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Abstract Couplings in complex real-world systems are often nonlinear and scale dependent. In many
cases, it is crucial to consider a multitude of interlinked variables and the strengths of their correlations
to adequately fathom the dynamics of a high-dimensional nonlinear system. We propose a recurrence-
based dependence measure that quantifies the relationship between multiple time series based on the
predictability of their joint evolution. The statistical analysis of recurrence plots (RPs) is a powerful
framework in nonlinear time series analysis that has proven to be effective in addressing many fundamental
problems, e.g., regime shift detection and identification of couplings. The recurrence flow through an RP
exploits artifacts in the formation of diagonal lines, a structure in RPs that reflects periods of predictable
dynamics. Using time-delayed variables of a deterministic uni-/multivariate system, lagged dependencies
with potentially many time scales can be captured by the recurrence flow measure. Given an RP, no
parameters are required for its computation. We showcase the scope of the method for quantifying lagged
nonlinear correlations and put a focus on the delay selection problem in time-delay embedding which is
often used for attractor reconstruction. The recurrence flow measure of dependence helps to identify non-
uniform delays and appears as a promising foundation for a recurrence-based state space reconstruction
algorithm.

1 Introduction

Measures of statistical dependence represent one of
the cornerstones in the analysis of empirical data. The
study of time series measured from complex real-world
systems poses a broad variety of challenges in quantify-
ing uni- and multivariate data sets, e.g., lagged depen-
dencies, non-stationarity, noise contamination, uncer-
tainties and the limited length of time series. The set
of tools to detect and quantify statistical dependencies
ranges from standard correlation analysis techniques
[1] over graph theoretical approaches, such as complex
networks [2, 3], towards causal discovery algorithms
[4–6], and detecting critical transitions [7–9]. A noto-
riously challenging problem is to adequately quantify
non-monotonous and nonlinear relationships in stochas-
tic and deterministic systems. In this context, informa-
tion theoretic measures have established as an effective
framework [10–12]. However, popular methods, such as
the mutual information (MI), are not designed to treat
higher-dimensional data appropriately (even though
extensions have been suggested [13, 14]). The nature
and strength of links in complex systems additionally
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often exhibits scale-dependence, i.e., multi-scale behav-
ior [15]. This motivates the need of methods that are
capable of unravelling dependencies at a broad range of
scales, e.g., wavelet-based methods [16–18]. Few meth-
ods succeed to combine both capabilities of capturing
nonlinear dependencies at multiple time scales [19, 20].

A powerful method that captures both nonlinear and
multi-scale properties of a high-dimensional dynamical
system is the recurrence plot (RP) [21]. An RP is a
mathematically simple yet effective tool that encodes
the tendency of a time series to recur to formerly vis-
ited states [22]. An RP is based on a binary recurrence
matrix in which recurrences are marked by value one,
giving rise to intriguing and well-interpretable struc-
tures in the RP. Various quantification measures can
be applied to a recurrence matrix and prove power-
ful in classifying differing systems [23–26], identifying
dynamical regime transitions [27, 28], and detecting
non-linear correlations as well as synchronization [6, 29,
30]. Recurrence quantification analysis (RQA) based on
diagonal lines in the RP not only allows identification
of periodic behavior [18, 31], but also helps to iden-
tify unstable periodic orbits in high-dimensional chaotic
systems [32]. The conceptual simplicity of RPs allows
for a broad range of real-world applications, also for
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challenging data that are event-like or unevenly sam-
pled in time [33, 34]. Recurrence measures of depen-
dence have not only facilitated the study of synchro-
nization in dynamical systems [30, 35–37] but also have
been extended to account for lagged and conditional
dependencies [6, 29, 38, 39]. Further concepts, includ-
ing symbolic analyses of relationships, have been con-
ceived more recently [40]. Recurrence-based quantifica-
tion of statistical dependencies, thus, bares high poten-
tial to meet the combination of the above-mentioned
challenges. Here, we propose a novel recurrence-based
measure of dependence that uses delay coordinates from
a given observational time series. Since the measure is
based on RPs, nonlinear dependencies with multiple
time lags can be quantified which makes the measure
applicable to the problem of non-uniform delay selec-
tion [19, 20]. The proposed dependence measure, thus,
contributes to the challenge of characterizing complex
real-world interactions using RPs.

This work is structured as follows: in Sect. 2, we
introduce the recurrence flow as a measure of depen-
dence along with a brief review of the RP method. We
showcase its scope in different numerical experiments
in Sect. 3, covering the characterization of lagged non-
linear dependence and delay selection for uniform and
non-uniform TDE. We conclude our findings in Sect. 4.

