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Abstract. Digital mathematical libraries assemble the knowledge of years
of mathematical research. Numerous disciplines (e.g., physics, engineering,
pure and applied mathematics) rely heavily on compendia gathered findings.
Likewise, modern research applications rely more and more on computational
solutions, which are often calculated and verified by computer algebra systems.
Hence, the correctness, accuracy, and reliability of both digital mathematical
libraries and computer algebra systems is a crucial attribute for modern
research. In this paper, we present a novel approach to verify a digital math-
ematical library and two computer algebra systems with one another by
converting mathematical expressions from one system to the other. We use
our previously developed conversion tool (referred to as ACAdT) to translate
formulae from the NIST Digital Library of Mathematical Functions to the
computer algebra systems Maple and Mathematica. The contributions of
our presented work are as follows: (1) we present the most comprehensive
verification of computer algebra systems and digital mathematical libraries
with one another; (2) we significantly enhance the performance of the un-
derlying translator in terms of coverage and accuracy; and (3) we provide
open access to translations for Maple and Mathematica of the formulae in
the NIST Digital Library of Mathematical Functions.

Keywords: Presentation to Computation, LaCASt, LaTeX, Semantic La-
TeX, Computer Algebra Systems, Digital Mathematical Library

1 Introduction

Digital Mathematical Libraries (DML) gather the knowledge and results from thou-
sands of years of mathematical research. Even though pure and applied mathematics
are precise disciplines, gathering their knowledge bases over many years results in
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issues which every digital library shares: consistency, completeness, and accuracy.
Likewise, Computer Algebra Systems (CAS)® play a crucial role in the modern era
for pure and applied mathematics, and those fields which rely on them. CAS can
be used to simplify, manipulate, compute, and visualize mathematical expressions.
Accordingly, modern research regularly uses DML and CAS together. Nonetheless,
DML [7,14] and CAS [1,20,11] are not exempt from having bugs or errors. Durdn
et al. [11] even raised the rather dramatic question: “can we trust in [CAS]?”

Existing comprehensive DML, such as the Digital Library of Mathematical Func-
tions (DLMF) [10], are consistently updated and frequently corrected with errata®.
Although each chapter of the DLMF has been carefully written, edited, validated,
and proofread over many years, errors still remain. Maintaining a DML, such as the
DLMF, is a laborious process. Likewise, CAS are eminently complex systems, and in
the case of commercial products, often similar to black boxes in which the magic (i.e.,
the computations) happens in opaque private code [11]. CAS, especially commercial
products, are often exclusively tested internally during development.

An independent examination process can improve testing and increase trust in the
systems and libraries. Hence, we want to elaborate on the following research question.

How can digital mathematical libraries and computer algebra systems be utilized
to improve and verify one another?

Our initial approach for answering this question is inspired by our previous studies
on translating DLMF equations to CAS [7]. In order to verify a translation tool from
a specific WTX dialect to Maple'. , we performed symbolic and numeric evaluations
on equations from the DLMF. Our approach presumes that a proven equation in a
DML must be also valid in a CAS. In turn, a disparity in between the DML and
CAS would lead to an issue in the translation process. However, assuming a correct
translation, a disparity would also indicate an issue either in the DML source or the
CAS implementation. In turn, we can take advantage of the same approach to improve
and even verify DML with CAS and vice versa. Unfortunately, previous efforts to
translate mathematical expressions from various formats, such as I TEX [8,14,29],
MATHML [31], or OpenMath [18,30], to CAS syntax have shown that the translation
will be the most critical part of this verification approach.

In this paper, we elaborate on the feasibility and limitations of the translation
approach from DML to CAS as a possible answer to our research question. We
further focus on the DLMF as our DML and the two general-purpose CAS Maple
and Mathematica for this first study. This relatively sharp limitation is necessary in
order to analyze the capabilities of the underlying approach to verify commercial CAS

8 In the sequel, the acronyms CAS and DML are used, depending on the context, inter-
changeably with their plurals.

9 https://dlmf .nist.gov/errata/ [accessed 09/01/2021]

10 The mention of specific products, trademarks, or brand names is for purposes of iden-
tification only. Such mention is not to be interpreted in any way as an endorsement
or certification of such products or brands by the National Institute of Standards and
Technology, nor does it imply that the products so identified are necessarily the best
available for the purpose. All trademarks mentioned herein belong to their respective
owners.
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and large DML. The DLMF uses semantic macros internally in order to disambiguate
mathematical expressions [27,35]. These macros help to mitigate the open issue
of retrieving sufficient semantic information from a context to perform translations
to formal languages [31,14]. Further, the DLMF and general-purpose CAS have a
relatively large overlap in coverage of special functions and orthogonal polynomials.
Since many of those functions play a crucial role in a large variety of different research
fields, we focus in this study mainly on these functions. Lastly, we will take our
previously developed translation tool IACAST [8,14] as the baseline for translations
from the DLMF to Maple. In this successor project, we focus on improving I2CasT
to minimize the negative effect of wrong translations as much as possible for our
study. In the future, other DML and CAS can be improved and verified following
the same approach by using a different translation approach depending on the data
of the DML, e.g., MATHML [31] or OpenMath [18].

In particular, in this paper, we fix the majority of the remaining issues of IACAST [7],
which allows our tool to translate twice as many expressions from the DLMF to the
CAS as before. Current extensions include the support for the mathematical opera-
tors: sum, product, limit, and integral, as well as overcoming semantic hurdles associ-
ated with Lagrange (prime) notations commonly used for differentiation. Further, we
extend its support to include Mathematica using the freely available Wolfram Engine
for Developers (WED)!! (hereafter, with Mathematica, we refer to the WED). These
improvements allow us to cover a larger portion of the DLMF, increase the reliability
of the translations via ACasT, and allow for comparisons between two major general-
purpose CAS for the first time, namely Maple and Mathematica. Finally, we provide
open access to all the results contained within this paper, including all translations
of DLMF formulae, an endpoint to ACasT'2, and the full source code of ACAST!3.

