derive a suitable relative
energy inequality. In Section 4, we introduce the notion of energy-variational solutions to (1) in the case
γ 0= , which is based on a similar relative energy inequality, and we show their existence by an approx-
imation with generalized solutions for γ 0> . Subsequently, we derive general properties of energy-varia-
tional solutions. In Section 5, we conclude with a summary and further comments on possible extensions of
the model. In the appendix, we explain how to infer the present notion of generalized solutions from the
slightly different notion introduced in [12].

2 Preliminaries

In this section, we prepare the notation used throughout this article as well as some helpful inequalities. We
further introduce the basic regularity hypotheses on the data assumed throughout this manuscript.

2.1 Notations

General notations. If a a b b,j j
3�( ) ( )= = ∈ are two vectors, their inner product and their tensor product

are denoted by a b a bj j⋅ = and a b⊗ with a b a bjk j k( )⊗ = , respectively. Here and in what follows,
we tacitly use Einstein’s summation convention. For the inner product of two second-order tensors

,jk jk
3 3� � � � �( ) ( )= = ∈
× , we write : jk jk� � � �= , and the inner product of two third-order tensors

,jk jk
3 3 3	 	 
 
 �( ) ( )= = ∈ℓ ℓ

× × is denoted by : jk jk	 
 	 
= ℓ ℓ. The third-order tensor a� ⊗ is defined

by a ajk jk� �( )⊗ =ℓ ℓ. By �⊤ and Tr� we denote the transpose and the trace of � , and δ
3 3� ≔
×

: , Tr 03 3� � � � �{ }∈ = =
× ⊤ denotes the class of symmetric deviatoric matrices. Moreover, 0 3�∈ and

3 3� �∈ × denote the zero vector and the zero tensor, respectively.
The symbol Ω always denotes a bounded Lipschitz domain in 3� , and points in x t T, Ω 0,( ) ( )∈ × ,

T 0> , consist of a spatial variable x Ω∈ and a time variable t T0,( )∈ . By ut∂ and u uj xj∂ ≔ ∂ , j 1, 2, 3= , we

denote time and spatial partial derivatives of a (sufficiently regular) function u. We further write∇ and Δ for
the gradient and the Laplace operator. For a vector field v v v v, ,1 2 3( )= , the symmetric and skew-symmetric
parts of v∇ are denoted by

v v v v v v1
2

, 1
2

.sym skw( ) ( ) ( ) ( )∇ ≔ ∇ + ∇ ∇ ≔ ∇ − ∇
⊤ ⊤

Moreover, v vj j∇⋅ = ∂ denotes the divergence of v, and we set v v vu u uj j( )⋅∇ ≔ ⋅∇ ≔ ∂ . The divergence �∇⋅ of
a tensor field jk� �( )= is defined by j k jk� �( )∇⋅ = ∂ .

We let X‖⋅‖ denote the norm of a Banach space X . When the dimension is clear from the context, we do
not distinguish between X and its n-fold Cartesian product Xn. We further write X∗ for the dual space of X ,
and φ x,⟨ ⟩ denotes the duality pairing of φ X∈ ∗ and x X∈ . When X is a Hilbert space, we sometimes write
x y,( ) for the inner product of two elements x y X, ∈ .

Function spaces. By C Ω( )∞ we denote the class of smooth functions in Ω, and C Ω0 ( )∞ consists of all
elements in C Ω( )∞ with compact support in Ω. Lebesgue and Sobolev spaces are denoted by L Ωq( ) and
W Ωk q, ( ) for q 1,[ ]∈ ∞ and k �∈ , and we set H WΩ Ωk k,2( ) ( )≔ . Moreover, H Ω0

1( ) consists of all functions in

H Ω1( ) with vanishing boundary trace, and H HΩ Ω1
0
1( ) ( ( ))≔

− ∗ is the associated dual space with respect to the
distributional duality pairing.
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For an interval I �⊂ , the class of continuous X-valued functions is denoted by C I X;0( ). For the asso-
ciated Bochner-Lebesgue spaces wewrite L I X;q( ), and we defineW I X u L I X u L I X; ; : ;q q

t
q1, ( ) { ( ) ( )}≔ ∈ ∂ ∈ .

As above, we set H I X W I X; ;1 1,2( ) ( )≔ , and the classes L I X;q
loc( ) and H I X;loc

1 ( ) contain all functions that,

when restricted to any compact subinterval J I⊂ , belong to L J X;q( ) or H J X;1( ), respectively. If I T0,( )= , we
simply writeC T X C I X0, ; ;0 0( ) ( )= and L T X L I X0, ; ;q q( ) ( )= . Moreover, for functions u on IΩ × , we some-
times abbreviate u t u t,( ) ( )≔ ⋅ for t I∈ .

We let C φ C φΩ Ω : 0σ0, 0
3( ) { ( ) }≔ ∈ ∇⋅ =

∞ ∞ denote the class of smooth solenoidal vector fields, and the
associated Lebesgue and Sobolev spaces are given by

v v v

v v

L L n C

H H C

Ω Ω : 0, 0 Ω ,

Ω Ω : 0 Ω ,
σ σ

σ σ

2 2 3
Ω 0,

0,
1

0
1 3

0,

L

H

2

1

( ) { ( ) ∣ } ( )

( ) { ( ) } ( )

≔ ∈ ∇⋅ = ⋅ = =

≔ ∈ ∇⋅ = =

∂

∞ ‖⋅‖

∞ ‖⋅‖

where the conditions v 0∇⋅ = and v n 0Ω∣ ⋅ =∂ have to be understood in a weak sense; see [13, Theorem
III.2.3] for example. If I �⊂ is an interval, we further set C I C IΩ Φ Ω : Φ 0σ0, 0

3( ) { ( ) }× ≔ ∈ × ∇⋅ =
∞ ∞ . More-

over, we introduce the spaces of symmetric deviatoric fields

L L
H H

Ω Ω : , Tr 0 ,
Ω Ω : , Tr 0 .

δ

δ

2 2 3 3

1 1 3 3

� � � �

� � � �

( ) { ( ) }

( ) { ( ) }

≔ ∈ = =

≔ ∈ = =

× ⊤

× ⊤

In view of the (formal) energy dissipation law (3), for γ 0> we seek solutions v, �( ) of (1) in the natural
energy space XLHT T× where

L T L L T H
X L T L L T H

LH 0, ; Ω 0, ; Ω ,
0, ; Ω 0, ; Ω .

T σ

T δ δ

loc
2

loc
2

0
1 3

loc
2

loc
2 1 3 3

([ ) ( )) ([ ) ( ) )

([ ) ( )) ([ ) ( ) )

≔ ∩

≔ ∩

∞

∞ ×

Usually, the time T 0,( ]∈ ∞ will be fixed and we simply write

LH XT TX ≔ × (7)

for the solution space. We further need function spaces obeying additionally a Serrin-type regularity
criterion, which are defined by

Y H T H L T H L T L
Z H T H L T H L T L

0, ; Ω 0, ; Ω 0, ; Ω ,
0, ; Ω 0, ; Ω 0, ; Ω

T
s

σ σ
s r

T
q

δ δ
q p

loc
1

0,
1

loc
2

0,
1

loc
3

loc
1 1

loc
2 1

loc
3 3

([ ) ( ( )) ) ([ ) ( )) ([ ) ( ) )

([ ) ( ( )) ) ([ ) ( )) ([ ) ( ) )

≔ ∩ ∩

≔ ∩ ∩

∗

∗ ×

for p q r s, , , 1,( )∈ ∞ satisfying

s r q p
2 3 1 as well as 2 3 1,+ = + = (8)

and we introduce the space

Y Z .
s q

T
s

T
q

, 2,
Z

( )

≔ ⋃ ×

∈ ∞

(9)

Functionals. Let X be a Banach space and X: 0,[ ]→ ∞P be convex and proper (i.e., ≢ ∞P ). Then ∂P
denotes the subdifferential of P defined by

u φ X v u φ v u v X: , for all( ) { ( ) ( ) }∂ ≔ ∈ ≥ + ⟨ − ⟩ ∈
∗P P P

for u X∈ . When X is a Hilbert space, then we can identify X∗ with X such that u X( )∂ ⊂P . Moreover, the
convex conjugate of P is denoted by X: 0,[ ]→ ∞

∗ ∗P .
On the state space Q L LΩ Ωσ δ

2 2( ) ( )≔ × we define the energy functional Q: 0,[ )→ ∞E by

v v, 1
2

1
2

,L LΩ
2

Ω
2

2 2� �( )
( ) ( )

≔ ‖ ‖ + ‖ ‖E (10)

and we let Q Q: 0,[ )× → ∞R denote the associated relative energy functional
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v v v v, ˜, ˜ 1
2

˜ 1
2

˜ .L LΩ
2

Ω
2

2 2� � � �( ∣ )
( ) ( )

= ‖ − ‖ + ‖ − ‖R (11)

Furthermore, given a functional Q: 0,[ ]→ ∞K , we let

v vD L T Q L T, 0, ; : , 0, .loc loc
1� �{( ) ([ ) ) ( ) ([ ))}≔ ∈ ∈

∞ KK (12)

2.2 Technical inequalities

Lemma 2.1. Let a H Ω1( )∈ , b H Ω1( )∈ , and c L Ωr( )∈ , r 3,( )∈ ∞ . Then for every δ 0> , there exists a constant
C 0δ > such that

a b c x δ a b C c ad H L δ L
s

L
Ω

Ω
2

Ω
2

Ω Ω
2r1 2 2∣ ∣∣ ∣∣ ∣ ( )

( ) ( ) ( ) ( )∫ ∇ ≤ ‖ ‖ + ‖∇ ‖ + ‖ ‖ ‖ ‖

for s 2,( )∈ ∞ defined by s r2 3 1/ + / = . If a H Ω0
1( )∈ , we even have

a b c x δ a b C c ad .L L δ L
s

L
Ω

Ω
2

Ω
2

Ω Ω
2r2 2 2∣ ∣∣ ∣∣ ∣ ( )

( ) ( ) ( ) ( )∫ ∇ ≤ ‖∇ ‖ + ‖∇ ‖ + ‖ ‖ ‖ ‖

Proof. First consider the case a H Ω0
1( )∈ . Hölder’s, Gagliardo-Nirenberg’s, and Young’s inequalities provide

the estimate

a b c x a b c

c a a b c

δ a b C c a

d

,

L L L

p L
α

L
α

L L

L L δ L
α

L

Ω

Ω Ω Ω

Ω
1

Ω Ω Ω

Ω
2

Ω
2

Ω
2 1

Ω
2

p p p

p p

p p

2 2 2

2 2 2 2 2

2 2 2 2 2

∣ ∣ ∣ ∣ ∣ ∣

( )

( ) ( ) ( )

( )

( )

( ) ( ) ( )

( ) ( ) ( )

( )

( )

( )

( )

( )

∫ ∇ ≤ ‖ ‖ ‖∇ ‖ ‖ ‖

≤ ‖ ‖ ‖∇ ‖ ‖∇ ‖ ‖ ‖

≤ ‖∇ ‖ + ‖∇ ‖ + ‖ ‖ ‖ ‖

−

/ −

/ −

/ −

/ −

where p 2,( )∈ ∞ and α 0, 1( )∈ are chosen according to Gagliardo-Nirenberg’s inequality by

α p p p p3 2 2 for 3 2 2 .( ) ( )= − / < / −

Letting r p p2 2( )= / − concludes the proof for a H Ω0
1( )∈ . If we only have a H Ω1( )∈ , then we can merely

apply the Gagliardo-Nirenberg inequality with a H Ω1( )‖ ‖ instead of a L Ω2( )‖∇ ‖ , which yields the asserted
inequality in this case. □

Lemma 2.2. Let g0 �∈ . Let f L T0,1( )∈ and g L T0,( )∈
∞ with g 0≥ a.e. in T0,( ). Then the following two

inequalities are equivalent:

ϕ t g t t ϕ t f t t g ϕ C Td d ˜ 0, ,
T T

0 0

0( ) ( ) ( ) ( ) ([ ])∫ ∫− ′ + ≤ ∀ ∈ (13)

where C T ϕ C T ϕ ϕ ϕ ϕ T˜ 0, 0, : 0, 0, 0 1, 01([ ]) { ([ ]) ( ) ( ) }≔ ∈ ≥ ′ ≤ = = , and

g t f s s g for a.e. t Td 0, .
t

0

0( ) ( ) ( )∫+ ≤ ∈ (14)

This equivalence remains valid if we replace C T˜ 0,([ ]) by W T˜ 0,(( )) ≔

ϕ W T ϕ ϕ a.e. ϕ ϕ T0, : 0, 0 , 0 1, 01,1{ (( )) ( ) ( ) }∈ ≥ ′ ≤ = = .