2 Recurrence flow

We are interested in characterizing nonlinear depen-
dencies in a deterministic, high-dimensional system
that is represented by M observational time series
{sn(t) |n = 1, . . . ,M}. In general, the relationships
between the different time series sn(t) and their coor-
dinates do not need to be instantaneous but are
often associated with time delays τ1, τ2, . . . , τm. Conse-
quently, we define the recurrence flow measure of redun-
dance to capture such lagged dependencies.

The key idea of the proposed measure is based on
the existence of diagonal lines in RPs. An RP is a two-
dimensional matrix that encodes how a system recurs
to formerly visited states �vi, i = 1, . . . , N . In general,
this representation can be computed for systems of any
dimension d and is formally given by

Ri,j(τ) = Θ(ε − ‖�vi(τ) − �vj(τ)‖)

=
{

1 if ‖�vi(τ) − �vj(τ)‖≤ ε
0 if ‖�vi(τ) − �vj(τ)‖> ε,

(1)

with two arbitrary times i and j , the vicinity threshold
ε and a suitable norm ‖·‖. The states denoted by �v are
either given by the available components (state vari-
ables) of the system or, in case of only limited access
to the state variables, by delayed copies of the one (or
multiple) observational time series sn(t) of the studied
system. In particular, �v is then obtained by stacking
these copies on top of each other as it is common prac-
tise in time delay embedding (TDE).

Diagonal lines of length Ld in an RP resemble peri-
ods of enhanced predictability as two trajectory seg-
ments at times i and j evolve in parallel in an ε-
tube for Ld time instances. For a given system, this
may reveal time periods of continuously high determin-
ism or uncover abrupt regime shifts [41]. Properties
of the diagonal line length distribution of an RP are
linked to dynamical invariants of paradigmatic dynam-
ical systems [42]. However, spurious artifacts are known
to disrupt, lengthen or thicken diagonal lines due to
erroneous computation of an RP [43]. An inadequate
choice of the vicinity threshold ε will disrupt diagonal
lines, thus underestimating the system’s predictabil-
ity. On the other hand, too high values will artifi-
cially merge fundamentally distinct regions of phase
space. Sampling can also alter diagonal line structures:
if the system is undersampled, diagonal lines might
not emerge continuously as deterministic time intervals
are not resolved sufficiently. On the other hand, over-
sampling results in artificially thickened diagonal lines
(tangential motion) [44]. Erroneous time delay embed-
ding of uni-/multivariate time series can have several
undesired effects on the formation of diagonal lines; if
the embedding dimension is chosen too high, diagonal
lines are artificially lengthened and can even emerge in
absence of determinism for an uncorrelated stochastic
process due to correlations in the underlying distance
matrix [45]. A non-optimal choice for the embedding
delay will result in diagonal lines that are perpendicu-
lar to the line of identity (i = j, LOI). This indicates
inclusion of erroneous time scales [43]. The formation
of perpendicular lines is caused by the ambiguity in
the reconstruction that is introduced by not eliminat-
ing the full serial dependence; this results in close evo-
lution of states both forward and backward in time:
‖�vi −�vj‖< ε, ‖�vi+1 −�vj−1‖< ε, i.e., the trajectory seg-
ments closely evolve in parallel, but with opposite time
directions. On top of that, additional deformations to
a diagonal line can occur, e.g., in the form of bowed
diagonal lines indicating that the evolution of states at
different time intervals is similar but occurs with differ-
ent velocity or temporal resolution [46].

We utilize the formation of such diagonal line arti-
facts (DLA) to identify time scales of the system that
result in well-expressed diagonal lines. The proposed
method is, thus, based on the assumption that the stud-
ied system exhibits (at least to some degree) determin-
istic dynamics which will result in meaningful diagonal
lines in an RP. An effective way of retrieving informa-
tion on the formation of DLA is given by scanning an
RP diagonal-wise. We can identify an index for each
diagonal at which the first recurrence pixel is located.
It appears intuitive to regard these pixels as ‘obstacles’
to an imaginary fluid that flows along each diagonal into
the RP and is not allowed to turn (Fig. 1C/E). The for-
mation of DLA blocks the flow. As a basic example, we
consider a noisy sinusoidal time series (Fig. 1A) with
n = 5000 and a period of T = 100. Formation of per-
pendicular diagonal lines for τ = μT, μ ∈ N (Fig. 1B)
reduces the flow through the RP compared to τ = T/4
(Fig. 1D). We use the symmetry of the RP by only
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flooding the upper triangular matrix to save computa-
tion time. The recurrence flow Φ(τ) can be computed
for varying delays τ and encodes similar information as
an inverse autocorrelation function, yielding a continu-
ous representation of the redundancy between the time
series and its delayed version (Fig. 1F). For continuous
variations of τ from τ = 0 to τ = T/4 , the perpendic-
ular diagonal lines are progressively eliminated. This
reproduces the well-known result that a sinusoidal sig-
nal needs to be shifted by (odd multiples of) a quarter
of its period against itself to minimize redundancy.

