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Abstract: False smut disease (FSD) of rice incited by Ustilaginoidea virens is an emerging threat to
paddy cultivation worldwide. We investigated the spatial distribution of FSD in different paddy
ecosystems of South Indian states, viz., Andhra Pradesh, Karnataka, Tamil Nadu, and Telangana, by
considering the exploratory data from 111 sampling sites. Point pattern and surface interpolation
analyses were carried out to identify the spatial patterns of FSD across the studied areas. The spatial
clusters of FSD were confirmed by employing spatial autocorrelation and Ripley’s K function. Further,
ordinary kriging (OK), indicator kriging (IK), and inverse distance weighting (IDW) were used to
create spatial maps by predicting the values at unvisited locations. The agglomerative hierarchical
cluster analysis using the average linkage method identified four main clusters of FSD. From the
Local Moran’s I statistic, most of the areas of Andhra Pradesh and Tamil Nadu were clustered
together (at I > 0), except the coastal and interior districts of Karnataka (at I < 0). Spatial patterns of
FSD severity were determined by semi-variogram experimental models, and the spherical model
was the best fit. Results from the interpolation technique, the potential FSD hot spots/risk areas
were majorly identified in Tamil Nadu and a few traditional rice-growing ecosystems of Northern
Karnataka. This is the first intensive study that attempted to understand the spatial patterns of
FSD using geostatistical approaches in India. The findings from this study would help in setting up
ecosystem-specific management strategies to reduce the spread of FSD in India.

Keywords: rice; false smut; Ustilaginoidea virens; India; spatial patterns; semi-variogram; interpolation
techniques

1. Introduction

False smut disease (FSD) caused by Ustilaginoidea virens (Cook) is an emerging grain-
infecting disease of rice wherein the infected grains are transformed into yellow to black-
colored smut balls [1]. The FSD has gained economic importance as it causes economic
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losses in terms of both quantity (reducing the grain yield) and quality (contamination
of grains with toxins) [2–5]. The FSD was first reported in the Tirunelveli district of
Tamil Nadu, India [6], and further concurrent occurrences were reported across the rice-
growing areas. FSD is caused by an ascomycete fungus, in which the overwintered sclerotia
germinate to produce stroma on which asci are formed, producing ascospores as primary
sources of inoculum and conidia act as a secondary source of infection [7]. The characteristic
and devastating symptoms of the FSD are generally observed at the grain-filling stage.
Initially, white mycelium surrounds the grain and produces a yellow-to-orange mass of
chlamydospores in a small smut ball. After bursting the thin outer membrane, the smut
ball turns velvety greenish to black.

In India, the incidences of FSD were evidenced up to 85% and resulted in grain
yield losses of up to 49% [2,3,8–10]. Recently, FSD has attained serious proportions by
inflicting rapid spread and inoculum build-up in neighboring states/regions. However,
it is imperative to understand the FSD incidences across the regions and to identify the
potential risk associated with FSD. The spatial pattern of disease indicated the source of
primary inoculum, dispersal means, and factors driving the epidemics that assist in refining
the strategies of disease monitoring and management [11–14]. Various approaches have
been utilized to identify the spatial pattern of plant diseases [15,16]. Among the attempted
approaches, interpolation techniques are regularly used to identify the potential risk factors
involved in epidemics and characterize plant disease spatial patterns [17,18].

The inclusion of geographical information system (GIS) in the geostatistical techniques
offered a platform to integrate plant disease status and meteorological data along with
geographical information into one system, thereby enabling the study of the relationship
between plant disease progress and the environment [19]. The GIS helps to characterize
the disease-affected fields. With the GIS, geostatistical, hot spot analysis, interpolation,
interpretation of semi-variograms, and other modeling can be made to understand the
progress of plant diseases over time and space [20]. The correlation between spatial data
at different intervals can be determined by spatial autocorrelation [21]. With these spatial
observations, spatial dependence models can be expressed as semi-variograms, by which
the disease occurrences without bias and with the least variance can be estimated using
kriging interpolation techniques [22].