Proof. See [20, Lemma 2.4]. □

Weak-strong uniqueness for viscoelastoplastic fluid models  7



2.3 General hypotheses

Throughout this manuscript, we investigate (1) under the following assumptions.

Hypothesis 2.3. Let Ω 3�⊂ be a bounded Lipschitz domain andT 0,( ]∈ ∞ . Moreover, L: Ω 0,δ
2( ) [ ]→ ∞P

denotes a convex, lower semicontinuous functional that satisfies 0�( ) =P . In particular,P is weakly lower
semicontinuous in L Ωδ

2( ). For the remaining data we assume the regularity

v fL L L T HΩ , Ω , 0, ; Ω .σ δ0
2

0
2

loc
2 1 3�( ) ( ) ([ ) ( ) )∈ ∈ ∈

− (15)

3 Generalized and strong solutions in the case of stress diffusion

In this section, we investigate system (1) for γ 0> , that is, when stress diffusion is present. We begin by
introducing the notions of strong and generalized solutions and show that for sufficiently regular data
with 0�( ) < ∞P a strong solution exists at least locally in time. The global-in-time existence of gen-
eralized solutions has been established in [12]. The second main result of this section concerns a weak-
strong stability estimate for the relative energy between a generalized and a strong solution. An
important implication of this estimate is that any generalized solution coincides with the strong
solution starting from the same initial data as long as the latter exists (see Theorem 3.5). The basis
of the stability estimate is an inequality involving the relative energy between a generalized solution
and an arbitrary sufficiently regular competitor taking the role of a test function, see Proposition 3.6.
We will take up this energy-variational inequality in Section 4, where it provides a framework for
passing to the limit γ 0→ .

3.1 Definition of generalized and strong solutions

For the definition of generalized solutions, recall the definition of the energy space X from (7).

Definition 3.1. (Generalized solution) We call a couple v, �( ) a generalized solution of system (1) if
v LH X, T TX�( ) ∈ = × and the following holds true:
(1) The velocity field satisfies the weak formulation

v v v v f vμ x t t xΦ Φ : Φ : Φ d d , Φ d Φ ,0 d
T

t

T

0 Ω 0 Ω

0�[ ( ) ] ( )∫∫ ∫ ∫− ⋅∂ + ⋅∇ ⋅ + ∇ + ∇ ∇ = ⟨ ⟩ + ⋅ ⋅ (16)

for all C TΦ Ω 0,σ0, ( [ ))∈ ×
∞ , and the partial energy inequality

v v v f v vt μ s s x s1
2

d 1
2

, d : d dL

t

L L

t t

Ω
2

0
Ω

2 0 Ω
2

0 0 Ω

2 2 2 �( )
( ) ( ) ( )∫ ∫ ∫∫‖ ‖ + ‖∇ ‖ ≤ ‖ ‖ + ⟨ ⟩ − ∇ (17)

is satisfied for almost all t T0,( )∈ .
(2) The Maxwellian stress tensor � satisfies the evolutionary variational inequality

8  Thomas Eiter et al.



v v v v

t t s γ x s

x s

1
2

˜ ˜ ; ˜ ˜ d : ˜ d d

: ˜ : ˜ d d 1
2

˜ 0 ,

L

t

t

t

t

L

Ω
2

0 0 Ω

0 Ω

skw skw sym 0 Ω
2

2

2

� � � � � � � � � �

� � � � � � � �

( ) ( ) ( ) ( ) ( )

( ( ) ( ) ) ( ) ( ) ( )

( )

( )

∫ ∫∫

∫∫

‖ − ‖ + ⟨∂ − ⟩ + − + ∇ ∇ −

− ⋅∇ + ∇ − ∇ − ∇ − ≤ ‖ − ‖

P P

(18)

for all Z˜ T
q� ∈ , q 2,( )∈ ∞ , and a.a. t T0,( )∈ .

In previous study [12], existence for (1) was shown based on a slightly weaker form of the notion of
generalized solutions than that introduced above. The main difference lies in the fact that the first term in
(18), that is, the partial relative energy at time t, does not appear in the notion used in [12]. The aforemen-
tioned version including this term is essentially equivalent (cf. Lemma A.1) but better suited for the relative
energy methods used in the present article.

Theorem 3.2. (Existence of generalized solutions [12]). Assume that Hypothesis 2.3 is satisfied. Then there
exists a generalized solution v, X�( ) ∈ in the sense of Definition 3.1.

For the most part, Theorem 3.2 was established in [12]. Details on how to infer the version above, which
is formulated with the current, upgraded version of generalized solutions, are provided in Appendix A.

Remark 3.1. Setting ˜ 0� = in (18) yields the partial energy inequality

vt γ s x s1
2

d 1
2

: d d .L

t

L L

t

Ω
2

0
Ω

2 0 Ω
2

0 Ω

sym2 2 2� � � � �( ) ( ( )) ( )
( ) ( ) ( )∫ ∫∫‖ ‖ + ‖∇ ‖ + ≤ ‖ ‖ + ∇P (19)

Since we have v v: :sym � �( )∇ = ∇ by the symmetry of�, summation of (17) and (19) further yields the total
energy-dissipation inequality

v v v f vt t μ γ s s, d , , d ,
t

L L

t

0
Ω

2
Ω

2 0 0

0

2 2� � � �( ( ) ( )) ( ( )) ( )
( ) ( )∫ ∫+ ‖∇ ‖ + ‖∇ ‖ + ≤ + ⟨ ⟩E P E (20)

where the energy functional E was introduced in (10).

Definition 3.3. (Strong solution). We call v LH X, T TX�( ) ∈ = × a strong solution of problem (1) with initial
data v ,0 0�( ) if the following holds:
• v L T L0, , Ωs r

loc
3([ ) ( ) )∈ for some r s, 1,( )∈ ∞ with s r2 3 1/ + / = , and equation (1a) for the velocity com-

ponent is satisfied in the weak sense, i.e., equation (16) holds true for all C TΦ Ω 0,σ0, ( [ ))∈ ×
∞ .

• ZT
q� ∈ for some q 1,( )∈ ∞ , 0 0� �( ) = , and for all H Ωδ

1� ( )∈ and a.a. t T0,( )∈ it holds

v v v v

t t γ t t x t

t x

, : d

: d 0.

t

t

Ω

Ω

skw skw sym

� � � � � � � �

� � � � �

( ) ( ) ( ) ( ( ( ) )) ( ( )) ( )

(( ) ( ) ( ) ( ) ) ( ( ) )

∫

∫

⟨∂ − ⟩ + ∇ ∇ − + −

+ ⋅∇ + ∇ − ∇ − ∇ − ≤

P P

(21)

Lemma 2.1 ensures that the first and the second term in the first line and the term in the second line of
inequality (21) are in L T0,loc

1 ([ )) and thus, in particular, finite a.e. in T0,( ). Choosing � �= further shows

that L T0,loc
1�( ) ([ ))∈P whenever v, �( ) is a strong solution, so that, in particular, t�( ( )) < ∞P for

a.a. t T0,( )∈ .
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Moreover, the velocity field v of a strong solution v, �( ) in the sense of Definition 3.3 is a weak solution
to (1a) that satisfies a Serrin condition. This is in accordance with the well-known notion of strong solutions
to the classical Navier-Stokes equations as used in [33] for example. In particular, due to this regularity
condition, it is not necessary to additionally assume that v satisfies the partial energy inequality (17) since
the corresponding energy equality is satisfied automatically, that is,

v v v f v vt μ s s x s1
2

d 1
2

, d : d d .L

t

L L

t t

Ω
2

0
Ω

2 0 Ω
2

0 0 Ω

sym2 2 2 �( ) ( )
( ) ( ) ( )∫ ∫ ∫∫‖ ‖ + ‖∇ ‖ = ‖ ‖ + ⟨ ⟩ − ∇ (22)

As a consequence of these observations, we infer the following consistency property.

Remark 3.2. (Strong solutions are generalized solutions.) Any strong solution v, �( ) in the sense of
Definition 3.3 is a generalized solution in the sense of Definition 3.1. For the velocity component, this
follows from the fact that strong solutions satisfy the energy equality (22). Inequality (18) for given

Z˜ T
q� ∈ is obtained upon integrating inequality (21) at time s and with the choice s˜� �( )≔ in time from

s 0= to s t= , where one uses the identity

s t t s, ˜ d 1
2

˜ 1
2

˜ 0 ˜ , ˜ d .
t

t L L

t

t

0
Ω

2 0 Ω
2

0

2 2� � � � � � � � � �( ) ( ) ( )
( ) ( )∫ ∫⟨∂ − ⟩ = ‖ − ‖ − ‖ − ‖ + ⟨∂ − ⟩

Let us finally point out the relation between the variational inequality (21) and the differential inclusion

(1b). For this purpose, let H: Ω 0,δ
1 ( ) [ ]→ ∞P be the restriction of P to H Ωδ

1( ). By definition, its convex

subdifferential ∂P maps elements of H Ωδ
1( ) to subsets of H Ωδ

1( )∗, and for almost all t T0,( )∈ , inequality (21)
can be written as a differential inclusion in H Ωδ

1( )∗, namely,

v v v vγΔ ,t skw skw sym � � � � � �( ( ) ( ) ( ) ( ) ) ( )− ∂ + ⋅∇ + ∇ − ∇ − − ∇ ∈ ∂P (23)

with the understanding that γ γ xΔ , : d
Ω

� � � �∫⟨− ⟩ ≔ ∇ ∇ .

In Section 3.2, we construct local-in-time strong solutions enjoying the extra regularity tΔ�( ),
t L Ωt δ

2�( ) ( )∂ ∈ , which satisfy the inclusion (23) in the L Ωδ
2( ) sense as well (cf. Remark 3.4).

Remark 3.3. (Energy equality). We note that for a strong solution v, �( ), we may recover the energy equality

(3). Indeed, the inclusion (23) implies that there exists � with t t� �( ) ( ( ))∈ ∂P for a.a. t T0,( )∈ such that
the equality

v v v vγΔt skw skw sym� � � � � �( ) ( ) ( ) ( )∂ + ⋅∇ + ∇ − ∇ − + = ∇

holds in H Ωδ
1( ( ))∗ a.e. in T0,( ). Thanks to the extra regularity, we may test this identity with �. Integrating

the resulting equality in time leads to the partial energy equality

vt γ s x s1
2

d 1
2

: d dL

t

L L

t

Ω
2

0
Ω

2 0 Ω
2

0 Ω

sym2 2 2
 � � � � � �( ) ( ) ( ) ( )

( ) ( ) ( )∫ ∫∫‖ ‖ + ‖∇ ‖ + + = ‖ ‖ + ∇
∗

P P

for a.e. t T0,( )∈ , where we used the Fenchel identity ,  � � � �( ) ( )⟨ ⟩ = +
∗

P P for � �( )∈ ∂P . Furthermore,
we may use v as a test function in (16), which leads to the partial energy equality (22) for a.a. t T0,( )∈ .
Summing up the two partial energy equalities, we arrive at the energy equality (3).