To quantify the flow through the RP, we define the
recurrence flow matrix φ (Fig. 1C/E)

φi,j(τ) =
(
1 − Θ(ε − ‖�vi(τ) − �vj(τ)‖)

)
Θ(�j − i),

i, j = 1, . . . , N, (2)

with the time delay τ and the length �j of the jth
flooded diagonal, i.e., the number of subsequent zeros
up to the first one. A flooded diagonal �j has to be dis-
tinguished from a diagonal line Ld: it denotes a diag-
onal of the RP (parallel to the LOI) starting at time
instance j that is flooded with a fictive fluid, regard-
less of whether any diagonal lines exist on this diago-
nal. Accordingly, the factor Θ(�j − i) in Eq. (2) ensures
that the flooding of the jth diagonal stops at the first
recurrence on this diagonal. φi,j depends on the vicin-
ity threshold ε, i.e., the fraction of recurrences. We fix
ε at some reasonable value that corresponds to a fixed
recurrence rate (RR).

We study the dependence on the time delay τ con-
tained in the vector �v(τ) similar as it is done in TDE
where the delays τ1, τ2, . . . , τm for the different coordi-
nates are free parameters and need to be chosen with
respect to some notion of optimality [47]. The recur-
rence flow Φ(τ) is computed by summing over the recur-
rence flow matrix φi,j at given τ and dividing by the
number of non-recurrences (i.e., zeros in the RP):

Φ(τ) =

∑N
i,j=1 φi,j(τ)∑N

i,j=1(1 − Ri,j(τ))
. (3)

In a multivariate application, �v can encompass time
series from different systems to study their cross-
dependencies. In such a scenario, it is more instruc-
tive to define the recurrence flow as a direct measure of
correlation/redundance. We, thus, define the recurrence
flow measure of redundance (RFMR) θ(τ) as

θ(τ) = 1 − Φ(τ). (4)

The significance of recurrence flow values can be tested
against a random null model based on uncorrelated
white noise (Appendix B). Finally, it needs to be noted
that the idea of using RPs to identify optimal embed-
ding parameters has been considered before, but to our
best knowledge has not been performed systematically
[48, 49].

3 Application to model examples

We now demonstrate the scope of the proposed method
by highlighting two different potential applications: the
quantification of nonlinear correlations (Sect. 3.1) and
the identification of uniform embedding delays for TDE
of nonlinear signals (Sect. 3.2).

3.1 Nonlinear dependence

We exemplify the efficacy of θ(τ) as a nonlinear depen-
dence measure for deterministic systems with a simple
bivariate system:

x(t) = sin(2πt/ω) + η(t, σ1),

y(t) = ax(t − τ̃)2 + η(t, σ2), (5)

with frequency ω = 2π/T , period T , time lag τ̃ = 20,
and normal-distributed white noise processes η(t, σ)
with standard deviations σ1 and σ2. This system
exhibits a sinusoidal cycle with frequency ω in its x -
component. The y-component is nonlinearly coupled to
x (t) and exhibits a cycle with half of the period of x (t).
y(t) follows x (t) with a fixed time lag τ̃ . Both compo-
nents are superimposed by measurement noise η(t). We
consider time series with n = 5, 000 samples (Fig. 2A).
Due to the specific coupling, the relationship between
x and y is nonlinear (Fig. 2B).

We test whether we can detect the coupling and the
corresponding time lag τ̃ by computing θ(τ) for delays
in the range τ ∈ [−200, 200] (Fig. 2C). In fact, we find
that θ(τ) reaches local maxima at integer multiples of
τ̃ , including τ = τ̃ (red dashed line). Similar results are
obtained if the mutual information is used (Fig. 2C,
black curve), confirming that nonlinear relationships
between deterministic time series can be captured by
recurrence flow in presence of measurement noise. In
this case, the MI yields sharper peaks than the recur-
rence flow. However, the suggested recurrence flow mea-
sure provides advantages for high-dimensional data as
discussed below.