The paper is structured as follows. Section 2 explains the data in the DLMF.
Section 3 focus on the improvements of ACAST that had been made to make the trans-
lation as comprehensive and reliable as possible for the upcoming evaluation. Section 4
explains the symbolic and numeric evaluation pipeline. Since Cohl et al. [7] only briefly
sketched the approach of a numeric evaluation, we will provide an in-depth discussion
of that process in Section 4. Subsequently, we analyze the results in Section 5. Finally,
we conclude the findings and provide an outlook for upcoming projects in Section 6.

1.1 Related Work

Existing verification techniques for CAS often focus on specific subroutines or func-
tions [26,20,5,12,6,25,21,17], such as a specific theorems [23], differential equations [19],
or the implementation of the math.h library [24]. Most common are verification ap-
proaches that rely on intermediate verification languages [5,20,21,19,17], such as
Boogie [25,2] or Why3 [21,4], which, in turn, rely on proof assistants and theorem
provers, such as Cog [5,3], Isabelle [19,28], or HOL Light [20,16,17]. Kaliszyk and
Wiedijk [20] proposed on entire new CAS which is built on top of the proof assis-
tant HOL Light so that each simplification step can be proven by the underlying
" https://www.wolfram.com/engine/ [accessed 09/01/2021)

2 nttps://lacast.wmflabs.org/ [accessed 01/01/2022]
13 https://github. com/ag-gipp/LaCASt [accessed 04/01/2022]
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architecture. Lewis and Wester [26] manually compared the symbolic computations
on polynomials and matrices with seven CAS. Aguirregabiria et al. [1] suggested to
teach students the known traps and difficulties with evaluations in CAS instead to
reduce the overreliance on computational solutions.

Coll et al. [7] developed the aforementioned translation tool IMCAST, which trans-
lates expressions from a semantically enhanced IMTEX dialect to Maple. By evaluating
the performance and accuracy of the translations, we were able to discover a sign-error
in one the DLMF’s equations [7]. While the evaluation was not intended to verify
the DLMF, the translations by the rule-based translator IACasT provided sufficient
robustness to identify issues in the underlying library. To the best of our knowledge,
besides this related evaluation via I2CaST, there are no existing libraries or tools that
allow for automatic verification of DML.

2 The DLMF dataset

In the modern era, most mathematical texts (handbooks, journal publications, mag-
azines, monographs, treatises, proceedings, etc.) are written using the document
preparation system I#TEX. However, the focus of IXIEX is for precise control of the
rendering mechanics rather than for a semantic description of its content. In contrast,
CAS syntax is coercively unambiguous in order to interpret the input correctly. Hence,
a transformation tool from DML to CAS must disambiguate mathematical expres-
sions. While there is an ongoing effort towards such a process [32,22,34,13,36,33],
there is no reliable tool available to disambiguate mathematics sufficiently to date.
The DLMF contains numerous relations between functions and many other
properties. It is written in XTEX but uses specific semantic macros when applicable [35].
These semantic macros represent a unique function or polynomial defined in the DLMF.
Hence, the semantic KTEX used in the DLMF is often unambiguous. For a successful
evaluation via CAS, we also need to utilize all requirements of an equation, such as
constraints, domains, or substitutions. The DLMF provides this additional data too
and generally in a machine-readable form [35]. This data is accessible via the i-boxes
(information boxes next to an equation marked with the icon @) If the information
is not given in the attached i-box or the information is incorrect, the translation via
ACasST would fail. The i-boxes, however, do not contain information about branch cuts
(see Section B) or constraints. Constraints are accessible if they are directly attached
to an equation. If they appear in the text (or even a title), IACAST cannot utilize them.
The test dataset, we are using, was generated from DLMF Version 1.1.3 (2021-09-15)
and contained 9,977 formulae with 1,505 defined symbols, 50,590 used symbols, 2,691
constraints, and 2,443 warnings for non-semantic expressions, i.e., expressions without
semantic macros [35]. Note that the DLMF does not provide access to the underlying
ETEX source. Therefore, we added the source of every equation to our result dataset.

3 Semantic BETEX to CAS translation

The aforementioned translator IZCAST was developed by Cohl and Greiner-Petter et
al. [8,7,14]. They reported a coverage of 58.8% translations for a manually selected



Comparative Verification of the DLMF and CAS 91

part of the DLMF to the CAS Maple. This version of IACAST serves as a baseline
for our improvements. In order to verify their translations, they used symbolic and
numeric evaluations and reported a success rate of ~16% for symbolic and ~12%
for numeric verifications.

Evaluating the baseline on the entire DLMF result in a coverage of only 31.6%.
Hence, we first want to increase the coverage of IMCaST on the DLMF. To achieve this
goal, we first increasing the number of translatable semantic macros by manually defin-
ing more translation patterns for special functions and orthogonal polynomials. For
Maple, we increased the number from 201 to 261. For Mathematica, we define 279 new
translation patterns which enables ACaST' to perform translations to Mathematica.
Even though the DLMF uses 675 distinguished semantic macros, we cover ~70% of
all DLMF equations with our extended list of translation patterns (see Zipf’s law for
mathematical notations [15]). In addition, we implemented rules for translations that
are applicable in the context of the DLMF, e.g., ignore ellipsis following floating-point
values or \choose always refers to a binomial expression. Finally, we tackle the remain-
ing issues outlined by Cohl et al. [7] which can be categorized into three groups: (i)
expressions of which the arguments of operators are not clear, namely sums, products,
integrals, and limits; (ii) expressions with prime symbols indicating differentiation; and
(iii) expressions that contain ellipsis. While we solve some of the cases in Group (iii) by
ignoring ellipsis following floating-point values, most of these cases remain unresolved.
In the following, we elaborate our solutions for (i) in Section 3.1 and (ii) in Section 3.2.