3.2 Local existence of strong solutions

In the following, we show that under an additional regularity hypothesis on the data, problem (1) has a
strong solution on a time interval T0,( ), provided T 0> is small enough. For simplicity, we only consider
the case f 0≡ here, but the result equally holds for forcings f L L0, ; Ω .loc

2 2 3([ ) ( ) )∈ ∞
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Theorem 3.4. (Local existence of strong solutions). Let γ μ, 0> . Suppose that Ω 3�⊂ is a bounded domain
with C2 boundary, and let f 0≡ . In addition to the basic hypotheses (15) assume that

v H H andΩ , Ω .0
1 3

0
1 3 3

0� �( ) ( ) ( )∈ ∈ < ∞
× P (24)

Then there exists T 0,( )∈ ∞ such that problem (1) has at least one strong solution v, �( ) with initial data
v ,0 0�( ). This solution enjoys the following additional regularity properties:

v H T L L T H L T H
H T L L T H L T

0, ; Ω 0, ; Ω 0, ; Ω ,
0, ; Ω 0, ; Ω , 0, .

1 2 3 1 3 2 2 3

1 2 3 3 1 3 3� �

( ( ) ) ( ( ) ) ( ( ) )

( ( ) ) ( ( ) ) ( ) ( )

∈ ∩ ∩

∈ ∩ ∈

∞

× ∞ × ∞P
(25)

Proof. The main point in the proof is to derive sufficiently strong a priori bounds (cf. (27)) for suitably
regular solutions of (1) on some short time interval T0,[ ] in the case that P is Fréchet differentiable with
globally Lipschitz continuous derivative. For the actual construction of a strong solution on T0, Ω( ) × ,
one may then follow the roadmap in [12]: One first regularizes the potential L: Ω 0,δ

2( ) [ ]→ ∞P by its
Moreau envelope and then performs a Galerkin approximation for the regularized potentials similar to
[12, Section 4]. Along the approximate sequence, the a priori estimates can be derived rigorously. Moreover,
they allow us to pass to the limit along the approximate solutions (up to a subsequence), not only in the
weak formulation for v, �( ) but also in the strong formulation (21) for the Maxwellian stress tensor, and
imply the asserted regularity (25). Let us note that for the velocity component, in the Galerkin approxima-
tion one should here use a Galerkin basis composed of eigenfunctions of the Stokes operator PΔ− on L Ωσ

2( )

with P denoting the Helmholtz projector P L L: Ω Ωσ
2 3 2( ) ( )→ (rather than the smooth basis functions intro-

duced in [12] for constructing weak solutions). The eigenfunctions of the Stokes operator only belong to
H HΩ Ωσ0,

1 2 3( ) ( )∩ in general, but this regularity suffices for our purpose.
In the rest of the proof, we will show that, in addition to the fundamental energy estimate

v vt t μ γ t t Csup 1
2

1
2

d
t T L L L T L L T L

T

0, Ω
2

Ω
2

0, ; Ω
2

0, ; Ω
2

0

262 2 2 2 2 2� � �⎛
⎝

( ) ( ) ⎞
⎠

( ( ))
[ ]

( ) ( ) ( ( )) ( ( )) ∫
‖ ‖ + ‖ ‖ + ‖∇ ‖ + ‖∇ ‖ + ≤

∈

P (26)

with vC ,L L26
1
2 0 Ω

2 1
2 0 Ω

2
2 2�
( ) ( )

≔ ‖ ‖ + ‖ ‖ regular solutions of (1) enjoy the following bound:

v vt γ t t μ t t t Csup d ,
t T L L

T

L t L0, Ω
2

Ω
2

0

2
Ω

2
Ω

2 272 2 2 2� � �( ( ) ( ) ( ( ))) ( ( ) ( ) )
[ ]

( ) ( ) ( ) ( )∫‖∇ ‖ + ‖∇ ‖ + + ‖∇ ‖ + ‖∂ ‖ ≤

∈

P (27)

for vT T γ γ μ, , , , , 0H L L0 Ω 0 Ω 0 Ω 0
1 11 2 2� � �( )( ) ( ) ( )( )= ‖ ‖ ‖ ‖ ‖∇ ‖ >
− −P small enough and a finite constant

vC C γ γ μ, , , , , .H L L27 0 Ω 0 Ω 0 Ω 0
1 11 2 2� � �( )( ) ( ) ( )( )= ‖ ‖ ‖ ‖ ‖∇ ‖
− −P (28)

Here, the quantityC27 can be chosen to be nondecreasing in each of its arguments, while the timeT 0( )⋅ > is
nonincreasing in each of its arguments.

In virtue of the embedding L T H L T L0, ; Ω 0, ; Ω2 2 3 2 3( ( ) ) ( ( ) )↪
∞ , estimate (27) further yields v v⋅∇ ∈

L T L0, ; Ω2 2 3( ( ) ), which implies that v L T L0, ; Ωt
2 2 3( ( ) )∂ ∈ (for details see e.g. [30, Lemma 6.2]). Hence,

the regularity asserted in (25) indeed follows from (27).
For the derivation of (27), we first test the Navier-Stokes equations (1a) with vP t LΔ Ωσ

2( ) ( )− ∈ to infer

v v v v v v
t

μ P P x P x I I1
2

d
d

Δ Δ d Δ d .L LΩ
2

Ω
2

Ω Ω

1 22 2 �( ) ( )
( ) ( ) ∫ ∫‖∇ ‖ + ‖ ‖ = ⋅∇ ⋅ − ∇⋅ ⋅ ≕ +

Using Agmon’s inequality as well as the Poincaré and Young inequalities and the elliptic estimate
v vC PΔH LΩ Ω2 2( ) ( )‖ ‖ ≤ ‖ ‖ (see, e.g., [9, Proposition 4.7]), the integral terms can be estimated as follows:
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v v v

v v

v v

v

I P

C P

Cμ μ P

I Cμ μ P

Δ

Δ

4
Δ ,

4
Δ .

L L L

L L

L L

L L

1 Ω Ω Ω

Ω

3
2

Ω

3
2

3
Ω

6
Ω

2

2
1

Ω
2

Ω
2

2 2

2 2

2 2

2 2�

∣ ∣

∣ ∣

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

≤ ‖ ‖ ‖∇ ‖ ‖ ‖

≤ ‖∇ ‖ ‖ ‖

≤ ‖∇ ‖ + ‖ ‖

≤ ‖∇ ‖ + ‖ ‖

−

−

∞

Hence,

v v v
t

μ P Cμ Cμd
d

Δ .L L L LΩ
2

Ω
2 3

Ω
6 1

Ω
2

2 2 2 2�
( ) ( ) ( ) ( )

‖∇ ‖ + ‖ ‖ ≤ ‖∇ ‖ + ‖∇ ‖
− − (29)

To proceed, let us recall that we may assume without loss of generality that �( )∂P is globally Lipschitz
continuous. As mentioned above, the rigorous version of this step is to be carried out with the Moreau
envelope of the nonsmooth dissipation potential, cf. [12]. We may then test the evolution law (1b) for the
tensorial component with t�∂ to find

v v v v

γ
t

x

x x x I I I

2
d

d
: d

: d : d : d .

L t L t

t t t

2 2

Ω

Ω Ω

skw skw

Ω

sym 3 4 5

2 2� � � �

� � � � � �

( )

( ) ( ( ) ( ) ) ( )

∫

∫ ∫ ∫

‖∇ ‖ + ‖∂ ‖ + ∂ ∂

= ⋅∇ ∂ + ∇ − ∇ ∂ + ∇ ∂ ≕ + +

P

The integral I3 involving the convective term is estimated, using Agmon’s inequality and the bound
v vC PΔH LΩ Ω2 2( ) ( )‖ ‖ ≤ ‖ ‖ , as

v

v v

v v

I

C P

C μ P

Δ

4
Δ 1

6
.

L L t L

L L L t L

L L L t L

3 Ω Ω Ω

Ω

1
2

Ω

1
2

Ω Ω

Ω
2

Ω
4

Ω
2

Ω
2

2 2

2 2 2 2

2 2 2 2

� �

� �

� �

∣ ∣ ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

≤ ‖ ‖ ‖∇ ‖ ‖∂ ‖

≤ ‖∇ ‖ ‖ ‖ ‖∇ ‖ ‖∂ ‖

≤ ‖∇ ‖ ‖∇ ‖ + ‖ ‖ + ‖∂ ‖

∞

For I4 we estimate, using the Gagliardo-Nirenberg-Sobolev inequality,

v

v v

v v

I

C P

C μ P

2

Δ

4
Δ 1

6
.

L L t L

L L H t L

L H L t L

4 Ω Ω Ω

Ω

1
2

Ω

1
2

Ω Ω

Ω
2

Ω
4

Ω
2

Ω
2

3 6 2

2 2 1 2

2 1 2 2

� �

� �

� �

∣ ∣ ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

≤ ‖∇ ‖ ‖ ‖ ‖∂ ‖

≤ ‖∇ ‖ ‖ ‖ ‖ ‖ ‖∂ ‖

≤ ‖∇ ‖ ‖ ‖ + ‖ ‖ + ‖∂ ‖

The estimate for I5 is immediate

vI C 1
6

.L t L5 Ω
2

Ω
2

2 2�∣ ∣
( ) ( )

≤ ‖∇ ‖ + ‖∂ ‖

In combination, we deduce

v v vγ
t t

C μ P C
2

d
d

1
2

d
d 2

Δ ,L t L L H L LΩ
2

Ω
2

Ω
2

Ω
4

Ω
2

Ω
2

2 2 2 1 2 2� � � �( )
( ) ( ) ( ) ( ) ( ) ( )

‖∇ ‖ + ‖∂ ‖ + ≤ ‖∇ ‖ ‖ ‖ + ‖ ‖ + ‖∇ ‖P (30)

where we used the regularity of P and � and the chain rule to rewrite the term involving the dissipation
potential.

Adding up inequalities (29) and (30) gives

v v

v v v
t

γ μ P

Cμ Cμ Cμ C

d
d 2 2

Δ 1
2

.
L L L t L

L L L H L

Ω
2

Ω
2

Ω
2

Ω
2

3
Ω

6 1
Ω

2 1
Ω

2
Ω

4
Ω

2

2 2 2 2

2 2 2 1 2

� � �

� �

⎛
⎝

( )⎞
⎠( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

‖∇ ‖ + ‖∇ ‖ + + ‖ ‖ + ‖∂ ‖

≤ ‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖ ‖ ‖ + ‖∇ ‖
− − −

P
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Expanding H L LΩ
2

Ω
2

Ω
2

1 2 2� � �
( ) ( ) ( )

‖ ‖ = ‖∇ ‖ + ‖ ‖ , we find that the function

vψ t t γ t t
2

1L LΩ
2

Ω
2

2 2� �( ) ( ) ( ) ( ( ))
( ) ( )

≔ ‖∇ ‖ + ‖∇ ‖ + +P

satisfies the differential inequality

t
ψ t Aψ td

d
,3( ) ( )≤

where

A Cμ Cμ γ Cμ γ Cμ C C.3 1 1 1 2 1
26
2

≔ + + + +
− − − − − −

Since, by hypothesis, ψ 0( ) is finite, we may use a classical ordinary differential equation comparison
argument to deduce the existence of a time

vT T γ γ μ, , , , , 0H L L0 Ω 0 Ω 0 Ω 0
1 11 2 2� � �( )( ) ( ) ( )( )= ‖ ‖ ‖ ‖ ‖∇ ‖ >
− −P

and a finite constant C27 as in (28) such that ψ t C27( ) ≤ for all t T0,[ ]∈ . Combined with the aforementioned
estimates for vμ PΔ L Ω

2
2( )

‖ ‖ and t L Ω
2

2�
( )

‖∂ ‖ , this implies the bound (27). □

When 0≡P , the evolution law for the tensorial component implies that any strong solution v, �( ) with
the regularity (25) further satisfies L T H0, ; Ω2 2 3 3� ( ( ) )∈

× . The following remark shows that this conclusion
continues to hold true for nonsmooth potentials P given by an integral functional.