3.2 Uniform time delay embedding

The ability of the recurrence flow to detect delayed
dependencies between multiple variables motivates its
use in the delay selection problem faced in TDE. Pro-
ficient delay selection must be based on a measure
that captures the redundancy in a (potentially large)
set of correlated time series. A popular solution is
to use mutual information (MI). However, character-
izing the required joint probability density function
p(s1, s2, . . . , sm) becomes cumbersome for a large num-
ber of variables m and is rendered infeasible for many
high-dimensional real-world systems. Compared to non-
linear correlation measures like standard MI that are
based on binning, recurrence flow offers the advantage
that computation times increase less rapidly: given km

bins, an increase in dimensionality m → m + 1 results
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Fig. 1 Recurrence flow for
a noisy sinusoidal. A Time
series of the noisy
sinusoidal and B/C RPs for
two different embedding
vectors �v(t):
�v(t) = [y(t), y(t + T )] and
�v(t) = [y(t), y(t + T

4
)] (left)

and flooded RPs/recurrence
flow matrices (right). D
Recurrence flow Φ(τ)
through the RP for varying
delay τ . The red dot marks
the period T . Φ(τ) is
maximized for delays that
are odd multiples of T/4

(A)

(B)

(C)

(D)

Fig. 2 Detection of lagged,
nonlinear dependence
between nonlinearly
coupled sinusoidals. A The
y(t) time series (black)
results from squaring
x (t) (blue) and shifting it
by a fixed time delay. B
Nonlinear relationship
between x (t) and y(t). C
Recurrence flow measure of
redundance θ(τ) (blue)
detecting the time delay
between x (t) and y(t) (red
dashed line), confirmed by
the cross-mutual
information (black)

(A)

(B) (C)

in (km −1)km additional bins while in the computation
of Φ, a k -d -tree nearest neighbor search-based RP com-
putation increases only linearly with the dimensionality
of the system. It has yet to be noted that more sophis-
ticated nearest neighbor-based approaches for MI com-
putation do not suffer from this drawback [14].

Due to the popularity of this problem, other non-
linear correlation measures that do not suffer from
the curse of dimensionality have been conceived [20,
50]. In order to validate the effectiveness of the mea-
sure proposed here for selecting embedding delays, we
do not only compare it to the linear autocorrelation
function (ACF) and the auto-mutual information (MI),
but also to the delay selection method proposed in
[20]: the continuity statistic is based on a hypothesis

test of whether a component, added to an existing m-
dimensional reconstruction vector, is functionally inde-
pendent of all existing m components. This is tested by
first defining a set of fiducial points and their k -nearest
neighbors from the m-dimensional reconstruction vec-
tor. These are mapped onto the one-dimensional num-
ber line. The continuity statistic 〈ε∗〉(τ) denotes the
smallest scale at which the number of observed neigh-
bors mapped onto this line is larger than the number
expected from a binomial distribution, implying a func-
tional relationship. For further details, the reader is
referred to [20, 51]. For the estimation of the optimal
embedding dimension, we employ Cao’s method with a
threshold of Δafn = 0.2 for the change of the number
of averaged false neighbors from m → m + 1 [52]. For
the selection of embedding delays using the proposed
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(A) (E)

(F)(B)

(C)

(D)

Fig. 3 Uniform delay selection for numerical insolation model. A Insolation time series y(t) in W m−2. B Serial dependence
of y(t), measured in terms of ACF (red/blue) and auto-MI (black) for the univariate time series, C/D as well as by the
continuity statistic 〈ε∗〉(τ) (gray) and the recurrence flow Φ(τ) (dark blue) for C two- and D three-dimensional embedding
vectors �v(t). The optimal delay is marked by a circle(/cross/star/vertical green line) for the ACF(/MI/continuity statis-
tic/recurrence flow), respectively. E Zoomed RPs for the ACF, 〈ε∗〉(τ) and Φ(τ) (from left to right). F Three-dimensional
phase space reconstruction based on recurrence flow shows a spiral-like trajectory

recurrence flow measure, we identify all peaks of Φ(τ)
at different delays τ and choose the highest of these to
obtain the corresponding embedding delay τ (Φ). In case
there is several peaks of identical height, we choose the
one for the smallest τ (i.e., the first one).

To illustrate the procedure, we consider a time series
of the past 1 million years of insolation on Earth at
52.39◦ latitude (see Appendix A) [53]. The insolation
depends on the Earth orbit and the Earth axis tilt and
precession, thus, varies in specific cycles (Milankovich
cycles). Cao’s method suggests an embedding dimen-
sion m = 4. We present results for the second and
third component of the embedding vector. Using first-
crossing of ACF and first minimum of MI, both mea-
sures suggest a delay of τ

(ACF)
1 = τ

(MI)
1 = 6ka (Fig. 3A).