Southern India has been enriched with varied geographical patterns and ecological
diversity where rice is grown in different ecosystems such as irrigated, rainfed, coastal,
and hills [23]. Each ecosystem is unique concerning the soil type, cultivars that are grown,
water source, etc., and has always been affected by the occurrence of FSD every year in
severe form [5,24,25]. Initially, the FSD was considered a minor disease, but due to its recent
gaining of epidemic form in all growing rice-growing parts at the global level, the FSD is
considered one of the major threats to rice production. Many studies have been carried out
on disease severity assessment distinctively in different parts of India, but due to its varied
level of disease intensity in rice ecosystems, a holistic study on the spatial distribution
of FSD in different south Indian ecosystems will provide the needful information on the
population structure of the pathogen and dynamics of the FSD across India [3,5,9,14,24,25].

No previous works were focused on the FSD spatial distribution and potential risk
regions in the different ecosystems of southern India. In the perusal of shortfalls, the
present investigation aimed to determine the current FSD status and spatial distribution in
diverse rice ecosystems of South India to identify the FSD clusters by point analysis and
potential risk areas estimation using the interpolation techniques.

2. Materials and Methods
2.1. Data Collection and Sampling

This study was undertaken in the four major paddy-growing southern Indian states
covering dry land, irrigated, hilly, and coastal ecosystems during the Kharif season of 2018
(Table 1 and Figure 1).



Agronomy 2022, 12, 2947 3 of 18

Table 1. Details of the different paddy ecosystems of South India surveyed in this study.

State Ecosystem Districts Important Varieties

Karnataka

Irrigated Bhadra
Shivamogga Kempu Jyothi, Jaya, Sona Mahsoori, Supriya Hybrid,

Jyothi, BPT-5204, Sona MahsooriDavanagere

Coastal
Udupi

Kempu Mukthi, Prateeksha, Mo-4 (Bhadra), Irga
(318-11-6-9-2), BMR-US-1-24-2, Phalguna-2, Kaje Jaya,

KCP-1, MTU-1001
MO-4, MO-4Uttara Kannada

Transplanted ecosystems
of TBP and

UKP command

Raichur
Nandhyal Sona. Kavery Sona, Nellore Sona

BPT-5204, Nellur Sona, BPT-5204, Cauvery Sona, Sanna
Batta, IRRI-236, GNV-05-01, Gangavathi Emergency,

BPT-5204, GPB-133, IR-28, Gvt-10-89, Gangavathi Sanna,
Gangavathi Sona, Sona Mahsoori, Kavery SonaKoppal

Irrigated Kaveri Mandya Amogh, Jyothi, Jaya, BR2655, Tanu, Intan, Rajamudi, MC
13, MTU 1010, IR-64, KRH-2 and KRH-4

Hilly Upland Uttara Kannada MTU-1001, Jaya

Andhra Pradesh

Godavari
West Godavari BPT-5204, MTU-1064, PL, Godavari (MTU-1032), Swathi,

Samba Sona, Arjal, MTU-1064, ArjalEast Godavari

Krishna river Krishna Deepthi (MTU-4870), Swarna (MTU-7029),
Samba Mahsoori

Munneru river Krishna MTU-1064

Thunga-Badhra Kurnool RNR-15048, Nandyal Sona

Telangana State

Pillallamarri Lake Suryapet Vijetha (MTU-1001)

Krishna river

K.V.Rangareddy
Sriram Gold, Nellore Sona, Sriram Gold

Nandhyal Sona
Gadwal

Mahaboobnagar

Palleru lake
Suryapet Vedagiri (IET 14328), RNR 15048, Telangana Sona, Samba

Sona, BPT-5204, RNR 15048
Nalgonda

Tamil Nadu

Bhavani Sagara
Belt (BSB)

Erode

Ponni, IR-20, NLR-34449, BPT-5204, Delux Ponni, White
Ponni, Delux Ponni, Ponni, Andhra Ponni, Co-45,

BPT-5204, Athur Samba, BPT-2628

Namakkal

Erode

Karur

Cauvery Belt

Thiruchirapalli

Delux Ponni, Andhra Ponni, Vella Ponni, Co-39, IR-64,
IR-64, Co-37, Ponni, CO-43, IR-64, PMK-2 (IET13971),

ADT-44 (IET 14099), CO-37

Krishnagiri

Pudukottai

Madurai

Thanjavur

Thiruvallur

Thanjavur

Karur

Coastal Belt Thiruvarur TKM (R) 12, Ponni, BPT-5204, White Ponni
ADT-39, CO-43, CR-1009 SUB 1, CO-47 (IET-14298)
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total of 26 administrative districts of South India were considered to gather data on false smut. 
However, in the map, the district Mahbubnagar represents Mahbubnagar and Gadwal districts; 
similarly, the district Nalgonda represents Nalgonda and Suryapet as the district boundaries are not 
updated in the Shapefile. The area of different districts under study is shown (C). The maps were 
created using R software (version R-4.0.3). 