Remark 3.4. (H2 regularity for �). Suppose that the dissipation potential P takes the form of an integral

x xd
Ω
P� �( ) ( ( ))∫=P for a lower semicontinuous, convex function : 0,δ

3 3P � [ ]→ ∞
× with 0P �( ) = . Then,

under the hypotheses of Theorem 3.4, strong solutions v, �( ) satisfying (25) enjoy the additional regularity

L T H0, ; Ω2 2 3 3� ( ( ) )∈
× (31)

and fulfill the differential inclusion (1b) in the L Ωδ
2( ) sense:

v v v vγ L T LΔ 0, ; Ωt δskw skw sym
2 2� � � � � �( ( ) ( ) ( ) ( ) ) ( ( ))≔ − ∂ + ⋅∇ + ∇ − ∇ − − ∇ ∈

with x t x t, ,P� �( ) ( ( ))∈ ∂ for a.a. x t T, Ω 0,( ) ( )∈ × .
Let us first provide the formal argument demonstrating this assertion. The estimate

v v v v
v v vc2

L T

L T L T L L T H L T L L T H

sym skw skw Ω 0,

Ω 0, 0, ; Ω 0, ; Ω 0, ; Ω 0, ; Ω

2

2 2 1 6 2 2

� � �

� �

∥( ) ( ) ( ( ) ( ) )∥ ( ( ))

( ( )) ( ( )) ( ( )) ( ( )) ( ( ))

∇ − ⋅∇ − ∇ − ∇

≤ ‖∇ ‖ + ‖ ‖ ‖ ‖ + ‖ ‖ ‖ ‖

×

×
∞ ∞ ∞

combined with (26) and (27) shows that the term

v v v vtsym skw skw � � � �( ) ( ) ( ( ) ( ) )≔ ∇ − ∂ − ⋅∇ − ∇ − ∇

is controlled in L T L0, ; Ω2 2 3 3( ( ) )× , whence

γ L T LΔ 0, ; Ω .δ
2 2� �  ( ( ))− + = ∈ (32)

Assuming for the moment that C2P ∈ and testing (32) with DP �( ) ( �= ) yields

γ D D x t D x t D: : d d : d d 1
2

1
2

,
T T

L T L L T L
0 Ω

2 2

0 Ω
0, ; Ω

2
0, ; Ω

2
2 2 2 2P P P P� � � �  � � ( ) ∣ ( )∣ ( ) ( )
( ( )) ( ( ))∫∫ ∫∫∇ ∇ + = ≤ ‖ ‖ + ‖ ‖

where the first term on the left-hand side is nonnegative, thanks to the positive semidefiniteness of the
Hesse form of the convex function P. We thus deduce the a priori bound

D ,L T L L T L0, ; Ω 0, ; Ω2 2 2 2P � ( ) ( ( )) ( ( ))‖ ‖ ≤ ‖ ‖ (33)
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which further yields γ CΔ L T L L T L0, ; Ω 0, ; Ω2 2 2 2� ( ( )) ( ( ))‖ ‖ ≤ ‖ ‖ .
To make the above reasoning rigorous, we may argue as follows. Following the proof of Theorem 3.4,

we first construct local-in-time strong solutions using the regularized functions ρε λ λ ε,P P≔ ∗ with

λ ε, 0, 1( ]∈ . Here, εP denotes the Moreau envelope of the nonsmooth function P, that is,

ε
inf 1

2
,ε

2

δ
3 3

P P� � � �
� �

( ) ⎛
⎝

( ) ∣ ∣ ⎞
⎠

≔ ′ + − ′

′∈
×

which by construction satisfies the pointwise bound ε ε
1

2
2P � �( ) ∣ ∣≤ , while ρλ denotes a standard (nonne-

gative) mollifier. The functions ε λ,P are C2 and convex and satisfy the λ-uniform bound

C
ε

0 1 for all ,ε λ δ,
2 3 3P � � � �( ) (∣ ∣ )≤ ≤ + ∈

× (34)

whenever λ 0, 1( ]∈ . (The fact that possibly 0 0ε λ,P ( ) ≠ does not affect the construction of solutions.) At the
level of the strong solutions associated with ε λ,P , estimate (33) and the L2 bound for γΔ� can be derived

rigorously. The control (34) and the a priori bounds allow us to pass to the limit λ 0→ in the strong

formulation (21) for all L Ωδ
2� ( )∈ , where the term γ t t x: d

Ω
� � �( ) ( ( ( ) ))∫ ∇ ∇ − is to be replaced by

γ t t xΔ : d
Ω
� � �( ) ( ( ) )∫− − . Finally, in the limit ε 0→ , we obtain a strong solution on T0,( ) with the addi-

tional regularity (31) satisfying the differential inclusion (1b) in the Lδ
2 sense. Since our weak-strong unique-

ness principle (Theorem 3.5) implies that strong solutions are unique, this shows that already the strong
solutions obtained in Theorem 3.4 must have these regularity properties if the dissipation potential is in
integral form.

3.3 Relative energy inequality and weak-strong stability

The aim of this subsection is to establish the following weak-strong stability result, which compares

generalized solutions v, �( ) with strong solutions ṽ, �̃( ) to (1) in terms of the relative energy v v, ˜, ˜� �( ∣ )R

defined in (11). It implies the uniqueness of strong solutions in the class of generalized solutions.

Theorem 3.5. (Weak-strong stability). Let ṽ, �̃( ) be a strong solution according to Definition 3.3 with initial

data ṽ , ˜0 0�( ). Choose p q r s, , , 2,( )∈ ∞ satisfying (8) such that v L T L˜ 0, ; Ωs r
loc([ ) ( ))∈ , L T L˜ 0, ; Ωq p

loc� ([ ) ( ))∈ .
Then every generalized solution v, X�( ) ∈ emanating from initial data v ,0 0�( ) obeys the estimate

v v v v v vt t t t μ γ e s e, ˜ , ˜
2

˜
2

˜ d , ˜ , ˜v v
t

L L
τ s

0
Ω

2
Ω

2 ˜, ˜ d
0 0 0 0

˜, ˜ d
s

t t

2 2 0� � � � � �
� �

( ( ) ( )∣ ( ) ( )) ⎛
⎝

⎞
⎠

( ∣ )
( ) ( )

( ) ( )
∫

∫ ∫
+ ‖∇ − ∇ ‖ + ‖∇ − ∇ ‖ ≤R R

K K

(35)

for a.e. t T0,( )∈ , where

v vC˜, ˜ ˜ ˜ ˜
L
s

L
q

LΩ Ω Ω
2r p p� � �( ) ( )

( ) ( ) ( )
= ‖ ‖ + ‖ ‖ + ‖ ‖K (36)

for a constant C C p q r s μ γΩ, , , , , , 0( )= > . In particular, if the initial data v ,0 0�( ) and ṽ , ˜0 0�( ) coincide, then

v v˜ ≡ and �̃ �= .

In the aforementioned formulation, we call the function K the regularity weight since it measures the

minimal regularity of the function ṽ, �̃( ) such that both sides of the relative energy inequality (35) remain finite.
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We will deduce Theorem 3.5 from a suitable relative energy inequality that compares a generalized
solution with any sufficiently smooth function. For its formulation, let us (formally) introduce the operator

,1 2( )( ) ( )
=A A A by

v v v v v fx μ x˜, ˜ , Φ ˜, Φ ˜ ˜ Φd ˜ 2 ˜ : Φd , Φ ,t
1

Ω

sym� �( ) ( ) ( ( ) )( )
∫⟨ ⟩ ≔ ⟨∂ ⟩ + ⋅∇ ⋅ + + ∇ ∇ − ⟨ ⟩A (37a)

v v v v vγ x˜, ˜ , ˜ , ˜ ˜ ˜ ˜ ˜ ˜ : ˜ : ˜ : d .t
2

Ω

skw skw sym� � � � � � � � � � �( ) ( ( ) ( ) ) ( )( )
∫⟨ ⟩ ≔ ⟨∂ ⟩ + ⋅∇ + ∇ − ∇ + ∇ ∇ − ∇A (37b)

Note that the interpolation inequality of Lemma 2.1 shows that

v v v v L T, , ˜, ˜ : ˜, ˜ , 0, ,loc
1X Z� � �

�
( ) ( ) ( ) ([ ))( )∀ ∈ ∈ ∈A

where X and Z were introduced in (7) and (9).
Now we can state the above-mentioned relative energy inequality. Actually, we derive a family of

relative energy inequalities where the regularity weightK is not fixed in advance. Observe that the choice
of K influences the class of admissible test functions, which must belong to the set DK defined in (12).

Proposition 3.6. Let v, X�( ) ∈ be a generalized solution according to Definition 3.1, and let Q: 0,[ ]→ ∞K

be a given functional. Then v, �( ) fulfills the relative energy inequality

v v v v

v v v v v

t t t t

e s e

, ˜ , ˜ , ˜, ˜ ˜

˜, ˜ , ˜
˜ d , ˜ 0 , ˜ 0v v

t

τ s

0

˜, ˜ d
0 0

˜, ˜ d
s

t t

0

� � � � � �

�
� �

� �
� �

⎜

⎟

( ( ) ( )∣ ( ) ( )) ⎛

⎝

( ∣ ) ( ) ( )

( ) ⎛

⎝

⎞

⎠

⎞

⎠

( ∣ ( ) ( ))

( )

( ) ( )

∫

∫ ∫

+ + −

+
−

−

≤

R W P P

A R

K

K K

(38)

for a.e. t T0,( )∈ and all v D˜, ˜ Z�( ) ∈ ∩K , where ( )
≔W W K denotes the relative dissipation-like quantity

v v v v

v v v v v v v

v v v v v v v

μ γ

x

x

, ˜, ˜ ˜ ˜

˜ ˜ ˜ ˜ ˜ : ˜ d

˜ ˜ ˜ ˜ : ˜ d ˜, ˜ , ˜, ˜ ,

L LΩ
2

Ω
2

Ω

Ω

skw skw

2 2� � � �

� � �

� � � � � � � �

( ∣ )

(( ) ( )) (( ) ( ))

(( )( ) ( ) ( )) ( ) ( ∣ )

( )
( ) ( )

∫

∫

≔ ‖∇ − ∇ ‖ + ‖∇ − ∇ ‖

− − ⋅∇ − ⋅ + − ⋅∇ −

− − ∇ − ∇ − ∇ − ∇ − +

W

K R

K

(39)

which depends on the regularity weight K.

Observe that by Lemma 2.1 the quantity ( )W K satisfies v v L T, ˜, ˜ 0,loc
1� �( ∣ ) ([ ))( )

∈W K for all v v, , ˜, ˜� �( ) ( )

as above.

Proof. (Proof of Proposition 3.6) Let v D˜, ˜ Z�( ) ∈ ∩K and t T0,( )∈ . The reasoning below is valid for
a.e. t T0,( )∈ .