3.1 Parse sums, products, integrals, and limits

Here we consider common notations for the sum, product, integral, and limit operators.
For these operators, one may consider mathematically essential operator metadata
(MEOM). For all these operators, the MEOM includes argument(s) and bound vari-
able(s). The operators act on the arguments, which are themselves functions of the
bound variable(s). For sums and products, the bound variables are referred to as
indices. The bound variables for integrals'* are called integration variables. For limits,
the bound variables are continuous variables (for limits of continuous functions) and
indices (for limits of sequences). For integrals, MEOM include precise descriptions of
regions of integration (e.g., piecewise continuous paths/intervals/regions). For limits,
MEOM include limit points (e.g., points in R™ or C™ for n€N), as well as information
related to whether the limit to the limit point is independent or dependent on the
direction in which the limit is taken (e.g., one-sided limits).

For a translation of mathematical expressions involving the I4TEX commands
\sum, \int, \prod, and \1lim, we must extract the MEOM. This is achieved by (a)
determining the argument of the operator and (b) parsing corresponding subscripts,
superscripts, and arguments. For integrals, the MEOM may be complicated, but cer-
tainly contains the argument (function which will be integrated), bound (integration)
variable(s) and details related to the region of integration. Bound variable extraction
is usually straightforward since it is usually contained within a differential expression
4 The notion of integrals includes: antiderivatives (indefinite integrals), definite integrals,

contour integrals, multiple (surface, volume, etc.) integrals, Riemannian volume integrals,
Riemann integrals, Lebesgue integrals, Cauchy principal value integrals, etc.
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(infinitesimal, pushforward, differential 1-form, exterior derivative, measure, etc.),
e.g., dx. Argument extraction is less straightforward since even though differential
expressions are often given at the end of the argument, sometimes the differential
expression appears in the numerator of a fraction (e.g., [ ! 58590) In which case, the
argument is everything to the right of the \int (neglecting its subscripts and super-
scripts) up to and including the fraction involving the differential expression (which
may be replaced with 1). In cases where the differential expression is fully to the right
of the argument, then it is a termination symbol. Note that some scientists use an
alternate notation for integrals where the differential expression appears immediately
to the right of the integral, e.g., [dzf(z). However, this notation does not appear
in the DLMF. If such notations are encountered, we follow the same approach that
we used for sums, products, and limits (see Section 3.1).

Extraction of variables and corresponding MEOM The subscripts and super-
scripts of sums, products, limits, and integrals may be different for different notations
and are therefore challenging to parse. For integrals, we extract the bound (integra-
tion) variable from the differential expression. For sums and products, the upper
and lower bounds may appear in the subscript or superscript. Parsing subscripts is
comparable with the problem of parsing constraints [7] (which are often not consis-
tently formulated). We overcame this complexity by manually defining patterns of
common constraints and refer to them as blueprints. This blueprint pattern approach
allows IACasT to identify the MEOM in the sub- and superscripts. A more detailed
explanations with examples about the blueprints is available in the Appendix A'®.

Identification of operator arguments Once we have extracted the bound variable
for sums, products, and limits, we need to determine the end of the argument. We
analyzed all sums in the DLMF and developed a heuristic that covers all the formulae
in the DLMF and potentially a large portion of general mathematics. Let x be the
extracted bound variable. For sums, we consider a summand as a part of the argument
if (I) it is the very first summand after the operation; or (II) x is an element of the
current summand; or (III) z is an element of the following summand (subsequent
to the current summand) and there is no termination symbol between the current
summand and the summand which contains x with an equal or lower depth according
to the parse tree (i.e., closer to the root). We consider a summand as a single logical
construct since addition and subtraction are granted a lower operator precedence than
multiplication in mathematical expressions. Similarly, parentheses are granted higher
precedence and, thus, a sequence wrapped in parentheses is part of the argument if
it obeys the rules (I-IIT). Summands, and such sequences, are always entirely part
of sums, products, and limits or entirely not.

A termination symbol always marks the end of the argument list. Termination
symbols are relation symbols, e.g., =, #, <, closing parentheses or brackets, e.g.,
), ], or >, and other operators with MEOMs, if and only if, they define the same
bound variable. If x is part of a subsequent operation, then the following operator

15 The Appendix is available at https://arxiv.org/abs/2201.09488.
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is considered as part of the argument (as in (II)). However, a special condition for
termination symbols is that it is only a termination symbol for the current chain of
arguments. Consider a sum over a fraction of sums. In that case, we may reach a
termination symbol within the fraction. However, the termination symbol would be
deeper inside the parse tree as compared to the current list of arguments. Hence, we
used the depth to determine if a termination symbol should be recognized or not.
Consider an unusual notation with the binomial coefficient as an example

i(:) Zimm—zﬂ (1)

k
k=0 k=0 Hm:lm m=1"

This equation contains two termination symbols, marked ~
red and green. The red termination symbol = is obviously +2
for the first sum on the left-hand side of the equation. The
o . N c
green termination symbol || terminates the product to the don—iCts
left because both products run over the same bound variable
m. In addition, none of the other = signs are termination —|—N
symbols for the sum on the right-hand side of the equation
because they are deeper in the parse tree and thus do not an: |+ sz: K
terminate the sum.