Since none of both measures is capable of selecting
different embedding delays for higher components of
the embedding vector, this yields the three-dimensional
embedding vector �v(t) = [y(t), y(t − 6ka), y(t − 12ka)].
Next, we compute Φ(τ) to check if the estimate of �v(t)
based on the traditional TDE metrics is confirmed: we
find τ

(Φ)
1 = 5ka in close agreement with the ACF and

MI-criteria (Fig. 3C). Moreover, the continuity statis-
tic 〈ε∗〉(τ) suggests the same embedding delay for the
first component as the auto-correlation and MI (first
local maximum). It does not indicate a global maxi-
mum at this delay, yielding a more ambiguous choice
of the optimal embedding delay than Φ(τ). Finally,
we examine if both multi-dimensional measures suggest
τ2 = 2τ1 for the second embedding delay as expected for
a traditional uniform time delay embedding (UTDE).
Interestingly, 〈ε∗〉(τ) offers only limited information

on an optimal embedding delay for the third compo-
nent of �v(t) (Fig. 3D). Multiple local maxima offer
a variety of choices with no clear optimal value. We
choose the global maximum (marked by star). Con-
versely, Φ(τ) once more provides a clear choice for the
second embedding delay with globally maximized flow
for τ

(Φ)
2 = 2τ

(Φ)
1 .

We visually evaluate the quality of the resulting
embeddings by comparing the line structures in the
corresponding RPs (Fig. 3E). The enlarged details of
the RPs illustrate how well deterministic intervals in
the evolution of insolation are resolved based on the
phase space reconstructions yielded by the ACF, conti-
nuity statistic, and recurrence flow. While the uniform
embedding vectors obtained from the ACF and Φ(τ)
result in well-separated, undisturbed diagonal lines,
multiple diagonal lines and the related cycles are poorly
expressed in the phase space suggested by 〈ε∗〉(τ). The
reconstructed phase space based on the embedding vec-
tor obtained from the recurrence flow criterion reveals
several unstable periodic orbits (Fig. 3F), constituting
a concentric spiral-like phase space trajectory in three
dimensions.

Many real-world systems allow taking only a rela-
tively short series of measurements for a single vari-
able with high levels of superimposed measurement
noise. We study how well a known phase space of a
paradigmatic system can be reconstructed based on the
four different measures considered above with increas-
ing noise strength. In particular, we generate n =
2000 samples of a Rössler system (see Appendix A)
such that the resulting trajectory only covers rela-
tively few unstable periodic orbits. We reconstruct the
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known three-dimensional phase space from the y(t)-
component (Fig. 4A) with superimposed uncorrelated
white noise realizations (Fig. 4B).

The noise strength (standard deviation of the noise)
is varied in multiples of the standard deviation σRoe of
the undisturbed y(t). Even with only 10% measurement
noise, the original attractor is already significantly less
smooth (Fig. 4B). We compare the ACF, MI, continu-
ity statistic, and recurrence flow as delay selection mea-
sures while only uniform time delays are considered, i.e.,
the optimal embedding delay is selected only once for
the step from a one- to a two-dimensional embedding.
This ensures that the two high-dimensional measures
(Φ(τ) and 〈ε∗〉(τ)) can be compared adequately to the
traditional measures.

To quantitatively evaluate the dependence of the
reconstruction on noise strength, we generate an RP
for each reconstruction and for each of the four delay
selection methods. For each RP, we compute the joint
recurrence rate fraction (JRRF):

JRRF =

∑N
i,j JRi,j∑N
i,j=1 Rref

i,j

, JRRF ∈ [0, 1]

with

JR = Rref ◦ Rrec,

from the RP of the (real) reference system Rref and
the RP of the respective reconstruction Rrec. We use
it to quantify the accordance of the real RP of the
corresponding noisy Rössler system to the reconstruc-
tions with respect to its recurrence structure (the higher
JRRF, the better the reconstruction).

We generate 50 individual noise realizations for each
noise strength between 0 and 100% of the original
standard deviation σRoe and average the corresponding
JRRF values (Fig. 4C). As expected, with increasing
noise level, the quality of the reconstruction decreases.

For noise strengths between 10 and 30%, the lin-
ear ACF performs worst in terms of JRRF while the
MI and continuity statistic perform equally well. The
almost perfect alignment of both might seem surprising
but is due to the discreteness immanent in the delay
selection. While their agreement might be interpreted
in the way that this has to be the optimal delay (i.e., the
reconstructed system preserves most of the recurrence
structure), the recurrence flow Φ(τ) shows superior per-
formance with noise strengths up to 30%, i.e., three
times the noise level illustrated in Fig. 4B. Beyond 30%,
all four measures yield approximately the same perfor-
mance (Fig. 4C inset), as for JRRF< 0.5, the alignment
could be explained by random joint recurrences.