If τ˜ d
t

0
�( )∫ = +∞P , the asserted inequality is trivially satisfied. Thus, we may henceforth assume that

L t˜ 0,1�( ) ( )∈P . Since v, �( ) is a generalized solution, it fulfills (17) and (18). Given ϕ C t˜ 0, ,([ ])∈ we trans-
form these two inequalities according to Lemma 2.2 into their weak formulation in time and add the weak
form (16) of the Navier-Stokes equations with the test function vϕΦ ˜= − (which is admissible as a test
function due to a classical approximation argument using Lemma 2.1) to obtain
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v v v

v v v

v v v v v v v v

v v v f v v

v v v

ϕ x τ

ϕ μ γ x τ

ϕ x τ

ϕ x τ

x

1
2

˜ 1
2

˜d d

: ˜ : ˜ d ˜ d

˜ : ˜ : ˜ : ˜ d d

˜, : ˜ d , ˜ d

1
2

˜ 0 1
2

˜ 0 d 0.

t

L L

t

t

t

t

L L

0
Ω

2
Ω

2

Ω

0 Ω

0 Ω

skw skw

0 Ω

sym

0 Ω
2 0 Ω

2

Ω

0

2 2

2 2

� �

� � � � �

� � � � � �

� �

� �

⎛

⎝

⎜⎜

⎞

⎠

⎟⎟

⎛

⎝

⎜⎜
( ) ( ) ( ) ( )

⎞

⎠

⎟⎟

( ) ( ) ( ) ( ( ) ( ) )

⎛

⎝

⎜⎜
( ) ( )

⎞

⎠

⎟⎟

⎛

⎝

⎜⎜
( ) ( )

⎞

⎠

⎟⎟

( ) ( )

( ) ( )

∫ ∫

∫ ∫

∫ ∫

∫ ∫

∫

− ′ ‖ − ‖ + ‖ ‖ − ⋅

+ ∇ ∇ − ∇ + ∇ ∇ − ∇ + −

+ − ⋅∇ ⋅ + ∇ − ∇ − ⋅∇ − ∇ − ∇

+ ⟨∂ ⟩ − ∇ − + ⟨ − ⟩

− ‖ − ‖ + ‖ ‖ − ⋅ ≤

P P

(40)

Observing that

v v v

v v v v v v v v v f v v

v v v

v

μ x

x

γ x

˜, ˜ , ˜
˜

˜, 1
2

˜ ˜ ˜ ˜ 2 ˜ : ˜ d , ˜

˜ : ˜ ˜ ˜ : ˜ ˜ ˜ ˜ ˜ : ˜ d

˜ : ˜ ˜ : ˜ d ,

t t

t

Ω

2
sym

Ω

skw skw

Ω

sym

�
� �

�

� � � � � � � � � �

� � � � �

( ) ⎛

⎝

⎞

⎠

∣ ∣ ( ) ( ( ) ) ( )

( ) ( ) ( ) ( ( ) ( ) ) ( )

( ) ( ) ( )

∫

∫

∫

−

−

= ⟨∂ ⟩ + − ∂ + ⋅∇ ⋅ + + ∇ ∇ − ∇ − ⟨ − ⟩

+ ∂ − + ⋅∇ − + ∇ − ∇ −

+ ∇ ∇ − ∇ − ∇ −

A

(41)

we can rewrite inequality (40), upon integration by parts in time, as

v v v v

v v v v v v v

v v v v

v v v

v v

ϕ τ ϕ μ γ τ

ϕ x τ

ϕ x τ

ϕ τ

, ˜, ˜ d ˜ ˜ d

˜ ˜ ˜ ˜ ˜ : ˜ d d

˜ ˜ ˜ ˜ : ˜ d d

˜ ˜, ˜ , ˜
˜ d

, ˜ 0 , ˜ 0 ,

t t

L L

t

t

t

γ

0 0
Ω

2
Ω

2

0 Ω

0 Ω

skw skw

0

0 0

2 2� � � �

� � �

� � � � �

� � �
� �

� �

⎜ ⎟

( ∣ ) ( )

(( ) )( ) (( ) )( )

(( )( ) ( ) ( ))

⎛

⎝

( ) ( ) ( ) ⎛

⎝

⎞

⎠

⎞

⎠

( ∣ ( ) ( ))

( ) ( )∫ ∫

∫ ∫

∫ ∫

∫

− ′ + ‖∇ − ∇ ‖ + ‖∇ − ∇ ‖

− − ⋅∇ − ⋅ + − ⋅∇ −

− − ∇ − ∇ − ∇ − ∇ −

+ − +
−

−

≤

R

P P A

R

where we used the canceling of several terms (notably of the coupling term v vx x: d : d
Ω sym Ω

� �( )∫ ∫∇ = ∇ ), the
fact that v and ṽ are solenoidal vector fields, and the antisymmetry of ṽ skw( )∇ . Choosingϕ τ φ τ e v τ˜, ˜ d ˆ

τ

0
�( ) ( ) ( )

=
∫− K

and invoking Lemma 2.2 yield the asserted inequality (38). □

Proof of Theorem 3.5. First, we show that the velocity field ṽ possesses the additional regularity
v H T H˜ 0, ; Ωσloc

1
0,
1([ ) ( ( )) )∈

∗ . In the same way as in the proof of Lemma 2.1, we infer
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v v v v

v v v

x s x s

C

˜ ˜ Φd d ˜ Φ ˜d d

˜ ˜ ˜ Φ

t t

L t L L t L L t L L t L

0 Ω 0 Ω

0, ; Ω
2

0, ; Ω
2

0, ; Ω
2

0, ; Ωs r2 2 2 2 2( )
( ( )) ( ( )) ( ( )) ( ( ))

∫∫ ∫∫⋅∇ ⋅ = ⋅∇ ⋅

≤ ‖∇ ‖ + ‖ ‖ + ‖ ‖ ‖∇ ‖
∞

for all C tΦ Ω 0,σ0, ( ( ))∈ ×
∞ and all t T0,( )∈ . Invoking the weak formulation (16), we deduce

v v v v f

v v v v

f

x s μ x s s

C

˜ Φd d ˜ ˜ Φ ˜ : Φ ˜ : Φ d d , Φ d

˜ ˜ ˜ ˜ ˜

Φ .

t

t

t t

L t L L t L L t L L t L L t H

L t H L t H

0 Ω 0 Ω 0

0, ; Ω
2

0, ; Ω
2

0, ; Ω
2

0, ; Ω 0, ; Ω

0, ; Ω 0, ; Ω

s r2 2 2 2 2 2 1

2 1 2 1

�

�

(( ) )

(

)

( ( )) ( ( )) ( ( )) ( ( )) ( ( ))

( ( )) ( ( ))

∫∫ ∫∫ ∫⋅∂ = ⋅∇ ⋅ + ∇ + ∇ ∇ − ⟨ ⟩

≤ ‖∇ ‖ + ‖ ‖ + ‖ ‖ + ‖ ‖ + ‖ ‖

+ ‖ ‖ ‖ ‖

∞

−

This shows v H T H˜ 0, ; Ωσloc
1

0,
1([ ) ( ( )) )∈

∗ . Hence we have ṽ, ˜ Z�( ) ∈ , so that v, �( ), ṽ, �̃( ) satisfy the relative
energy inequality (38) by Proposition 3.6.

For the derivation of (35) from (38) it suffices to show that for a.e. t T0,( )∈ we have

v v v v v v vμ γ, ˜, ˜ ˜ ˜, ˜ , ˜
˜ 2

˜
2

˜
L LΩ
2

Ω
2

2 2� � � � �
� �

� �( ∣ ) ( ) ( ) ( ) ⎛

⎝

⎞

⎠

( )
( ) ( )

+ − +
−

−

≥ ‖∇ − ∇ ‖ + ‖∇ − ∇ ‖W P P AK (42)

for K given by (36). To verify inequality (42), we first show, for a.e. t T0,( )∈ , the two relations

v v v˜, ˜ , ˜ 0,1 �( )( )
⟨ − ⟩ =A (43)

v˜ ˜, ˜ , ˜ 0.2� � � � �( ) ( ) ( )( )
− + ⟨ − ⟩ ≥P P A (44)

Note that, as a consequence of the weak solution property of ṽ, �̃( ) and the extra regularity of ṽ, for a.e.
t T0,( )∈ we have the equality

v v v v v fμ H˜, ˜ ˜ ˜ ˜ ˜ 2 ˜ 0 in Ω ,t σ
1

sym 0,
1� �( ) ( ) ( ( ) ) ( ( ))( )

= ∂ + ∇⋅ ⊗ − ∇⋅ + ∇ − =
∗A

which immediately gives (43). Inequality (44) follows upon choosing t H Ωδ
1� �( ) ( )= ∈ as a test

function in the strong variational inequality (21) satisfied by ṽ, �̃( ). We are thus left to prove that
v ṽ ˜μ

L
γ

L2 Ω
2

2 Ω
2

2 2� �( )
( ) ( )

≥ ‖∇ − ∇ ‖ + ‖∇ − ∇ ‖W K if K is given by (36) for some sufficiently large constant
C < ∞. Using Lemma 2.1, we may estimate

v v v v v v v

v v v v v

x

μ γ C

˜ ˜ ˜ ˜ ˜ : ˜ d

4
˜

4
˜ ˜ ˜ , ˜, ˜ ,L L L

s
L
q

Ω

Ω
2

Ω
2 1 Ω Ωr p2 2

� � �

� � � � �

(( ) )( ) (( ) )( )

( ) ( ∣ )
( ) ( ) ( ) ( )

∫ − ⋅∇ − ⋅ + − ⋅∇ −

≤ ‖∇ − ∇ ‖ + ‖∇ − ∇ ‖ + ‖ ‖ + ‖ ‖ R

(45)

where r s,( ) and p q,( ) fulfill (8). Similarly, we estimate the terms stemming from the Zaremba-Jaumann rate
by Hölder’s, Gagliardo-Nirenberg’s, and Young’s inequality as

v v v v

v v

v v

v v

x

C

C
μ γ C

˜ ˜ ˜ ˜ : ˜ d

˜ ˜ ˜

˜ ˜ ˜ ˜ ˜ ˜

4
˜

4
˜ ˜ ˜ ˜ ,

L L L

L L
α

L
α L L L

L L L
q

L L

Ω

skw skw

Ω Ω Ω

Ω Ω
1

Ω Ω Ω Ω

Ω
2

Ω
2 2 Ω Ω

2
Ω

2

p p p

p p

p p

2 2 2

2 2 2 2

2 2 2

� � � � �

� � �

� � � � � � � �

� � � � � �

(( )( ) ( ) ( ))

( )

( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )

∫ − ∇ − ∇ − ∇ − ∇ −

≤ ‖∇ − ∇ ‖ ‖ − ‖ ‖ ‖

≤ ‖∇ − ∇ ‖ ‖ − ‖ ‖∇ − ∇ ‖ ‖ ‖ + ‖ − ‖ ‖ ‖

≤ ‖∇ − ∇ ‖ + ‖∇ − ∇ ‖ + ‖ ‖ + ‖ ‖ ‖ − ‖

−

/ −

where α p3= / . Hence, (42) holds for K as in (36) with C C Cmax , 21 2{ }= . □
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4 Energy-variational solutions for vanishing stress diffusion

In this section, we investigate problem (6), that is, (1) for γ 0= , where stress diffusion is not present. In this

case, the basic energy estimates no longer provide weak sequential compactness in L TΩ 0,loc
1 ( [ ))× for the

nonlinear term v vskw skw� �( ) ( )∇ − ∇ coming from the Zaremba-Jaumann derivative. Thus, we have to
further extend the concept of generalized solutions introduced in Definition 3.1. Here, we use a concept
in the spirit of [18,20], which is reminiscent of the dissipative solutions introduced by Lions in [22]. In the
literature, the term dissipative is, however, employed for various kinds of paradigms, and here we prefer the
term energy-variational since the basis of our solution concept is a relative energy inequality (similar to
(38)), which can be interpreted as a variation of the energy-dissipation mechanism with respect to functions
in the domain DK of the regularity weightK. We show existence of energy-variational solutions and derive
some important properties inherent in this solution concept.