Four states with 26 administrative districts consisting of 111 sampling points of An-
dhra Pradesh, Karnataka, Telangana State, and Tamil Nadu states were covered during 
the exploratory survey. Major paddy growing districts were selected from each state, and 
five fields were selected and randomly sampled from different villages. 

2.2. Estimation of Disease Severity 
Two to three m2 areas were marked randomly in each field, observations on the num-

ber of infected tillers per m2, percent infected grains, and the number of smut balls per 
panicle were recorded, and disease severity was calculated using the Formula (3) [7]. Per-
cent infected tillers and percent infected grains were calculated using the Formulas (1) 
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Figure 1. Featured map of India (A), South India (B), and selected districts from southern India.
A total of 26 administrative districts of South India were considered to gather data on false smut.
However, in the map, the district Mahbubnagar represents Mahbubnagar and Gadwal districts;
similarly, the district Nalgonda represents Nalgonda and Suryapet as the district boundaries are not
updated in the Shapefile. The area of different districts under study is shown (C). The maps were
created using R software (version R-4.0.3).

Four states with 26 administrative districts consisting of 111 sampling points of Andhra
Pradesh, Karnataka, Telangana State, and Tamil Nadu states were covered during the
exploratory survey. Major paddy growing districts were selected from each state, and five
fields were selected and randomly sampled from different villages.

2.2. Estimation of Disease Severity

Two to three m2 areas were marked randomly in each field, observations on the number
of infected tillers per m2, percent infected grains, and the number of smut balls per panicle
were recorded, and disease severity was calculated using the Formula (3) [7]. Percent in-
fected tillers and percent infected grains were calculated using the Formulas (1) and (2) [26].

Disease Severity = Percent infected tillers × Percent infected grains (1)

Percent infected tillers =
Number of infected tillers / m2

Total number of tillers / m2 × 100 (2)

Percent infected grains =
Number of infected grains/panicle

Total number of grains/panicle
× 100 (3)

2.3. Statistical Analysis and Data Validation

Initially, the normality of the collected data was checked using Kolmogorov–Smirnov
test [27]. Further, histogram and QQ plots were generated to remove the slight global
trend observed in the data set and understand the data distribution. The FSD severity (%)
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collected from different rice ecosystems was analyzed by Kruskal–Wallis test in R software
(version R-4.0.3) [28]. Agglomerative hierarchical cluster analysis was done using the
average linkage method to find the distances among the districts [29]. Cluster analysis
was performed through the “hclust” function using R software (version R-4.0.3). In a
hierarchical linkage clustering, the distance between two points IS the distance (L) between
two clusters (r,s) and can be expressed by Formula (4):

L(r, s) =
1

nrns

nr

∑
i = 1

ns

∑
j = 1

D
(
Xri ,Xsj

)
(4)

2.4. Geostatistical Approaches

The spatial distribution of the FSD occurrence across the surveyed districts of southern
India was investigated by employing two widely used geospatial techniques such as point
pattern and surface interpolation. Ripley’s K function and point-pattern-optimized hotspot
analysis were used to locate and confirm the substantial FSD clusters existing across the
studied areas. Similarly, inverse distance weighting (IDW), ordinary kriging (OK), and
indicator kriging (IK) methods were used to create geographic maps of the probable surface
and risk associated with FSD among the sampled regions.

2.5. Point-Pattern-Optimized Cluster Analysis

The data sets were optimized by considering the closest sampling locations/sites.
Spatial autocorrelation is a point pattern technique that was carried out using Moran’s
I or local indicator of spatial association (LISA) statistics. LISA suggests spatial clusters
exist, and the findings were deduced using the p-value. Equation (5) was used to calculate
Moran’s I statistic for a real unit i.