3.3 Non-uniform time delay embedding

For many real-world dynamical systems, it is not suffi-
cient to consider only a single characteristic time scale.
Instead, multi-scale systems are governed by a multi-
tude of processes that imprint (quasi)-periodic cycles
of various lengths onto the measured time series. The

selection of delays must account for this complexity
by considering non-uniform embedding delays (non-
uniform time delay embedding, NUTD). One of the
most studied systems that exhibits multi-scale dynam-
ics is the El Niño-Southern Oscillation (ENSO). ENSO
represents a quasi-periodic climate pattern that is asso-
ciated with spatio-temporal variations of sea surface
temperatures in the central and eastern Pacific Ocean,
oscillating between El Niño and La Niña events. We use
the delay differential ENSO model proposed in [54] to
examine if the recurrence flow can unveil distinct delays
for a three-dimensional state space reconstruction of
model time series. The model is based on a nonlin-
ear delay differential equation and reproduces an abun-
dance of key features of ENSO (see Appendix A). We
study two different solution types that are associated
with distinct dynamical regimes, i.e., a seasonal oscil-
lation with superimposed faster low-amplitude oscilla-
tions prior to a period-doubling and irregular oscilla-
tions that are reminiscent of El Niño and La Niña events
of random magnitudes. A more detailed discussion of
these solution types can be found in [54].

The first solution type exhibits well-pronounced
seasonal cycle and fast, amplitude-modulated wig-
gles on top (Fig. 5A). Cao’s method suggests that
this solution type can be embedded in a m = 3-
dimensional embedding space. We find that MI does
not yield an unambiguous choice for an embedding
delay while the ACF suggests τ

(ACF)
1 = 0.25years,

i.e., the expected value of a quarter of the seasonal
cycle (Fig. 5B). The same delay is identified with Φ(τ)
whereby 〈ε∗〉(τ) yields a slightly higher optimal embed-
ding delay (Fig. 5C). While traditional UTDE now sug-
gests τ

(ACF)
2 = 2τ

(ACF)
1 for a three-dimensional embed-

ding, both Φ(τ) and 〈ε∗〉(τ) instead show that a differ-
ent choice yields a superior phase space reconstruction
in terms of minimized redundancy (Fig. 5C/D). Both
〈ε∗〉(τ) and Φ(τ) effectively uncover the faster cycle by
means of local maxima. However, both also detect a
delay that is the sum of the seasonal and the fast cycle
as a promising candidate. The fact that the estimate
of this conjoint cycle differs for both measures can be
explained by the different estimates on τ1. Since for
Φ(τ) both local maxima have the same height, we pick
the first. The zoomed RPs clearly express that both
NUTD selection methods entail more coherent diago-
nal lines with less perpendicular distortions (Fig. 5E).
Despite the different embedding vectors �v(Φ) and �v(ε∗),
both reconstructions give a convincing representation of
the seasonal cycle in the RP, respectively. The recon-
structed phase space based on the delays selected from
the recurrence flow yields a clear visualization of the
system’s periodic oscillations (Fig. 5F).

In the same manner, we study the second solution
type of irregular ENSO-like oscillations (Fig. 6). Cao’s
method yields a 4-dimensional TDE. Both the ACF and
MI identify different but similar delays slightly larger
than τ1 = 0.35 years (Fig. 6B). 〈ε∗〉(τ) and Φ(τ) agree
on an embedding delay of τ

(Φ)
1 = τ

(ε∗)
1 = 0.33 years
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Fig. 4 Sensitivity of
recurrence flow against
measurement noise,
compared to other
dependence measures. A
y(t)-component and
reference phase space of
Rössler system without
noise contamination; B the
same, but with 10%
measurement noise. Time
axis ticks refer to
consecutive integration
steps. C Performance of
ACF, auto-MI, continuity
statistic 〈ε∗〉(τ) and
recurrence flow Φ(τ) in
terms of JRRF for noise
strengths from 0% to 30%
(and 100% inset)

(A) (B)

(C)

(A) (E)

(F)
(B)

(C)

(D)