Note that varN in the blueprints also matches multiple [ZnN:1n+ Zzzlk]
bound variable, e.g., Zm rea- In such cases, = from above
is a list of bound variables and a summand is part of the N N
argument if one of the elements of z is within this summand. [X:szchr 2=tk +n]
Due to the translation, the operation will be split into two  Fig. 1: Example argu-
preceding operations, i.e., > ;4 becomes >0 > i 4. ment identifications for
Figure 1 shows the extracted arguments for some example gums.
sums. The same rules apply for extraction of arguments for
products and limits.

3.2 Lagrange’s notation for differentiation and derivatives

Another remaining issue is the Lagrange (prime) notation for differentiation, since it
does not outwardly provide sufficient semantic information. This notation presents
two challenges. First, we do not know with respect to which variable the differentiation
should be performed. Consider for example the Hurwitz zeta function ((s,a) [10,
§25.11]. In the case of a differentiation ¢’(s,a), it is not clear if the function should be
differentiated with respect to s or a. To remedy this issue, we analyzed all formulae
in the DLMF which use prime notations and determined which variables (slots) for
which functions represent the variables of the differentiation. Based on our analysis, we
extended the translation patterns by meta information for semantic macros according
to the slot of differentiation. For instance, in the case of the Hurwitz zeta function,
the first slot is the slot for prime differentiation, ie., ¢(s,a) = <-((s,a). The identified
variables of differentiations for the special functions in the DLMF can be considered
to be the standard slots of differentiations, e.g., in other DML, (’(s,a) most likely
refers to %C(s,a).
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The second challenge occurs if the slot of differentiation contains complex expres-
sions rather than single symbols, e.g., ¢'(s%,a). In this case, ('(s%,a) = d(s2) (s%,a)

instead of & ¢ (s2,a). Since CAS often do not support derivatives with respect to
complex expressmns, we use the inbuilt substitution functions'® in the CAS to over-
come this issue. To do so, we use a temporary variable temp for the substitution.
CAS perform substitutions from the inside to the outside. Hence, we can use the
same temporary variable temp even for nested substitutions. Table 1 shows the
translation performed for ¢’(s?,a). CAS may provide optional arguments to calculate
the derivatives for certain special functions, e.g., Zeta(n,z,a) in Maple for the n-th
derivative of the Hurwitz zeta function. However, this shorthand notation is generally
not supported (e.g., Mathematica does not define such an optional parameter). Our
substitution approach is more lengthy but also more reliable. Unfortunately, lengthy
expressions generally harm the performance of CAS, especially for symbolic manipula-
tions. Hence, we have a genuine interest in keeping translations short, straightforward
and readable. Thus, the substitution translation pattern is only triggered if the
variable of differentiation is not a single identifier. Note that this substitution only
triggers on semantic macros. Generic functions, including prime notations, are still
skipped.

A related problem to MEOM of Tuple 1: Example translations for the prime

sums, products, integrals, limits, and  derivative of the Hurwitz zeta function with
differentiations are the notations of regpect to s2.

derivatives. The semantic macro for —
derivatives \deriv{wHx} (rendered System ¢'(s%,a)
as d ) is often used with an empty DLMF | \Hurwitzzeta’@{s~2}{a}

first argument to render the function Maple |subs(temp=(s)"(2),diff(
behind the derivative notation e.g., Zeta (0, temp,a) ,temp$ (1))

\deriv{HxH\sine{x} for - sinz. -------4------_ LUl
This leads to the same problern we Mathe- |D[HurwitzZeta[temp,a],

faced above for identifying MEOMs. matica {temp,1}1/.temp—>(s)~(2)

In this case, we use the same heuris-

tic as we did for sums, products, and limits. Note that derivatives may be written
following the function argument, e.g., sin(:r)%. If we are unable to identify any
following summand that contains the variable of differentiation before we reach a
termination symbol, we look for arguments prior to the derivative according to the
heuristic (I-III).

‘Wronskians With the support of prime differentiation described above, we are
also able to translate the Wronskian [10, (1.13.4)] to Maple and Mathematica. A
translation requires one to identify the variable of differentiation from the elements
of the Wronskian, e.g., z for #{Ai(z),Bi(z)} from [10, (9.2.7)]. We analyzed all
Wronskians in the DLMF and discovered that most Wronskians have a special

6 Note that Maple also support an evaluation substitution via the two-argument eval
function. Since our substitution only triggers on semantic macros, we only use subs if the
function is defined in Maple. In turn, as far as we know, there is no practical difference
between subs and the two-argument eval in our case.
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function in its argument—such as the example above. Hence, we can use our previously
inserted metadata information about the slots of differentiation to extract the variable
of differentiation from the semantic macros. If the semantic macro argument is a
complex expression, we search for the identifier in the arguments that appear in both
elements of the Wronskian. For example, in # {Ai(2%),((2%,a)}, we extract z as the
variable since it is the only identifier that appears in the arguments z® and 2% of the
elements. This approach is also used when there is no semantic macro involved, i.e.,
from #'{2%,22} we extract z as well. If RCa<T extracts multiple candidates or none,
it throws a translation exception.