4.1 The concept of energy-variational solutions

We introduce the notation

L T L Y ZLH 0, ; Ω , ,T δ
s

T
s

T0 loc
2

0
2,

,0X Z([ ) ( ))
( )

≔ × ≔ ⋃ ×
∞

∈ ∞
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Z W T L L T W L0, ; Ω 0, ; Ω Ω .T δ,0 loc
1,1 2

loc
2 1,3 3 3 3 3([ ) ( )) ([ ) ( ) ( ) )≔ ∩ ∩

× ∞ ×

As explained above, the notion of energy-variational solutions to (6) is based on an adaptation of the
relative energy inequality (38) to the case γ 0= . To emphasize the γ-dependence in the quantities
appearing in (38), we set γ

2 2( ) ( )
=A A , ,γ γ

1 2( )( ) ( )
= =A A A A for γ 0≥ , and γ γ

( ) ( )
= =W W WK K for γ 0> ,

where 2( )A and ( )W K are given in (37b) and (39), respectively. Observe that in the limiting case γ 0= the
quantity ( )W K is not well defined by (39) for general v, 0X�( ) ∈ and ṽ, ˜ 0Z�( ) ∈ since �∇ appears in the
advective term. Therefore, we formally integrate by parts and define 0 0

( )
=W W K by
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We now define energy-variational solutions by imposing a relative energy inequality analogous to (38).
Recall that the regularity weight K was not fixed in (38), which is reflected in the following solution
concept. We emphasize though that the definition to follow is only meaningful for sufficiently “nice”
weights K.

Definition 4.1. Let Q: 0,[ ]→ ∞K with 0, 0�( ) =K . A tuple v, 0X�( ) ∈ is called an energy-variational
solution to (6) of type K if the relative energy inequality
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(47)

is fulfilled for a.e. t T0,( )∈ and all v D˜, ˜ 0Z�( ) ∈ ∩K . As before, we call the function K the regularity
weight.
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Remark 4.1. (Choice of the regularity weight). While the assumption 0, 0�( ) =K is not needed to define
such a solution concept, it is a natural hypothesis which ensures the classical energy inequality, i.e.,

inequality (20) with γ 0= . Note that this inequality directly follows by letting v 0˜, ˜ ,� �( ) ( )≡ in (47), which
is admissible when 0, 0�( ) =K . This in turn guarantees that L T0,loc

1�( ) ([ ))∈P and hence that the terms

in (47) are well defined for all v D˜, ˜ 0Z�( ) ∈ ∩K . Observe that standard interpolation estimates show that

v v v v v L T, ˜, ˜ , ˜, ˜ , ˜
˜ 0,0 0 loc

1� � �
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( ∣ ) ( ) ⎛

⎝
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⎠
([ ))( ) −

−

∈W AK

for v, 0X�( ) ∈ and v D˜, ˜ 0Z�( ) ∈ ∩ K, see also the estimates in the proof of Theorem 4.2.
Note that the classical energy inequality encodes some basic information concerning the long-time

behavior of solutions, cf. [18, Theorem 6.2].

Remark 4.2. (Comparison to previous formulations). The aforementioned formulation differs from previous
notions of dissipative solutions (cf. [22]), which were based on similar relative energy inequalities. In those
definitions, the regularity weight K was fixed and chosen such that the last three lines of (46) are non-
negative. Additionally, these terms are usually just estimated from below by zero. By keeping the men-
tioned terms in inequality (47), the present solution concept is more selective than previous versions.

4.2 Global existence of energy-variational solutions

In Proposition 3.6, we have seen that the generalized solutions for γ 0> satisfy the relative energy
inequality (38). For suitable regularity weights K we may perform the limit γ 0→ in this inequality to
obtain the following existence result.

Theorem 4.2. (Existence of energy-variational solutions). Under the assumptions stated in Hypothesis 2.3,
there exists an energy-variational solution to the initial-boundary value problem (6) of type K given by

C˜ ˜ ˜L LΩ
2

Ω
2

3� � �( ) ( )( ) ( )
≔ ‖ ‖ + ‖∇ ‖∞K (48)

for a suitable constant C C μΩ, 0( )= > .
Moreover, any such energy-variational solution satisfies the Navier-Stokes component (6a) in the weak

sense, that is, (16) is satisfied for all C TΦ Ω 0,σ0, ( [ ))∈ ×
∞ .

Proof. In order to prove the existence of energy-variational solutions, for each γ 0> we consider a general-
ized solution v ,γ γ X�( ) ∈ to (1), which exists due to Theorem 3.2. By Remark 3.1 the generalized solution
v ,γ γ�( ) fulfills the energy inequality
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for a.e. t T0,( )∈ . Additionally, we may find a γ-independent bound on the time derivative of the velocity
field. Indeed, since v ,γ γ�( ) satisfies the weak formulation (16), for every C TΦ Ω 0,σ0, ( ( ))∈ ×

∞ we can estimate
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By the aforementioned bounds and a classical diagonalization argument (see [33, Proof of Theorem 3.1.1] for
example), we infer the existence of a limit function v, �( ) such that for each t T0,( )∈ we have

v v L t Hin 0, ; Ω ,γ
2 1 3( ( ) )⇀ (50a)

v v L t Lin 0, ; Ω ,γ σ
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2 2 3( ( ) )→ (50c)

L t Lin 0, ; Ωγ δ
2� � ( ( ))⇀

∗
∞ (50d)

for an appropriately chosen subsequence γ 0→ . Next we conclude that via these convergences, we may
pass to the limit in the relative energy inequality (38).

Proposition 3.6 guarantees that (38) holds for all nonnegative functionals Q: 0,[ ]→ ∞K , all
v D˜, ˜ Z�( ) ∈ ∩K , and a.e. t T0,( )∈ . We may reformulate this inequality using Lemma 2.2 and observing
that γ 0≥W W . This leads to
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(51)

for allϕ C T˜ 0,([ ])∈ . We now show that, when choosingK as in (48), we may pass to the limit γ 0→ in each
of the terms on the left-hand side of (51) via the convergence properties from (50).

Since ϕ 0′ ≤ , the first term in (51) is convex and continuous on L tΩ 0,2( ( ))× as a function of v ,γ γ�( ).
Hence, it is weakly lower semicontinuous, and its convergence follows from (50c) and (50d).

In order to pass to the limit in the second integral term in (51), we split
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The convergence of the part of the integral involving the term v v, ˜γ( )C follows as usual since the strong
convergence (50c) combined with (50a) implies the weak convergence of v vγ γ⋅∇ . Concerning the remaining
part involving v v, ˜, ˜γ γ� �( ∣ )Q , we assert that (for fixed v H˜ Ωσ0,

1 ( )∈ and W L˜ Ω Ω1,3� ( ) ( )∈ ∩
∞ ) the continuous

functional Q H L: Ω Ω ,σ δ0,
1 2 �( ) ( )× → v v vQ , , ˜, ˜� � �( ) ( ∣ )≔ Q is convex provided the constant C C μ, Ω( )= in

the definition of �̃( )K is chosen large enough. SinceQ is the sum of a quadratic formQ1 and an affine part, it
suffices to show thatQ 0≥ , as this implies the nonnegativity ofQ1 and hence its convexity (cf. [6, Prop. 3.71]).
To show the nonnegativity of Q (and its continuity) we use the Sobolev-Poincaré inequality
v vC˜ ˜L LΩ Ω6 2

( ) ( )‖ ‖ ≤ ‖∇ ‖ and estimate, choosing C sufficiently large,
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this shows thatQ is nonnegative and continuous. Hence, we may use weak lower semicontinuity to take the
limit γ 0→ in the integral term v vϕ e s, ˜, ˜ dvt
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For the term involving the operator γA , we first estimate the γ-dependent term as
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for all t T0,( )∈ . Due to the bound (49) on γ sd
t

γ L0 Ω
2

2�
( )

∫ ‖∇ ‖ and the regularity of �̃, the right-hand side of the
last inequality tends to zero as γ 0→ . Since the remaining terms do not explicitly depend on γ and v ,γ γ�( )

occurs at most linearly, we conclude convergence of the last term on the left-hand side of (51).
In total, we can pass to the limit inferior with γ 0→ in (51), which implies inequality (47) by invoking

Lemma 2.2. Therefore, v, �( ) is an energy-variational solution to (6).
Since ṽ, 0�( ) =K for all v C˜ Ωσ0, ( )∈

∞ , we further conclude from Proposition 4.3 that (6a) is satisfied in
the weak sense. □

Remark 4.3. An argument similar to the proof of Theorem 4.2 shows that the set of energy-variational
solutions of typeK given by (48) is weakly-∗ sequentially compact in 0X in the following sense: For every
sequence of energy-variational solutions v ,j j�( ) there exists an energy-variational solution v, 0X�( ) ∈ and
a subsequence (also denoted by v ,j j�( )) with

v v v vL t H L t L L t Lin 0, ; Ω , in 0, ; Ω , in 0, ; Ωj j σ j δ
2 1 3 2 2� �( ( ) ) ( ( )) ( ( ))⇀ ⇀ ⇀
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∞

for all t T0,( )∈ . Indeed, a sequence v ,j j�( ) of energy-variational solutions of typeK satisfies the relative
energy inequality (47) with v 0˜, ˜ ,� �( ) ( )= , that is, the energy inequality
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for a.a. t T0,( )∈ . Moreover, Proposition 4.3 ensures that the Navier-Stokes component holds in the weak
sense. In the same way as above, we further deduce that vt j( )∂ is bounded in L t H0, ; σ

4 3
0,
1( ( ) )/ ∗ for all

t T0,( )∈ , and we conclude the asserted convergence properties as well as v vj → in L t L0, ; Ω2 2( ( )) for
all t T0,( )∈ . In nearly the same way as for the limit γ 0→ above, we can now perform the limit j → ∞ to
infer that v, �( ) is an energy-variational solution of type K.

4.3 Further properties

Here we collect general properties of energy-variational solutions. Most importantly, we show that energy-
variational solutions are subject to the weak formulation of the Navier-Stokes equations (6a) if the regu-
larity weight K vanishes on C Ωσ0, �( ) { }×

∞ , where L Ωδ
2� ( )∈ denotes the zero tensor. Thus, this is in

particular the case for the solutions obtained in Theorem 4.2. Note that this property is to be expected
for problem (6) since the lack of weak sequential compactness in L TΩ 0,loc

1 ( [ ))× only occurs in the tensor
component (6b) but not in (6a).

Proposition 4.3. Suppose that the regularity weight Q: 0,[ ]→ ∞K satisfies ṽ, 0�( ) =K for all v C˜ Ωσ0, ( )∈
∞ .

Then every energy-variational solution of typeK is a weak solution of the Navier-Stokes component in the sense
of (16).
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We now integrate by parts in time the second term in the last line of (52), regroup terms, let v uα˜ ˜= for given
u C T˜ Ω 0,σ0, ( [ ))∈ ×

∞ and α 0> , and multiply the inequality by α1/ to infer
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In the limit α → ∞ the two terms with the prefactor
α
1 disappear. Thus, appealing to Lemma 2.2 we deduce
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where we used the fact that u T˜ , 0( )⋅ = . Since the left-hand side of the last inequality is a linear functional of
ũ with the latter being allowed to vary in the linear space C TΩ 0,σ0, ( [ ))×

∞ , we infer the asserted equation
(16). □

Another quite natural property is that energy-variational solutions are monotonic in the type in the
following manner.

Proposition 4.4. (Monotonicity). If v, �( ) is an energy-variational solution of type K, and if
v v˜, ˜ ˜, ˜� �( ) ( )≤K L for all v D D˜, �̃( ) ∈ ⊂L K and a.a. t T0,( )∈ , then v, �( ) is an energy-variational solution

of typeL.