Ii = Zi

n

∑
j

WijZj (5)

where I is the statistic for district I; Z is the difference between the FSD severity risk at
i and the mean FSD severity for regions; W is the spatial weights matrix, and j and n
represent constant.

The nearest areas or sampling sites with higher FSD severity values (%) were con-
sidered hotspots or potential risk areas [30]. The clustering pattern was estimated using
Ripley’s K(r) function [31] for the model developed in each sampling area. The function is
expressed as K(r) = λ − 1E, where K(r) represents the characteristics of point events over a
range of scales; E(r) is the expected mean number of points within a distance r of randomly
chosen points, and λ is the FSD severity of the studied sites.

2.6. Spatial Interpolation Techniques

Using the surface interpolation method, the values at the unvisited locations were
anticipated; for instance, the FSD severity at sites (X1, X2, ..., Xn) is (Z1, Z2, ..., Zn). The Z
values can be calculated at a new position X through surface interpolation. IDW and OK
approaches were generally used to estimate the FSD-infected surface area. The following
Formula (6) can express the IDW at an unsampled site I.

F(i) =
m

∑
i = 1

WiZ(ri) =
∑m

i = 1 Z(ri)/|r − ri|
∑m

j = 1 1/
∣∣r − rj

∣∣p p
(6)

where P = parameter; m = a number of neighboring points taken into account at a certain
cut-off distance. The interpolated values are compared with the actual values via leaving
one-out-cross validation from the omitted point.
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Kriging is an interpolation technique to determine the random function Z’s spatial
correlation (X0). Formula (7) determines the expected values of variable Z at the unsampled
point X0 [32]

γ(d) =
1
2 ∑

{[
Ẑ(X1) − Z(X2)

]}2 (7)

Equation (8) was used to generate the surface maps of the FSD severity using the
OK technique:

Ẑ(X0) =
n

∑
i = 1

λiZ(Xi) (8)

where Z is the variable of interest located at spatial coordinates Xi and X0, n is the number
of neighbors connected to the sampling point, and λi = is the weight associated with Xi
(the sampling point) and the ith observation point [33].

2.7. Semivariance

Based on the average spatial variability and the severity of the FSD, semivariograms
estimated the closest neighbor index [34]. Different experimental models were utilized to
fit the semivariograms, but the best match was found to be the exponential model, which
was then used to produce the OK maps. According to the following Formula (9),

ŷ(h) =
1

2N(h)

N(h)

∑
i = 1

[Z(Xi) − Z(Xi + h)]2 (9)

where y(h) = semivariance for the interval distance class h, N(h) = number of data pairs of
a given lag interval distance and direction, Z(xi) = measured sample value at point i, and
Z(xi + h) = measured sample value at position I + h.

Semivariogram values are fitted with spherical, exponential, and Gaussian models as:
Spherical model:

ŷ(h) = C0 + C

[
1.5

h
a
−
(

h
a

)3
]

, i f 0 ≤ h ≤ a. (10)

Exponential model:

ŷ(h) = C0 + C
[

1 − exp
{
−h

a

}]
forh ≥ 0 (11)

Gaussian model:

ŷ(h) = C0 + C
[

1 − exp
{
−h2

a2

}]
forh ≥ 0 (12)

C0 is a nugget, (C + C0) is a sill, and a is the range in the spherical model. The theoretical
range for exponential and Gaussian models is represented by “a”.

By calculating validation metrics, including the average standard error (ASE), mean
square error (MSE), and root mean square error (RMSE), the validity of the simulated
data across applied models and methodologies was carefully compared. Whenever the
severity of FSD was greater than 20% per field, indicator kriging (IK) was employed to
identify the disease-vulnerable regions [35,36]. Based on this, the probability risk maps
were created using the best-fitted semivariogram model. A similar approach was used to
create a color-coded map for ordinary kriging, where the contour symbolization depicts
the areas of higher risk for FSD in the various rice ecosystems of South India.
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3. Results
3.1. FSD Severity across the Studied Areas of South India

Significant variation in FSD severity was observed among the studied areas, and FSD
occurrence was noticed in all the sampled locations. Among the studied ecosystems, the
Pillallamarri lake ecosystem of Telangana recorded the highest disease severity (14.55%),
followed by the Coastal ecosystem of Tamil Nadu (10.22%), and the least FSD was observed
in the Thunga-Badhra ecosystem of Andhra Pradesh (1.85%) (Figure 2).
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Figure 2. Sampling sites and severity of false smut disease in different rice ecosystems of South India
as indicated by a distribution map. However, in the map, the district Mahbubnagar represents Mah-
bubnagar and Gadwal districts; similarly, the district Nalgonda represents Nalgonda and Suryapet
as the district boundaries are not updated in the Shapefile. The map was created using R software
(version R-4.0.3).