4 Evaluation of the DLMF using CAS

} Digital Library of Mathematical Functions Constraints || Constraint Blueprints_|

() === (") B

(7))o g envegatvapEfoctal
KkJ" coefficient integer k: integer

Case Analyzer

= Workflow W
Substitutions
=== Constraints

2,509 (~ 37.9%) 1,357 (~ 51.8%)

Numeric Test

Success ” L Value Filter 1,784 (~ 51.4%)
== Failure ‘
¥ Maple * 1,084 (~ 26.3%) * y y 698 (~ 26.7%)*
©Maplesoft, Inc. Symbolic o Numeric
Mathematica ~ 26.29 > -
©Wolfram Research, Inc. | 1235 (¥ 26:2%) Evaluator Evaluator 784 (~ 22.6%)

Fig.2: The workflow of the evaluation engine and the overall results. Errors and
abortions are not included. The generated dataset contains 9,977 equations. In total,
the case analyzer splits the data into 10,930 cases of which 4,307 cases were filtered.
This sums up to a set of 6,623 test cases in total.

For evaluating the DLMF with Maple and Mathematica, we follow the same
approach as demonstrated in [7], i.e., we symbolically and numerically verify the
equations in the DLMF with CAS. If a verification fails, symbolically and numerically,
we identified an issue either in the DLMF, the CAS, or the verification pipeline.
Note that an issue does not necessarily represent errors/bugs in the DLMF, CAS,
or IACAST (see the discussion about branch cuts in Section B). Figure 2 illustrates
the pipeline of the evaluation engine. First, we analyze every equation in the DLMF
(hereafter referred to as test cases). A case analyzer splits multiple relations in a single
line into multiple test cases. Note that only the adjacent relations are considered,
i.e., with f(2)=g(z)=h(z), we generate two test cases f(z)=g(z) and g(z) =h(z)
but not f(z)=~h(z). In addition, expressions with + and F are split accordingly, e.g.,
it =eT7/2 (10, (4.4.12)] is split into i =e~"/2 and i ~* =eT™/2, The analyzer utilizes
the attached additional information in each line, i.e., the URL in the DLMF, the
used and defined symbols, and the constraints. If a used symbol is defined elsewhere
in the DLMF, it performs substitutions. For example, the multi-equation [10, (9.6.2)]
is split into six test cases and every  is replaced by 22%/2 as defined in [10, (9.6.1)].
The substitution is performed on the parse tree of expressions [14]. A definition is
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only considered as such, if the defining symbol is identical to the equation’s left-hand
side. That means, z = (2¢)*/? [10, (9.6.10)] is not considered as a definition for .
Further, semantic macros are never substituted by their definitions. Translations for
semantic macros are exclusively defined by the authors. For example, the equation [10,
(11.5.2)] contains the Struve K, (z) function. Since Mathematica does not contain
this function, we defined an alternative translation to its definition H,(z)—-Y,(z) in
[10, (11.2.5)] with the Struve function H, (z) and the Bessel function of the second
kind Y}, (z), because both of these functions are supported by Mathematica. The
second entry in Table 3 in the Appendix D shows the translation for this test case.

Next, the analyzer checks for additional constraints defined by the used symbols
recursively. The mentioned Struve K, (z) test case [10, (11.5.2)] contains the Gamma
function. Since the definition of the Gamma function [10, (5.2.1)] has a constraint
Rz >0, the numeric evaluation must respect this constraint too. For this purpose,
the case analyzer first tries to link the variables in constraints to the arguments
of the functions. For example, the constraint z > 0 sets a constraint for the first
argument z of the Gamma function. Next, we check all arguments in the actual test
case at the same position. The test case contains I'(v+1/2). In turn, the variable z
in the constraint of the definition of the Gamma function $z >0 is replaced by the
actual argument used in the test case. This adds the constraint $(v+1/2) >0 to the
test case. This process is performed recursively. If a constraint does not contain any
variable that is used in the final test case, the constraint is dropped.

In total, the case analyzer would identify four additional constraints for the test
case [10, (11.5.2)]. Table 3 in the Appendix D shows the applied constraints (including
the directly attached constraint Rz >0 and the manually defined global constraints
from Figure 3). Note that the constraints may contain variables that do not appear
in the actual test case, such as ft&v+k+1>0. Such constraints do not have any effect
on the evaluation because if a constraint cannot be computed to true or false, the
constraint is ignored. Unfortunately, this recursive loading of additional constraints
may generate impossible conditions in certain cases, such as |I'(iy)| [10, (5.4.3)]. There
are no valid real values of y such that R(iy) >0. In turn, every test value would be
filtered out, and the numeric evaluation would not verify the equation. However, such
cases are the minority and we were able to increase the number of correct evaluations
with this feature.

To avoid a large portion of incorrect calculations, the analyzer filters the dataset
before translating the test cases. We apply two filter rules to the case analyzer. First,
we filter expressions that do not contain any semantic macros. Due to the limitations
of IACAST, these expressions most likely result in wrong translations. Further, it filters
out several meaningless expressions that are not verifiable, such as z =z in [10,
(4.2.4)]. The result dataset flag these cases with ‘Skipped - no semantic math’. Note
that the result dataset still contains the translations for these cases to provide a
complete picture of the DLMF. Second, we filter expressions that contain ellipsis'”
(e.g., \cdots), approximations, and asymptotics (e.g., O(2?)) since those expressions
cannot be evaluated with the proposed approach. Further, a definition is skipped if it is
not a definition of a semantic macro, such as [10, (2.3.13)], because definitions without

7 Note that we filter out ellipsis (e.g., \cdots) but not single dots (e.g., \cdot).
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an appropriate counterpart in the CAS are meaningless to evaluate. Definitions of
semantic macros, on the other hand, are of special interest and remain in the test set
since they allow us to test if a function in the CAS obeys the actual mathematical
definition in the DLMF. If the case analyzer (see Figure 2) is unable to detect a
relation, i.e., split an expression on <, <, >, >, =, or #, the line in the dataset is also
skipped because the evaluation approach relies on relations to test. After splitting
multi-equations (e.g., £, F, a = b= ¢), filtering out all non-semantic expressions,
non-semantic macro definitions, ellipsis, approximations, and asymptotics, we end up
with 6,623 test cases in total from the entire DLMF.