Fig. 5 Non-uniform delay selection for delay-differential ENSO model with A periodic dynamics, analogously to Fig. 3.
Serial dependence of y(t), measured in terms of B ACF (red/blue) and auto-MI (black) for the univariate time series,
as well as by C/D the continuity statistic 〈ε∗〉(τ) (gray) and the recurrence flow Φ(τ) (dark blue) for C two- and D
three-dimensional embedding vectors �v(t). The optimal delay is marked by a circle(/cross/star/vertical green line) for the
ACF(/MI/continuity statistic/recurrence flow), respectively. E Zoomed RPs for the ACF, 〈ε∗〉(τ) and Φ(τ) (from left to
right). F Three-dimensional phase space reconstruction based on recurrence flow
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Fig. 6 Non-uniform delay selection for delay-differential ENSO model with A irregular oscillations, analogously to Fig. 3.
Serial dependence of y(t), measured in terms of B ACF (red/blue) and auto-MI (black) for the univariate time series,
as well as by C/D the continuity statistic 〈ε∗〉(τ) (gray) and the recurrence flow Φ(τ) (dark blue) for C two- and D
three-dimensional embedding vectors �v(t). The optimal delay is marked by a circle(/cross/star/vertical green line) for the
ACF(/MI/continuity statistic/recurrence flow), respectively. E Zoomed RPs for the ACF, 〈ε∗〉(τ) and Φ(τ) (from left to
right). F Three-dimensional phase space reconstruction based on recurrence flow

which is slightly smaller than both τ
(ACF)
1 and τ

(MI)
1

(Fig. 6C). Again, the estimates τ
(Φ)
2 and τ

(ε∗)
2 differ

from the choice that would result from UTDE and
indicate that describing the dominant variability in
the observed irregular oscillations requires a multi-scale
approach (Fig. 6D). Slight deviations in both estimates
give rise to minor discrepancies between the emerging
diagonal lines in the respective RPs (Fig. 6E). For none
of the three reconstructions, DLA are entirely removed
which hints at an optimal embedding dimension m > 3
as identified by Cao’s method. This is supported by
the displayed attractor reconstruction that has a two-
winged structure reminiscent of the famous Lorenz
attractor but potentially be unfolded further (Fig. 6F).
However, both NUTD selection measures once more
provide a more convincing result in terms of sparse,
continuous diagonal lines than the ACF and, thus, cap-
ture the system’s predictability more adequately.

4 Conclusion

The nonlinearity and scale-dependence of relationships
observed in high-dimensional empirical data calls for
appropriate and easily applicable methods. Recurrence
plots offer a mathematically simple yet effective frame-
work for the study of dependencies in high-dimensional
dynamical systems and are an established tool in
applied nonlinear time series analysis. For determin-
istic systems, diagonal lines in an RP yield valuable
information on the evolution of a system’s trajectory.

We propose a novel recurrence-based dependence mea-
sure, called recurrence flow. It builds on the fact that
an RP can be computed from delayed copies of one (or
multiple) time series that are stacked on top of each
other as it is common practise in time delay embedding.
The absence of spurious structures perpendicular to
diagonal lines hints at a correct choice of (embedding)
delays between the embedding vector’s coordinates. We
exploit the emergence of these structures to character-
ize the serial dependence in uni- and cross-dependence
of multi-variate, high-dimensional systems. We demon-
strated that the recurrence flow Φ(τ) captures nonlin-
ear, lagged dependencies in the presence of observa-
tional noise. Due to its conceptual proximity to time
delay embedding, we put a focus on the delay selection
problem that underlies attractor reconstruction. The
recurrence flow effectively pinpoints uniform and non-
uniform embedding delays in multi-dimensional nonlin-
ear systems. It, thus, bares high potential to be used in
a recurrence-based embedding algorithm which will be
the focus of future work. Compared to existing nonlin-
ear dependence measures, it offers several advantages:
(i) it is not based on a binning procedure and does
not suffer from the curse of dimensionality, (ii) it is
able to detect non-uniform delays in high-dimensional
multi-scale data, (iii) it performs relatively well in the
presence of observational noise, and, (iv) for the consid-
ered examples, it yields well interpretable, unambigu-
ous maxima in the delay selection procedure (unlike,
e.g., the continuity statistic). The recurrence flow for-
malism appears promising for the conceptualization of
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an automated recurrence-based time delay embedding
algorithm.

Acknowledgements This research was supported by the
Deutsche Forschungsgemeinschaft in the context of the DFG
project MA4759/11-1 “Nonlinear empirical mode analysis
of complex systems: Development of general approach and
application in climate”.

Funding Information Open Access funding enabled and
organized by Projekt DEAL.

Open Access This article is licensed under a Creative
Commons Attribution 4.0 International License, which per-
mits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropri-
ate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third
party material in this article are included in the arti-
cle’s Creative Commons licence, unless indicated other-
wise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and
your intended use is not permitted by statutory regu-
lation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Code availability Scripts and data used to perform this
study are available via Zenodo (https://doi.org/10.5281/
zenodo.6631137).