Among the different surveyed villages, Konamoolai village of Sathyamangalam taluk
of Erode district (32.96 %) of Tamil Nadu witnessed the highest FSD severity, followed by
Bheemaneri village of Sagara taluk of Shivamogga district (17.31%) of Karnataka. The FSD
severity during 2018 revealed considerable variation among the evaluated districts, with
the highest FSD severity observed in the Thiruvallur district of Tamil Nadu, followed by
the Madurai and Erode districts of Tamil Nadu and Raichur districts of Karnataka. Among
the studied districts, the Kurnool districts of Andhra Pradesh presented the lowest severity
of FSD (Figure 3A).

The agglomerative hierarchical cluster analysis of the FSD severity among the 26 sur-
veyed districts identified two main clusters using the average linkage method. The first
cluster includes 25 districts, which are further divided into two subclusters consisting
of 9 (Uttara Kannada, Mandya, Thiruchirapalli, Namakkal, Davanagere, West Godavari,
Krishnagiri, Mahaboobnagar, and Kurnool) and 16 districts (Raichur, Madhurai, Tanjavuru,
Erode, Karur, Gadwal, Pudukottai, Shivamogga, East Godavari, Nalgonda, Koppal, Krishna,
K.V. Ramareddy, Suryapet, and Udupi). Similarly, the second cluster consists of only one
district (Thiruvallur) (Figure 3B).
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Figure 3. (A) Bar diagram showing the infection status of the 26 districts of southern India, (B) Ag-
glomerative hierarchical cluster analysis of FSD using the average linkage method identified four
main clusters among 26 districts in southern India, India.

3.2. Spatial Point Patterns of FSD in Southern India

The local Moran’s I spatial autocorrelation (LISA) analysis identified different patterns
of FSD at the district and taluk level, representing random, dispersed, and aggregated
clusters of severity surrounded by other areas (Figure 4). Higher spatially dependent
clusters were confirmed in Mahbubnagar, while most districts exhibited medium to lower
spatial clusters, as evidenced by the LISA.
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Figure 4. Local Moran’s I clusters across the studied areas of southern India, as inferred from
p-values (<0.1), portray higher, medium, and lower spatial dependency rates.

Considering the significance of p-values, the highest spatial dependence was observed
in Andhra Pradesh districts such as Nalgonda, West Godavari, Krishna, East Godavari,
and Erode districts of Tamil Nadu. Contrastingly, the Namakkal districts of Tamil Nadu
showed medium spatial rates of dependency (non-significant). In comparison, the low-
est was observed in Udupi, followed by the Koppal district of Karnataka. Considering
the p-values (p < 0.05), all of the studied districts showed moderate spatial dependence
(p < 0.05), indicating statistically insignificant clusters with randomness across most ar-
eas. LISA analyses revealed that non-traditional/sparse paddy growing areas presented
a dispersed pattern of FSD on paddy cultivating ecosystems, while the traditional tracts
exhibited a significantly clustered pattern with an increased amount of FSD, indicating the
potential spread of the disease to traditional paddy cultivating areas.
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To demonstrate the exact spatial point patterns of FSD, we further analyzed Ripley’s
K function (Figure 5), which characterized the patterns by computing the average number
of neighboring features associated with each feature at specific distances. The red line in
Ripley’s K function plots denotes translation correction, whereas the blue line represents
theoretical Poisson fitted data (expected), while the black line represents the observed data
and shows the degree of point process clustering for different distance classes Regarding
the appearance of infection, all distances (in degrees) displayed significant positive val-
ues, indicating that the observed disease patterns were moderately clustered among the
studied areas.
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The point pattern analysis of FSD through LISA and Ripley’s K function suggested the
presence of significant hotspots in the Cauvery Belt, Bhavani Sagara Belt (BSB) ecosystems
of Tamil Nadu, East Godavari ecosystem of Andhra Pradesh, Transplanted ecosystems
of TBP and UKP command ecosystem of Karnataka, Coastal parts (seashore), including
non-traditional paddy cultivating areas.