After generating the test case with all constraints, we translate the expression to
the CAS representation. Every successfully translated test case is then symbolically
verified, i.e., the CAS tries to simplify the difference of an equation to zero. Non-
equation relations simplifies to Booleans. Non-simplified expressions are verified
numerically for manually defined test values, i.e., we calculate actual numeric values
for both sides of an equation and check their equivalence.

4.1 Symbolic Evaluation

The symbolic evaluation was performed for Maple as in [7]. However, we use the
newer version Maple 2020. Another feature we added to IACAST is the support of
packages in Maple. Some functions are only available in modules (packages) that
must be preloaded, such as QPochhammer in the package QDifferenceEquations!®.
The general simplify method in Maple does not cover g-hypergeometric functions.
Hence, whenever IACAST loads functions from the g-hyper-geometric package, the
better performing QSimplify method is used. With the WED and the new support for
Mathematica in [A#CAST, we perform the symbolic and numeric tests for Mathematica
as well. The symbolic evaluation in Mathematica relies on the full simplification'®. For
Maple and Mathematica, we defined the global assumptions z,y € R and k,n,meN.
Constraints of test cases are added to their assumptions to support simplification.
Adding more global assumptions for symbolic computation generally harms the
performance since CAS internally uses assumptions for simplifications. It turned
out that by adding more custom assumptions, the number of successfully simplified
expressions decreases.

4.2 Numerical Evaluation

Defining an accurate test set of values to analyze an equivalence can be an arbitrarily
complex process. It would make sense that every expression is tested on specific values
according to the containing functions. However, this laborious process is not suitable
for evaluating the entire DML and CAS. It makes more sense to develop a general set
of test values that (i) generally covers interesting domains and (ii) avoid singularities,
branch cuts, and similar problematic regions. Considering these two attributes, we
come up with the ten test points illustrated in Figure 3. It contains four complex
values on the unit circle and six points on the real axis. The test values cover the

8 https://jp.maplesoft.com/support/help/Maple/view.aspx?path=
QDifferenceEquations/QPochhammer [accessed 09/01/2021]

9 nttps://reference.wolfram.com/language/ref /FullSimplify.html
[accessed 09/01/2021]
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general area of interest (complex values in all four quadrants, negative and positive
real values) and avoid the typical singularities at {0,£1,+:}. In addition, several
variables are tied to specific values for entire sections. Hence, we applied additional
global constraints to the test cases.

The numeric evaluation engine ~Test Values % Special Test Values
heavily relies on the performance of es 1. | im namokblisgee €{1,2,3}
extracting free variables from an ex- / \.\e ¢ Global Constraints
pression. Unfortunately, the inbuilt ~ —e—e——e——s——s—e—p fffff;? 27?
functions in CAS, if available, are -2 Tz e 2 2/ 2 2 zy,a.b.c,r.8,t0,3 ER
not very reliable. As the authors ex- O —ir

e

plained in [7], a custom algorithm
within Maple was necessary to Iig 3: The ten numeric test values in the com-

extract identifiers. Mathematica Plex plane for general variables. The dashed line
has the undocumented function represents the umit circle |z|=1. At the right,
Reduce ‘FreeVariables for this We show the set of values for special variable
purpose. However, both systems, values and general global constraints. On the
the custom solution in Maple and right, i is referring to a generic variable and not

the inbuilt Mathematica function, t© the imaginary unit.

have problems distinguishing free variables of entire expressions from the bound
variables in MEOMs, e.g., integration and continuous variables. Mathematica some-
times does not extract a variable but returns the unevaluated input instead. We
regularly faced this issue for integrals. However, we discovered one example without
integrals. For EulerE[n,0] from [10, (24.4.26)], we expected to extract {n} as the
set of free variables but instead received a set of the unevaluated expression itself
{EulerE[n,0]}?. Since the extended version of IACAST handles operators, including
bound variables of MEOMs, we drop the use of internal methods in CAS and extend
ACAST to extract identifiers from an expression. During a translation process, MCAST
tags every single identifier as a variable, as long as it is not an element of a MEOM.
This simple approach proves to be very efficient since it is implemented alongside the
translation process itself and is already more powerful as compared to the existing
inbuilt CAS solutions. We defined subscripts of identifiers as a part of the identifier,
e.g., z1 and 2o are extracted as variables from z;+ 2z, rather than z.

The general pipeline for a numeric evaluation works as follows. First, we replace
all substitutions and extract the variables from the left- and right-hand sides of
the test expression via ACAST. For the previously mentioned example of the Struve
function [10, (11.5.2)], ACaAST identifies two variables in the expression, v and z.
According to the values in Figure 3, v and z are set to the general ten values. A
numeric test contains every combination of test values for all variables. Hence, we
generate 100 test calculations for [10, (11.5.2)]. Afterward, we filter the test values
that violate the attached constraints. In the case of the Struve function, we end up
with 25 test cases.

In addition, we apply a limit of 300 calculations for each test case and abort
a computation after 30 seconds due to computational limitations. If the test case
generates more than 300 test values, only the first 300 are used. Finally, we calculate

20 The bug was reported to and confirmed by Wolfram Research Version 12.0.
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the result for every remaining test value, i.e., we replace every variable by their value
and calculate the result. The replacement is done by Mathematica’s ReplaceAll
method because the more appropriate method With, for unknown reasons, does not
always replace all variables by their values. We wrap test expressions in Normal
for numeric evaluations to avoid conditional expressions, which may cause incorrect
calculations (see Section 5.1 for a more detailed discussion of conditional outputs).
After replacing variables by their values, we trigger numeric computation. If the
absolute value of the result (i.e., the difference between left- and right-hand side of the
equation) is below the defined threshold of 0.001 or true (in the case of inequalities),
the test calculation is considered successful. A numeric test case is only considered
successful if and only if every test calculation was successful. If a numeric test case
fails, we store the information on which values it failed and how many of these were
successful.