Proof. This can readily be seen by expressing (47) in a weak form with Lemma 2.2, using the test function

ϕ s φ s e v v τ˜, ˜ ˜, ˜ d
s

0
� �( ) ( ) ( ( ) ( ))

=
∫− −L K for φ W T˜ 0,(( ))∈ , and using Lemma 2.2 again to return to a pointwise ver-

sion of (47) with K replaced withL. □

Remark 4.4. (Convex solution set). By Proposition 4.4, the energy-variational solution established in
Theorem 4.2 is also an energy-variational solution of type sK given by

v vC˜, ˜ ˜ ˜ ˜s L
s

L LΩ Ω
2

Ω
2r 3� � �( ) ( )

( ) ( ) ( )
≔ ‖ ‖ + ‖ ‖ + ‖∇ ‖∞K (53)

for s 2,( )∈ ∞ and r 3,( )∈ ∞ such that s r2 3 1/ + / = . Similar to (45), we observe that v v, ˜, ˜ 00 � �( ∣ ) ≥W for
all v, 0X�( ) ∈ and all v D˜, ˜ 0 sZ�( ) ∈ ∩ K if C 0> is sufficiently large. Since 0

s( )W K is quadratic in v, �( ) and
nonnegative, it is convex in v, �( ). This implies that the solution set of energy-variational solutions of type

sK is convex. Additionally, the solution set is weakly-∗ closed (cf. Remark 4.3) and bounded and therewith
compact in the weak-∗ topology of 0X . This convexity and compactness properties may be used to select an
energy-variational solution with maximal dissipation [21]. Such a selected maximally dissipative solution
can not only be argued to be physically more reasonable since they minimize the energy along all energy-
variational solutions, but they also turn out to be analytically favorable since the solution concept is well
posed (see [20,21]).

4.4 Energy-variational solutions versus strong solutions

In this subsection, we prove two results attempting to further justify the concept of energy-variational
solutions. First, in Proposition 4.6 we show that any hypothetical strong solution is unique in the class of
energy-variational solutions. Second, in Proposition 4.8 we prove that any energy-variational solution
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enjoying some additional regularity is a (unique) strong solution. Observe that both results only hold for
strong solutions that belong to DK. In this sense, the regularity weight K also determines the minimal
regularity of a strong solution for comparison with an energy-variational solution.

Definition 4.5. (Strong solution). We call v, �( ) a strong solution of problem (6) with initial data v ,0 0�( ) if
v, 0Z�( ) ∈ , v v0 , 0 ,0 0� �( ( ) ( )) ( )= and
• equation (6a) is satisfied in the weak sense, i.e., equation (16) holds true for all C TΦ Ω 0,σ0, ( [ ))∈ ×

∞ .
• inclusion (6b) is satisfied pointwise a.e. in time, i.e., it holds

v v v v t tt skw skw sym� � � � �( ( ) ( ( ) ( ) ) ( ) )( ) ( ( ))− ∂ + ⋅∇ + ∇ − ∇ − ∇ ∈ ∂P (54)

for a.a. t T0,( )∈ .

We show next that if there exists an energy-variational solution of typeK and a strong solution in the
class DK, both emanating from the same initial data, then these solutions coincide. This statement and its
proof are parallel to the one given in Theorem 3.5 for γ 0> . In particular, we also derive a corresponding
weak-strong stability estimate.

Proposition 4.6. (Weak-strong uniqueness). Assume that K is a regularity weight such that 0 0
( )

=W W K

defined in (46) is nonnegative, i.e., v v, ˜, ˜ 00 � �( ∣ ) ≥W for all v, 0X�( ) ∈ and ṽ, ˜ 0Z�( ) ∈ . Let v, 0X�( ) ∈ be an

energy-variational solution of typeK with initial data v ,0 0�( ), and let v D˜, ˜ 0Z�( ) ∈ ∩ K be a strong solution in

the sense of Definition 4.5 with initial data ṽ , ˜0 0�( ). Then the inequality

v v v vt t t t e, ˜ , ˜ , ˜ , ˜ v s
0 0 0 0

˜, ˜ d
t

0� � � �
�

( ( ) ( )∣ ( ) ( )) ( ∣ )
( )∫

≤R R
K (55)

holds. Particularly, if the initial conditions coincide, i.e., v v, ˜ , ˜0 0 0 0� �( ) ( )= , then every energy-variational
solution of type K coincides with the (hypothetical) strong solution ṽ, �̃( ).

Proof. From the assumption that 0W is nonnegative, inequality (47) also holds without this term. Similar to
the proof of Theorem 3.5, we observe that

v v v v˜, ˜ , ˜ 0, ˜ ˜, ˜ , ˜ 01
0
2� � � � � �( ) ( ) ( ) ( )( ) ( )

⟨ − ⟩ = − + ⟨ − ⟩ ≥A P P A

for a.e. t T0,( )∈ . Hence, all terms in the second line of (47) may be estimated from below by zero, which
implies (55). □

Corollary 4.7. The energy-variational solution from Theorem 4.2 also fulfills the weak-strong uniqueness
property, that is, if there exists a strong solution in the sense of Definition 4.5 it coincides with the energy-
variational solution from Theorem 4.2.

Proof. According to Proposition 4.4, an energy-variational solution of type K given in (48) is also an
energy-variational solution of type sK given in (53), which fulfills the assumptions of Proposition 4.6. This
ensures that the weak-strong uniqueness also holds for the smaller set of energy-variational solutions of
Theorem 4.2, as long as the strong solution belongs to D sK for some s 2,( )∈ ∞ . Clearly, this is the case for all
strong solutions in the sense of Definition 4.5. □

To infer that sufficiently regular energy-variational solutions are already strong solutions, we assume

thatP is given in integral form xd
Ω
P� �( ) ( )∫=P . This leads to approximation properties that are sufficient

to show that energy-variational solutions with more regularity, that is, belonging to D 0Z∩K , are already
strong solutions. For simplicity, we confine ourselves to energy-variational solutions of type sK given in
(53). Note that, by the monotonicity property in Proposition 4.4, this includes the (smaller) set of solutions
of type vC˜ ˜ ˜ ˜, ˜L L sΩ

2
Ω

2
3� � � �( ) ( ) ( )( ) ( )

= ‖ ‖ + ‖∇ ‖ ≤∞K K , whose existence follows from Theorem 4.2.
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Proposition 4.8. (Regular energy-variational solutions). Let v, 0X�( ) ∈ be an energy-variational solution of
type K according to Definition 4.1 with s=K K given in (53), which satisfies v D, 0Z�( ) ∈ ∩K . Further
suppose that the associated initial data v ,0 0�( ) satisfy 0�( ) < ∞P and that P is in integral form, that is,

xd
Ω
P� �( ) ( )∫=P for a lower semicontinuous, convex function : 0,δ

3 3P � [ ]→ ∞
× with 0P �( ) = . Then

v, �( ) is a strong solution in the sense of Definition 4.5 taking the same initial data v ,0 0�( ).

Proof. First, we show that the initial data are attained. To this end, we choose a sequence of regular
functions v C C, Ω Ω;ε ε σ δ0, 0, 0,

3 3� �{( )} ( ) ( )⊂ ×
∞ ∞ × converging to v ,0 0�( ) in L LΩ Ωσ δ

2 2( ) ( )× in such a way
that ε0, 0� �( ) ( )→P P . A sequence ε0,�{ } with these properties can be obtained by mollification of

the function 0� (extended by zero on Ω3� ⧹ ). Indeed, note that for a standard mollifying kernel

ρ Cε ε 0,1 0
3�( ) ( )( ) ⊂∈

∞ with ρ 0ε ≥ and ρ 1ε3�
∫ = , Jensen’s inequality ensures that the function ε0,� defined

by x ρ x ρ y x y ydε ε ε0, 0 03� � �
�

( ) ( ) ( ) ( )∫≔ ∗ ≔ − satisfies the pointwise inequality

ρ ρ inΩ,ε ε0 0P P� �( ) ( )∗ ≤ ∗

and hence

ρ x xlimsup limsup d d .
ε

ε
ε

ε
0

0,
0

Ω

0

Ω

0 0P P� � � �( ) ( ) ( ) ( )∫ ∫≤ ∗ = =

→ →

P P

Since ε0, 0� �→ in L Ωδ
2( ) andP is lower semicontinuous, this even implies that ε0, 0� �( ) ( )→P P as ε 0→ .

Choosing ṽ, �̃( ) constant in time and equal to v ,ε ε0, 0,�( ) yields test functions admissible in the relative
energy inequality (47). It now suffices to pass to the limit t 0→ in this inequality along an admissible
sequence of times, which gives (thanks to C T L L0, ; Ω Ωσ δ0

2 2Z ([ ) ( ) ( ))⊂ × ) the estimate

v v v v0 , 0 , , , .ε ε ε ε0, 0, 0 0 0, 0,� � � �( ( ) ( )∣ ) ( ∣ )≤R R (56)

Taking the limit ε 0→ , we infer that v v0 , 0 , 00 0� �( ( ) ( )∣ ) =R , whence v v0 0( ) = and 0 0� �( ) = .
In the next step, we show the weak formulation (16). Due to v v0 0( ) = , this is equivalent to showing the

identity

v v v v fμ x t t, Φ Φ : Φd d , Φ d
T

t

T

0 Ω 0

�
⎡

⎣

⎢
⎢

( ) ( )
⎤

⎦

⎥
⎥

∫ ∫ ∫⟨∂ ⟩ + ⋅∇ ⋅ + + ∇ ∇ = ⟨ ⟩ (57)

for all C TΦ Ω 0,σ0, ( [ ))∈ ×
∞ . Since v D, 0Z�( ) ∈ ∩K , we can use v v uα α˜, ˜ ,� � �( ) ( )= + + with α 0, 1( )∈ and

u D, 0Z�( ) ∈ ∩K as a test function in (47). Due to the convexity of P, for α 0, 1( )∈ we may estimate

α α α
α α

α

1
1

.

� � � � � � �

� � � �

� � �

( ) ( ) ( ) (( ) ( ))

( ) ( ) ( ) ( )

( ( ) ( ))

− + = − − + +

≥ − − − +

= − +

P P P P

P P P

P P

(58)

Inserting this into (47), multiplying the resulting relation by α1/ , and sorting the different terms according
to the appearing exponent of α, we end up with

v u v uαR α e s, , , , , , d 0.v u
t

α α τ

0

0
, d

s

t

� � � � � �
�

� �
( ) ⎡

⎣
( ) ( ) ( ) ⎤

⎦

( )

( )∫
∫

+ − + − ≤

+ +

P P A
K (59)

The remainder term R contains all terms with prefactor α and is given by

v u u v u

u

R α t t R α e s

e

, , , , 1
2

, , , , d

1
2

0 0 ,

v u

v u

L L

t
α α τ

L L
α α s

Ω
2

Ω
2

0

2
, d

Ω
2

Ω
2 , d

s

t

t

2 2

2 2 0

� � � � �

�

� �

� �

( ) ( ( ) ( ) ) ( )

( ( ) ( ) )

( ) ( )

( )

( ) ( )

( )

∫
∫

∫

≔ ‖ ‖ + ‖ ‖ +

− ‖ ‖ + ‖ ‖

+ +

+ +

K

K

where R2 is given by
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v u u u u v u u

u u

u u v u v u u u u

u v v v

u u u

v u u

R α μ α α x

α x

α μ x

α x

α α x

α α

, , , , : d

: d

2 : d

: d

: d

1
2

, .