3.3. Spatial Distribution of FSD
3.3.1. IDW Surface Interpolation

Inverse distance weighted (IDW) interpolation identified the cell values using a lin-
early weighted combination of sample points. A complete enumeration of discrete obser-
vations represented the point data. The outcome of the IDW interpolation was depicted
through color-coded maps of datasets (Figure 6), with darker colors (red) portraying higher
percent severity rates of FSD. The interpolated surface areas of FSD differed considerably,
indicating that the disease occurrence was inconsistent across the locations.
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inverse distance weighted (IDW) deterministic tool. Darker to lighter colors indicate higher to lower
disease severity.

During the evaluation, transplanted ecosystems of TBP and UKP had the highest dis-
ease severity and posed a potential risk to FSD with higher disease proportions (20%), with
focal points at Koppal, Raichur. West Godavari and East Godavari districts are followed by
Cauveri and Bhavani Sagara Belt (BSB) ecosystems with 14–15 percent severity, indicating
them as hotspots for FSD. Pillalamari lake, Munneru, and Irrigated Cauvery ecosystems
were less disease-prone areas for FSD with relatively reduced disease indices (0–3%), mak-
ing them cold spots. It is evident from the maps that the disease hot spots are majorly in the
Tamil Nadu state and a few traditional paddy-growing ecosystems of Northern Karnataka.

The IDW results were further validated by a scatter plot for predicted severity against
observed severity (Figure 7). From the plot, the predicted and observed severity lies apart
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from the line, excluding the errors during both years. The plot values representing the FSD
during 2018 exhibited a similar severity with RMSE values of 6.6.

Agronomy 2022, 12, x FOR PEER REVIEW 12 of 19 
 

 

Figure 7. Scatter plot comparing predicted and observed values at the different sampled locations 
for FSD in southern India. 

3.3.2. Ordinary and Indicator Kriging  
Semivariogram experimental models, such as spherical, exponential, and Gaussian 

models, were used to determine spatial patterns of FSD severity. Based on validation of 
the semivariogram results that exhibited lower mean square error (MSE), root mean 
square standard error (RMSE), and average standard error (ASE) values, the spherical 
model was found to be the best fit (Table 2 and Figure 8). 

Table 2. Cross-validation results of semivariogram experimental models on FSD disease severity 
during 2018. 

Model Range (in Degree) Partial Sill (C + C0) Nugget (C0) MSE RMSE MAPE 
Spherical 1.137481 17.61387 0.5 15.952 3.994 0.4677 

Exponential 1.137481 17.61387 0.5 16.121 4.0151 0.4815 
Gaussian 1.137481 17.61387 0.5 NA NA NA 

MSE: mean square error; RMSE: root mean square standard error; MAPE: mean absolute percentage 
error. 
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3.3.2. Ordinary and Indicator Kriging

Semivariogram experimental models, such as spherical, exponential, and Gaussian
models, were used to determine spatial patterns of FSD severity. Based on validation of the
semivariogram results that exhibited lower mean square error (MSE), root mean square
standard error (RMSE), and average standard error (ASE) values, the spherical model was
found to be the best fit (Table 2 and Figure 8).

Table 2. Cross-validation results of semivariogram experimental models on FSD disease severity
during 2018.

Model Range
(in Degree)

Partial Sill
(C + C0) Nugget (C0) MSE RMSE MAPE

Spherical 1.137481 17.61387 0.5 15.952 3.994 0.4677

Exponential 1.137481 17.61387 0.5 16.121 4.0151 0.4815

Gaussian 1.137481 17.61387 0.5 NA NA NA
MSE: mean square error; RMSE: root mean square standard error; MAPE: mean absolute percentage error.
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FSD severity in different rice ecosystems of southern India during 2018 followed a
normal distribution, as revealed by the Kolmogorov–Smirnov test, which was depicted
through histograms and a normal QQ plot of the dataset (Figure 9). Before kriging and
interpolation, a slight global trend in the data was removed using the first-order nominal
trend removal function.