5 Results

The translations to Maple and Mathematica, the symbolic results, the numeric com-
putations, and an overview PDF of the reported bugs to Mathematica are available
online on our demopage. In the following, we mainly focus on Mathematica because
of page limitations and because Maple has been investigated more closely by [7]. The
results for Maple are also available online. Compared to the baseline (~31%), our
improvements doubled the amount translations (~=62%) for Maple and reach ~71%
for Mathematica. The majority of expressions that cannot be translated contain
macros that have no adequate translation pattern to the CAS, such as the macros for
interval Weierstrass lattice roots [10, §23.3(i)] and the multivariate hypergeometric
function [10, (19.16.9)]. Other errors (6% for Maple and Mathematica) occur for
several reasons. For example, out of the 418 errors in translations to Mathematica,
130 caused an error because the MEOM of an operator could not be extracted, 86
contained prime notations that do not refer to differentiations, 92 failed because of
the underlying BITEX parser [34], and in 46 cases, the arguments of a DLMF macro
could not be extracted.

Out of 4,713 translated expressions, 1,235 (26.2%) were successfully simplified
by Mathematica (1,084 of 4,114 or 26.3% in Maple). For Mathematica, we also
count results that are equal to 0 under certain conditions as successful (called
ConditionalExpression). We identified 65 of these conditional results: 15 of the
conditions are equal to constraints that were provided in the surrounding text but
not in the info box of the DLMF equation; 30 were produced due to branch cut
issues (see Section B in the Appendix); and 20 were the same as attached in the
DLMF but reformulated, e.g., z€ C\(1,00) from [10, (25.12.2)] was reformulated to
Jz#0VRz < 1. The remaining translated but not symbolically verified expressions
were numerically evaluated for the test values in Figure 3. For the 3,474 cases, 784
(22.6%) were successfully verified numerically by Mathematica (698 of 2,618 or 26.7%
by Maple?!). For 1,784 the numeric evaluation failed. In the evaluation process, 655

2! Due to computational issues, 120 cases must have been skipped manually. 292 cases
resulted in an error during symbolic verification and, therefore, were skipped also for
numeric evaluations. Considering these skipped cases as failures, decreases the numerically
verified cases to 23% in Maple.
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computations timed out and 180 failed due to errors in Mathematica. Of the 1,784
failed cases, 691 failed partially, i.e., there was at least one successful calculation
among the tested values. For 1,091 all test values failed. Table 3 in the Appendix D
shows the results for three sample test cases. The first case is a false positive evaluation
because of a wrong translation. The second case is valid, but the numeric evaluation
failed due to a bug in Mathematica (see next subsection). The last example is valid
and was verified numerically but was too complex for symbolic verifications.

5.1 Error Analysis

The numeric tests’ performance strongly depends on the correct attached and utilized
information. The first example in Table 3 in the Appendix D illustrates the difficulty
of the task on a relatively easy case. Here, the argument of f was not explicitly
given, such as in f(x). Hence, IRCaST translated f as a variable. Unfortunately, this
resulted in a false verification symbolically and numerically. This type of error mostly
appears in the first three chapters of the DLMF because they use generic functions
frequently. We hoped to skip such cases by filtering expressions without semantic
macros. Unfortunately, this derivative notation uses the semantic macro deriv. In
the future, we filter expressions that contain semantic macros that are not linked to
a special function or orthogonal polynomial.

As an attempt to investigate the reliability of the numeric test pipeline, we can run
numeric evaluations on symbolically verified test cases. Since Mathematica already
approved a translation symbolically, the numeric test should be successful if the
pipeline is reliable. Of the 1,235 symbolically successful tests, only 94 (7.6%) failed
numerically. None of the failed test cases failed entirely, i.e., for every test case, at
least one test value was verified. Manually investigating the failed cases reveal 74 cases
that failed due to an Indeterminate response from Mathematica and 5 returned
infinity, which clearly indicates that the tested numeric values were invalid, e.g.,
due to testing on singularities. Of the remaining 15 cases, two were identical: [10,
(15.9.2)] and [10, (18.5.9)]. This reduces the remaining failed cases to 14. We evaluated
invalid values for 12 of these because the constraints for the values were given in
the surrounding text but not in the info boxes. The remaining 2 cases revealed a
bug in Mathematica regarding conditional outputs (see below). The results indicate
that the numeric test pipeline is reliable, at least for relatively simple cases that
were previously symbolically verified. The main reason for the high number of failed
numerical cases in the entire DLMF (1,784) are due to missing constraints in the
i-boxes and branch cut issues (see Section B in the Appendix), i.e., we evaluated
expressions on invalid values.

Bug reports Mathematica has trouble with certain integrals, which, by default,
generate conditional outputs if applicable. With the method Normal, we can suppress
conditional outputs. However, it only hides the condition rather than evaluating
the expression to a non-conditional output. For example, integral expressions in [10,
(10.9.1)] are automatically evaluated to the Bessel function Jy(|2|) for the condition??
z € R rather than Jy(z) for all z € C. Setting the GenerateConditions?® option

22 Jo(x) with z€R is even. Hence, Jo(|2|) is correct under the given condition.

23 https://reference.wolfram.com/language/ref/GenerateConditions.html [accessed
09/01/2021]
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to None does not change the output. Normal only hides z € R but still returns
Jo(]z]). To fix this issue, for example in (10.9.1) and (10.9.4), we are forced to set
GenerateConditions to false.