L

t

t

L L

2 Ω
2

Ω

Ω

skw skw

Ω

sym

Ω

skw skw

Ω

skw skw sym

Ω
2

Ω
2

2

2 2

� � � � �

� � � �

�

� � � � � � �

� � � � �

� � �

( ) ( ) ( ) ( )

( ( ) ( ) ) ( )

( ( )( ) ( ) ) ( ( ) )

( ( )( ) ( ) ( ) ( ) )

(( )( ) ( ) ( ) ( ) )

( )( )

( )

( ) ( )

∫

∫

∫

∫

∫

≔ ‖∇ ‖ − ⋅∇ ⋅ + − ⊗ ∇ +

− ∇ − ∇ +

− ∂ + ⋅∇ + + ⋅∇ ⋅ + + ∇ ∇

− ∂ + ⋅∇ + + ⋅∇ + ∇ − ∇

− + ∇ − ∇ + − ∇

+ + + ‖ ‖ + ‖ ‖K

Passing to the limit α 0→ in (59), we infer from the boundedness of all terms in R and the continuity
property v u vα αlim , ,α 0 � � �( ) ( )+ + =→ K K , which holds for s=K K given in (53), that

v u e s, , d 0.v
t

τ

0

0
, d

s

t

� � � �
�

�⎡

⎣
( ) ( ) ( ) ⎤

⎦

( )

( )∫
∫

− + − ≤P P A
K (60)

Choosing � �= and u eΦ v τ, d
t

�( )
=

∫−
⋅

K for C TΦ Ω 0,σ0, ( [ ))∈ ×
∞ , we first infer the weak formulation (57)

with an inequality. Choosing u eΦ v τ, d
t

�( )
= −

∫−
⋅

K implies the converse inequality. In summary, equation
(57) is fulfilled for all C TΦ Ω 0,σ0, ( [ ))∈ ×

∞ .
Reinserting this information into (60), we find

x e s: d d 0v
t

τ

0 Ω

, d
s

t

� � � � �
�⎡

⎣

⎢
⎢

( ) ( )
⎤

⎦

⎥
⎥

( )
∫ ∫

∫
− + + ≤P P

K (61)

with

v v v v ,t skw skw sym� � � � �( ( ) ( ( ) ( ) ) ( ) )≔ − ∂ + ⋅∇ + ∇ − ∇ − ∇

where the regularity of v D, 0Z�( ) ∈ ∩K guarantees that L t L0, ; Ωδ
1 2� ( ( ))∈ . By choosing e˜ v τ, d

t

� � �( )
=

∫−
⋅

K

for D0, ˜ 0Z�( ) ∈ ∩K and employing inequality (58), we infer from (61) that

s x s˜ d : ˜ d d .
t t

0 0 Ω

� � � � �[ ( ) ( )]∫ ∫∫+ − ≥P P

We now choose x t φ t x x t˜ , ˆ ,� � �( ) ( )( ( ) ( ))= − with φ C T0,0 (( ))∈
∞ , φ0 1≤ ≤ , and Cˆ Ω; δ

3 3� �( )∈
∞ × . Then

D0, ˜ 0Z�( ) ∈ ∩K , and similar to (58), we conclude

φ s φ x sˆ d : ˆ d d .
t t

0 0 Ω

� � � � �[ ( ) ( )] ( )∫ ∫∫− ≥ −P P

By linearity, this inequality holds for all φ C T0,0 (( ))∈
∞ with φ 0≥ , which implies that

t t xˆ : ˆ d
Ω

� � � � �( ) ( ( )) ( ( ))∫− ≥ −P P (62)

for a.a. t T0,( )∈ . It is not difficult to see that the null set where (62) may not be valid can be chosen
independently of Cˆ Ω; δ

3 3� �( )∈
∞ × . Now fix t T0,( )∈ such that (62) holds. If Lˆ Ωδ

2� ( )∈ with �̂( ) = ∞P ,
then (62) is trivially satisfied. If Lˆ Ωδ

2� ( )∈ with �̂( ) < ∞P , then we can use the same mollifier argument as
above to obtain a sequence Cˆ Ω;j δ

3 3� �( ) ( )⊂
∞ × such that ˆ ˆj� �→ in L Ωδ

2( ) and ˆ ˆj� �( ) ( )→P P as j → ∞. For
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this sequence, (62) is satisfied, and a passage to the limit j → ∞ shows that �̂ also satisfies (62). In
conclusion, (62) holds for all Lˆ Ωδ

2� ( )∈ , and identity (54) follows for a.a. t T0,( )∈ by definition of the
subdifferential ∂P. □

5 Concluding remarks and extensions

To summarize, in this manuscript we have analyzed a geodynamically motivated model for the flow of an
incompressible viscoelastoplastic fluid in Eulerian coordinates in the velocity/stress formulation. Mass
density and shear modulus are homogeneous in this model, and transport of the stress tensor is modeled
using the Zaremba-Jaumann rate. The cases with and without stress diffusion are studied.

In the presence of stress diffusion, strong solutions have been shown to exist for a short period of time.
Moreover, they are unique in a class of generalized solutions that exist globally in time. Stress diffusion had
been introduced in the model as a regularization and is usually not considered in geodynamical models.
Therefore, we have studied the limit toward vanishing stress diffusion. Within the framework of energy-
variational solutions (an extension of the dissipative solutions by P.-L. Lions), an existence theory has been
established for the model without stress diffusion. Subsequently, the concept of energy-variational solu-
tions has been shown to enjoy some crucial consistency properties.

Finally, we wish to emphasize that the assumption of incompressibility has been made for simplicity.
From a modeling point of view, the combination of elasticity in shear response with a complete rigidness in
the volumetric part is certainly not very natural. Upgrades of this model should allow for the propagation
not only of elastic shear waves but also of longitudinal waves. In a first step one may relax the present
incompressibility constraint in (1) and consider a semi-compressiblemodel (cf. [31]) where a scalar quantity
p̂ is introduced that models variations in pressure:

v v v v v vρ μ p
k

p ρf2 ˆ 1
2

ˆ 1
2

,t sym
2� �( ( ) ) ⎛

⎝
( ) ( ) ⎞

⎠
( )∂ + ⋅∇ − ∇⋅ + ∇ − − = − ∇⋅ (63a)

v v
k

p p γ p1 ˆ ˆ Δ ˆ ,t( )∂ + ⋅∇ − = −∇⋅ (63b)

v v v v v
η

γ
η

1 Δ 1
2

,t skw skw sym
D� � � � � � �( ( ) ( ) ( ) ) ( ) ( ) ( )∂ + ⋅∇ + ∇ − ∇ + ∂ − ∋ ∇ − ∇⋅P (63c)

subject to suitable boundary and initial conditions. Here, k denotes the elastic bulk modulus and
TrD 1

3� � �= − the deviatoric part of a symmetric tensor 3 3� �∈ × . The coefficient γ 0≥ in (63b) allows
for diffusive behavior. The extra forcing term v vρ1

2 ( )− ∇⋅ in (63a) is inspired by models for quasi-incompres-
sible and semi-compressible Navier-Stokes equations [31] and goes back to Témam [34]. It was necessary to
obtain the correct energies, see also the recent article [35] for a geometrical justification. In the same spirit, we
further introduced the additional term vη

1
2 �( )− ∇⋅ on the right-hand side of the stress equation (63c).

For γ 0> we expect that global-in-time existence of generalized solutions and short-time existence of
strong solutions can be obtained similarly as for the model considered in the present manuscript. We
further expect that with a suitably adapted notion of energy-variational solutions it should be possible
to take the limit γ 0→ . In this case, one should be able to recover a weak formulation for the pressure p̂.
However, the weak formulation of the Navier-Stokes equations may not be recovered due to the quadratic
term p̂2 occurring in the Cauchy stress.

In a further step, onemay introduce an additional dependency of the dissipation potential on the pressure p̂
such that p, ˆ�( )=P P . In this case, an additional dissipative term p, ˆp̂ �( )∂ P would appear in equation (63b).
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Appendix
Existence of generalized solutions

The purpose of this section is to show Theorem 3.2, i.e., the existence of generalized solutions in the sense of
Definition 3.1.

Proof of Theorem 3.2. In [12] existence of a solution to (1) was established using a notion of generalized
solution similar to Definition 3.1, but with the space of test functions Zq T

q
2⋃ < <∞ replaced with the smaller space

H t L L t H L t L0, ; Ω 0, ; Ω 0, ; Ωδ
1 2 2 1 3 3 5 5 3 3( ( )) ( ( ) ) ( ( ) )∩ ∩

× × (A1)

for any t T0,( )∈ , and inequality (18) replaced with its weaker form

v v v v

s γ x s

x s

˜ , ˜ ˜ d : ˜ d d
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0 Ω
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∫ ∫∫

∫∫

⟨∂ − ⟩ + − + ∇ ∇ −

− ⋅∇ + ∇ − ∇ − ∇ −

≤ ‖ − ‖

P P

(A2)

However, going through the proof of [12, Theorem 3.4], one easily verifies that the constructed solution
satisfies (A2) even for all �̃ in the larger class ZT

q, q 2,( )∈ ∞ . Regarding inequality (18), we will show in
Lemma A.1 that it can directly be derived from (A2).

It is necessary to mention that inequality (17) for v, �( ) has not been stated explicitly in [12], but only for
an approximating family v ,ε ε�( ) that satisfies

v v
v v
v v

L t H
L t L
L t L
L t H

in 0, ; Ω ,
in 0, ; Ω ,
in 0, ; Ω ,
in 0, ; Ω

ε

ε σ

ε

ε

2 1 3

2

2 2 3

2 1 3 3� �

( ( ) )

( ( ))

( ( ) )

( ( ) )

⇀

⇀

→

⇀

∗
∞

×

as ε 0→ . In particular, the strong convergence statement implies v vt tε L LΩ Ω2 2( ) ( )( ) ( )‖ ‖ → ‖ ‖ for almost every
t T0,( )∈ , at least for a suitable subsequence. This allows us to pass to the limit ε 0→ in (17) (with v, �( )

replaced with v ,ε ε�( )), where for the last term the identity

v vx x: d d
Ω Ω

� �( )∫ ∫∇ = − ∇⋅ ⋅

can be used. In the end, v, �( ) also satisfies (17).
Finally, observe that in [12] the boundary Ω∂ was assumed to be of class C1,1, which allowed for the

construction of a suitable extension of the boundary conditions. Since we consider homogeneous boundary
conditions (1c) here, we can use the trivial extension, whence Lipschitz boundary is sufficient. □

The following lemma shows that inequality (A2) implies the stronger inequality (18), which also takes

into account the values of � and �̃ at time t .

Lemma A.1. Let q 2,( )∈ ∞ . If v, X�( ) ∈ satisfies (A2) for all t T0,( )∈ and all Z˜ T
q� ∈ , then (18) holds true for

almost all t T0,( )∈ and all Z˜ T
q� ∈ .

Proof. The assertion is obtained similarly as in the proof of [12, Prop. 3.3]. We therefore only sketch the
argument. Extending � by zero for t 0< , we define for κ 0>
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s κ τ τd .κ

s κ

s

1� �( ) ( )∫=
−

−

Fix t T0,( )∈ and let ζ ζ˜ 1 ˜κ δ δ δ κ,� � �( )≔ − + , where ζ s ζ s t δδ( ) (( ) )≔ − ∕ for some nondecreasing function
ζ C ; 0, 1�( [ ])∈

∞ satisfying ζ s 0( ) = for s 1≤ − and ζ s 1( ) = for s 0≥ , and Z˜ T
q� ∈ is arbitrary. We observe that

Z˜ κ δ T
q

,� ∈ satisfies ˜ 0 ˜ 0κ δ,� �( ) ( )= , t t˜ κ δ κ,� �( ) ( )= and, as κ δ, 0↓ , the sequence ˜ κ δ,�{ } approximates �̃ (in a
suitable sense). To infer inequality (18), we insert ˜ κ δ,� as a test function in inequality (A2), take the limit
δ 0↓ and then send κ 0↓ . Let us only point out how to pass to these limits in the terms involving a time
derivative, since the remaining integrals can be handled as in [12, Prop. 3.3]. We compute
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where the last term in the second equation vanishes as δ 0→ . Thus, combining these two identities and
treating the remaining terms as in the proof of [12, Prop. 3.3], we deduce for a.a. t T0,( )∈ and all

Z˜ T
q� ∈ that
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Proceeding with the remaining terms as in [12, Prop. 3.3], we arrive at (18). □
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