As with the IDW interpolation technique, ordinary kriging (OK) and indicator kriging
(IK) were used to find the spatial surface areas of FSD in different rice ecosystems by
considering the severity observations. The OK map revealed the maximum severity of FSD
in the Shimoga district of the Irrigated Bhadra ecosystem, Nalgonda district of the Krishna
River ecosystem, Thiruvallur district of the Cauvery ecosystem, and Raichur district of
Transplanted ecosystems of TBP and UKP command ecosystem (Figure 10).

However, in the case of IK, the FSD was more severely distributed in the Transplanted
ecosystems of TBP and UKP command (Koppal, Raichur), Irrigated Bhadra (Shimoga),
and Coastal ecosystem (Udupi) of Karnataka; East Godavari district of Andhra Pradesh;
Cauvery ecosystem (Thiruvallur, Madurai), BSB ecosystems (Erode), Cauvery Belt and
Coastal Belt ecosystems of Tamil Nadu state (Thirichinapalli, Thanjavur, Padukottai) and
districts of Telangana State with highest disease severity was noticed in Krishna river
ecosystems (Mahabubnagar, Nalgonda). Medium disease severity was recorded in Bhavani
Sagara Belt (BSB) ecosystems (Namakkal) and parts of the Cauvery River ecosystems
(Krishnagiri) (Figure 11). Districts of Cauvery (Mysore, Mandya), Bhadra (Davangere,
Uttara Kannada), Krishna (Krishna), Parts of Palleru lake (Nalgonda), Thunga-Badhra
ecosystems of Kurnool exhibited less severity of FSD.
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4. Discussion

False smut disease (FSD) of rice is one of the threats to rice production across the globe.
The build-up of inoculum and prevailing environmental situations under field conditions
favors the rapid spread of the FSD. Thus, understanding the spatial distribution of FSD
across the major rice-growing states of India is highly imperative. The present investigation
revealed the current status of FSD in the different rice-growing ecosystems of southern India,
including Andhra Pradesh, Karnataka, Telangana, and Tamil Nadu states. The extension
of rice cultivars to non-traditional paddy cultivating areas has posed the potential risk
of FSD over a time, resulting in predominant yield loss. In this context, it was necessary
to understand the spatial distribution of FSD in different traditional and non-traditional
rice ecosystems of southern India. Although the disease status of FSD in southern states
was studied in the past, ecosystem-wise information is lacking [3,9,37]. In the present
investigation, for the first time in India, the current status and spatial distribution of FSD
were identified using geostatistical approaches such as spatial interpolation, autocorrelation,
point pattern, and variogram analysis.

The agglomerative hierarchical cluster analysis of FSD patterns among the 26 mon-
itored districts identified two main clusters using the average linkage method. The first
cluster includes 25 districts, further divided into subclusters consisting of 9 and 16 districts.
Similarly, the second cluster consists of only one district (Thiruvallur) with the highest
FSD severity. Severe FSD in the Dindugal, Madurai, Theni, and Tirunelveli districts of
Tamil Nadu was also reported previously [9]. The present study identified moderate spatial
clusters of FSD by the Local Moran’s I spatial autocorrelation (LISA). Higher spatially
dependent clusters were confirmed in Mahbubnagar compared to other districts that were
least spatially dependent, as evidenced by Ripley’s K function. U. virens produces thick-
walled chlamydospores during the disease cycle, which reserves disease propagules under
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field conditions. These spores contaminate rice seeds and are spread by rain splash, air
currents, and overwinter in the field [38], causing severe disease in the next crop.

The conidia and ascospores of FSD were dispersed by air currents and act as significant
determinants of the spread and severity of the FSD along with changing climate. The
clustering of points in a different ecosystem might be credited to the faster movement of the
spores of the pathogen through air and irrigation water and the cultivation of susceptible
cultivars all along the southern paddy ecosystems [14].

Point pattern analysis was used to identify the hotspots of FSD in different rice
ecosystems of southern India. Results from the analysis, the hot spots were identified
in the Hilly ecosystem consisting of Chikmagalur, Shivamogga, Kodagu, and Dharwad
districts. These spots need the extensive management strategy of FSD since the disease is
known to affect >70 percent of these areas. These areas with high rainfall are congenial for
FSD pathogens to proliferate and invade as these conditions of high humidity and rainfall
induce the germination of chlamydospores producing the hyphae, thereby leading to the
production of a large number of secondary conidia that infect the flowers of rice at late
booting stage [38].