Setting GenerateConditions to false, on the other hand, reveals severe errors
in several other cases. Consider [“t~'e~*dt [10, (8.4.4)], which gets evaluated to
I'(0,z) but (condition) for Rz >0ATz=0. With GenerateConditions set to false,
the integral incorrectly evaluates to I'(0,z)+In(z). This happened with the 2 cases
mentioned above. With the same setting, the difference of the left- and right-hand
sides of [10, (10.43.8)] is evaluated to 0.398942 for z,v = 1.5. If we evaluate the
same expression on x, v = % the result is Indeterminate due to infinity. For
this issue, one may use NIntegrate rather than Integrate to compute the integral.
However, evaluating via NIntegrate decreases the number of successful numeric
evaluations in general. We have revealed errors with conditional outputs in (8.4.4),
(10.22.39), (10.43.8-10), and (11.5.2) (in [10]). In addition, we identified one critical
error in Mathematica. For [10, (18.17.47)], WED (Mathematica’s kernel) ran into
a segmentation fault (core dumped) for n > 1. The kernel of the full version of
Mathematica gracefully died without returning an output?*.

Besides Mathematica, we also identified several issues in the DLMF. None of the
newly identified issues were critical, such as the reported sign error from the previous
project [7], but generally refer to missing or wrong attached semantic information.
With the generated results, we can effectively fix these errors and further semantically
enhance the DLMF. For example, some definitions are not marked as such, e.g.,
Q(z)= [y e q(t)dt [10, (2.4.2)]. In [10, (10.24.4)], v must be a real value but was
linked to a complex parameter and x should be positive real. An entire group of
cases [10, (10.19.10-11)] also discovered the incorrect use of semantic macros. In
these formulae, Py(a) and Q(a) are defined but had been incorrectly marked up as
Legendre functions going all the way back to DLMF Version 1.0.0 (May 7, 2010). In
some cases, equations are mistakenly marked as definitions, e.g., [10, (9.10.10)] and
[10, (9.13.1)] are annotated as local definitions of n. We also identified an error in
IACasT, which incorrectly translated the exponential integrals F4(z), Ei(z) and Ein(z)
(defined in [10, §6.2(i)]). A more explanatory overview of discovered, reported, and
fixed issues in the DLMF, Mathematica, and Maple is provided in the Appendix C.

6 Conclusion

We have presented a novel approach to verify the theoretical digital mathematical
library DLMF with the power of two major general-purpose computer algebra systems
Maple and Mathematica. With IACasT, we transformed the semantically enhanced
IXTEX expressions from the DLMF to each CAS. Afterward, we symbolically and
numerically evaluated the DLMF expressions in each CAS. Our results are auspicious
and provide useful information to maintain and extend the DLMF efficiently. We
further identified several errors in Mathematica, Maple [7], the DLMF, and the
transformation tool IACaST, proving the profit of the presented verification approach.

24 All errors were reported to and partially confirmed by Wolfram Research. See Appendix C
for more information.
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Further, we provide open access to all results, including translations and evaluations®.

and to the source code of IACAST?S.

The presented results show a promising step towards an answer for our initial
research question. By translating an equation from a DML to a CAS, automatic
verifications of that equation in the CAS allows us to detect issues in either the DML
source or the CAS implementation. Fach analyzed failed verification successively
improves the DML or the CAS. Further, analyzing a large number of equations from
the DML may be used to finally verify a CAS. In addition, the approach can be
extended to cover other DML and CAS by exploiting different translation approaches,
e.g., via MATHML [31] or OpenMath [18].

Nonetheless, the analysis of the results, especially for an entire DML, is cumber-
some. Minor missing semantic information, e.g., a missing constraint or not respected
branch cut positions, leads to a relatively large number of false positives, i.e., unverified
expressions correct in the DML and the CAS. This makes a generalization of the
approach challenging because all semantics of an equation must be taken into account
for a trustworthy evaluation. Furthermore, evaluating equations on a small number
of discrete values will never provide sufficient confidence to verify a formula, which
leads to an unpredictable number of true negatives, i.e., erroneous equations that
pass all tests. A more sophisticated selection of critical values or other numeric tools
with automatic results verification (such as variants of Newton’s interval method)
potentially mitigates this issue in the future. After all, we conclude that the approach
provides valuable information to complement, improve, and maintain the DLMF,
Maple, and Mathematica. A trustworthy verification, on the other hand, might be
out of reach.

6.1 Future Work

The resulting dataset provides valuable information about the differences between
CAS and the DLMF. These differences had not been largely studied in the past
and are worthy of analysis. Especially a comprehensive and machine-readable list
of branch cut positioning in different systems is a desired goal [9]. Hence, we will
continue to work closely together with the editors of the DLMF to improve further
and expand the available information on the DLMF'. Finally, the numeric evaluation
approach would benefit from test values dependent on the actual functions involved.
For example, the current layout of the test values was designed to avoid problematic
regions, such as branch cuts. However, for identifying differences in the DLMF and
CAS, especially for analyzing the positioning of branch cuts, an automatic evaluation
of these particular values would be very beneficial and can be used to collect a
comprehensive, inter-system library of branch cuts. Therefore, we will further study
the possibility of linking semantic macros with numeric regions of interest.
Acknowledgements We thank Jiirgen Gerhard from Maplesoft for providing access and
support for Maple. We also thank the DLMF editors for their assistance and support. This
work was supported by the German Research Foundation (DFG grant no.: GI 1259/1) and
the German Academic Exchange Service (DAAD grant no.: 57515245).
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