Declarations

Conflict of interest The authors declare that they have
no conflict of interest.

Appendix A: Example systems

To assess the performance of Φ(τ) as a measure to select
embedding delays, the following systems are considered:

Numerical insolation model

The complex superposition of gravitational forces
between the earth and the other planetary bodies in the
solar system perturbs the earth’s rotation on an elliptic
orbit around the sun and its axial rotation. The cycles
that manifest due to these variations control the earth’s
climate at time scales of millions of years and are called
Milankovich cycles. The nature of the underlying per-
turbation renders the variations in insolation chaotic.
The model proposed in [53] considers all nine planets
in the solar system and describes the orbit of the moon
separately. A Hamiltonian, consisting of an integrable
and perturbation component, is numerically integrated
with a symplectic integrator scheme (SABAC4). Several
dissipative effects (tides, core-mantle friction, climate

friction) are included. The model returns time series
for the earth’s orbit’s eccentricity, climatic precession,
obliquity, and insolation, from which we study only the
latter with n = 1000 samples. For the computation of
RPs, we fix the recurrence rate to 5%.

Rössler system

The Rössler system is a three-dimensional, continuous
dynamical system that generates a strange attractor:

ẋ = −y − z,

ẏ = x + ay,

ż = b + z(x − c).

The time series only covers a few unstable peri-
odic orbits with 3000 samples from which we dis-
card 1000 as transients, resulting in N = 2000. Uni-
form sampling intervals are fixed as Δt = 0.10. We
set a = 0.02925, b = 0.1 and c = 8.5, ensuring
chaotic dynamics. Independent realizations of uncorre-
lated white noise with different noise strengths between
0% and 100% are superimposed on the y(t)-component
to mimic measurement noise. For the computation of
RPs, we fix the recurrence rate to 8% regardless of the
noise strength.

Delay differential ENSO model

As an example for a system with multiple characteris-
tic time scales, we examine a delay differential model
of ENSO. On top of the seasonal mode, ENSO repre-
sents the predominant mode of sea surface tempera-
ture (SST) variability in the tropical Pacific. The SSTs
exhibit recurring variations with time scales between 2
and 7 years between two regimes of well-distinguishable
SST anomalies: El Niño (warming phase) and La Niña
(cooling phase). These variations disturb large-scale air
transport in the tropics and induce a multitude of global
climatic impacts, e.g., droughts and floods in Australia
or South America. Several conceptual models have
reproduced key features of this oscillation by includ-
ing hypotheses on the mechanistic origins of ENSO,
including negative and positive feedbacks of tempera-
ture anomalies and atmospheric circulation and poten-
tial resonance phenomena with the seasonal forcing.
The model studied here is taken from [54] and mim-
ics ENSO dynamics based on two key mechanisms, i.e.,
delayed negative feedback and seasonal forcing

dy(t)
dt

= − tanh(κy(t − ζ)) + b cos(2πωt).

We set the frequency of the periodic forcing to sea-
sonal forcing (ω = 1) and fix b = 1. Variations in the
delay ζ and the parameter κ give rise to dynamically
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distinct time series. We study two solution types: a reg-
ular solution with a seasonal cycle and fast, amplitude-
modulated wiggles (κ = 100, ζ = 0.025) and a solu-
tion of irregular ENSO-like oscillations with stochas-
tic amplitude variations (κ = 50, ζ = 0.42). For both
solution types, we generate n = 10,000 values. For the
computation of RPs, we fix the recurrence rate to 5%.

Appendix B: Statistical significance

For an uncorrelated white noise time series of infinite
length, the presence of recurrences along a diagonal can
be described by a binomial distribution. The flow along
each diagonal can consequently be regarded as an ide-
alized sequence of Bernoulli trials for which a success
is equivalent to a recurrence, i.e., a black pixel. The
probability of having X unsuccessful Bernoulli trials
(no recurrences) until a trial succeeds is given by the
geometric distribution

P (X = n) = (1 − p)k−1p (6)

with expectation value 1/p . The probability of success
p for each Bernoulli trial is given by the recurrence
rate and depends on ε. It follows that we can derive
the recurrence flow for an idealized uncorrelated white
noise time series of length n as

θ(ε) = 1 − n

p(ε)
. (7)

Given an observational time series of length n and a
suitable choice for the vicinity threshold ε, p(ε) can be
identified with the recurrence rate and Eq. (7) can be
used to test whether the recurrence flow of the real sig-
nal can be distinguished from an uncorrelated random
process.
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