In the present study, the percent severity of FSD was considered to generate the
spatial distribution maps across the studied areas of South India. Similarly, the data
were generated at unsampled points using the surface interpolation tools such as inverse
distance weighting (IDW), ordinary kriging (OK), and indicator kriging (IK). The FSD
semivariogram indicated relatively moderate spatial dependency. IDW is simple and quick;
however, kriging is complex and time-consuming but provides the best linear unbiased
estimates [39]. Based on the generated spatial clusters in the interpolation tools, the kriging
is more accurate than IDW.

The possible reason for the spatial pattern of FSD is the dispersal of the pathogen
through the air and the distribution of susceptible/resistant plant cultivars [40]. Terrain
affects microclimate and probably acts as another reason for the differential distribution
of pathogens over space [38]. The pathogen also produces sclerotial, which is induced by
the low temperatures [41], and the sclerotia tend to increase in autumn in the years with
low temperatures. The sclerotia will be dormant for 2–5 months in the field, and under
low temperatures, they maintain a higher germination rate even up to 5 years, posing a
long-term threat to the crop [40].

LISA analyses revealed non-traditional/sparse paddy growing areas presented a
dispersed pattern of FSD on paddy cultivating ecosystems than in traditional tracts. The
local Moran’s I spatial autocorrelation (LISA) cluster analyses identified higher spatially
dependent clusters in Mahbubnagar, while the major districts presented lower spatial
autocorrelation clusters. Considering the p-values, the highest spatial dependence was
observed in Andhra Pradesh districts such as Nalgonda, West Godavari, Krishna, East
Godavari, and Erode district of Tamil Nadu, whereas the lowest was observed in Udupi,
followed by Koppal district of Karnataka indicating the higher disease prone areas in the
eastern part of South India.

Surface interpolation approaches are used to unravel the spatial distribution of FSD
in South India. The outcome of the IDW interpolation was depicted through color-coded
maps of datasets. During the evaluation, transplanted ecosystems of TBP and UKP had
the highest disease severity (14–15%), followed by Cauvery and Bhavani Sagara Belt
(BSB) ecosystems, and were considered hotspots for FSD. Pillalamari lake, Munneru,
and Irrigated Cauvery ecosystems are cold spots with less disease severity (0–3%). The
dOrdnary kriging (OK) map revealed the maximum severity of FSD in Shimoga district,
Nalgonda, Thiruvallur district, and Raichur district. However, in the case of IK (indicator
kriging), the FSD was more severely distributed during 2018 around the transplanted
ecosystems of TBP and UKP command (Koppal, Raichur), Irrigated Bhadra (Shimoga),
and coastal ecosystem (Udupi) of Karnataka. East Godavari district of Andhra Pradesh.
Cauvery ecosystem (Thiruvallur, Madurai), Bhavani Sagara Belt (BSB) ecosystems (Erode),
Cauvery Belt and Coastal Belt ecosystems of Tamil Nadu state (Thirichinapalli, Thanjavur,
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Padukottai) and districts of Telangana State with highest disease severity was noticed
in Krishna River ecosystems (Mahabubnagar, Nalgonda). Districts of Cauvery (Mysore,
Mandya), Bhadra (Davangere, Uttara Kannada), Krishna ecosystems (Krishna), Parts of
Palleru lake ecosystems (Nalgonda), Thunga-Badhra ecosystems of Kurnool exhibited less
severity of FSD. Results from OK and IK indicated that irrigated ecosystems comprising
Transplanted ecosystems of TBP and UKP command, Irrigated Bhadra, Coastal ecosystem,
Godavari, Bhavani Sagara Belt (BSB), and Cauvery Belt had shown potential risk areas
to FSD.

5. Conclusions

The present work demonstrated the clustering of FSD, which has significant implica-
tions for managing the disease. Understanding the patterns of aggregation of FSD provides
an opportunity to help the farmers and scientists focus on the hot spots and thereby reduce
unwanted expenses in the management of the FSD. The site-specific management of FSD
increases the efficiency of disease management and helps to design the disease management
strategy for different rice ecosystems of southern India.
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