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Abstract Recurrence quantification analysis (RQA) is a well established method of nonlinear data analysis.
In this work, we present a new strategy for an almost parameter-free RQA. The approach finally omits
the choice of the threshold parameter by calculating the RQA measures for a range of thresholds (in fact
recurrence rates). Specifically, we test the ability of the RQA measure determinism, to sort data with
respect to their signal to noise ratios. We consider a periodic signal, simple chaotic logistic equation, and
Lorenz system in the tested data set with different and even very small signal-to-noise ratios of lengths
102, 103, 104, and 105. To make the calculations possible, a new effective algorithm was developed for
streamlining of the numerical operations on graphics processing unit (GPU).

1 Introduction

The authors in [1] wrote in the very end: “Will it be
possible to design algorithms whose free parameters
can be chosen systematically, via intuition, or perhaps
even automatically? Such developments would stream-
line nonlinear time series analysis, making it an indis-
pensable tool to make sense out of the real world.” In
this article, we present a way of reducing the effect of
a specific choice of the important threshold parameter
in the well-established nonlinear method of recurrence
quantification analysis (RQA).

The popularity of RQA is continuously increasing in
many fields across the science spectra—physical, bio-
logical, and economical, simply everywhere where data
can be obtained [2].

There is yet an open question on the selection of the
basic parameter needed for the calculation of the recur-
rence plot (RP), the base of the RQA. The RP needs
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for its calculations a threshold parameter, ε, those selec-
tion can influence the results but depends on the spe-
cific research question [3]. The choice of ε was already
discussed in previous studies [4–7].

In this work, we propose and study the possibility
of providing RQA in a different way by omitting the
choice of single ε and, thus, making RQA more stable
and objective. Here, we use RQA for comparing data
with different amounts of noise, where the deterministic
behaviour in time series can be reflected at more scales
[8], corresponding, e.g. to different thresholds ε. There-
fore, we use a set of ε values corresponding to a given
set of recurrence rates (RRs) while we test the assump-
tion that averaging the RQA resulting by the selected
RRs improves the analysis. We provide the testing for
various types of data of different lengths to study also
the relation with the amount of data points needed to
sort them according to its deterministic content. The
data have different signal-to-noise ratios while we focus
on the RQA measure determinism (DET) to explore the
ability to recognise deterministic structures and evalu-
ate quantitatively the amount of contaminating noise.

For the numerical tests to be carried out in an accept-
able amount of time, we perform the RQA calculation
on a graphics processing unit (GPU) which also sig-
nificantly enlarges the possible dimensions of the input
time series for RQA due to the effective memory han-
dling. This new computation method opens the door
for desktop computers to perform RQA for large data
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alongside with the proposed novel approach to deliver
more robust results.

When analysing time series from experiments or real-
world applications, it is difficult to distinguish between
deterministic chaos and stochastic behaviour due to the
finite length of the data and the different intrinsic scales
[8]. An example of such an application those variability
is analysed at more scales is data originating from extra-
galactic sources. Their data are varying from minutes
to several decades and details of the processes lead-
ing to such multi-timescale variability are still under
discussion [9–11]. In addition, the data originating in
extragalactic sources are affected by noise [12], where
the signal-to-noise ratios (SNR) tend to be very small
(an extreme example is gravitational waves [13]).

Recurrence quantification analysis (RQA) is a
promising tool to distinguish different types of dynam-
ics, such as from deterministic chaos and noise [7, 14].
In contrast to the usual approach, we do not use one
fixed value of recurrence threshold ε for the RQA cal-
culation, but we evaluate the behaviour of the RQA
measures for a range of thresholds. The assumption is
that this approach will reveal the true dynamics of the
underlying system at more scales. Thus, the main goals
of this study are testing this approach by evaluating
the results and comparing them with the results by a
single choice of ε.

Taking into account the variability of the measured
data of some unknown physical system, the more in
context of deterministic chaos, nonlinear phenomena
or even complex systems which produce time series,
the amount of uncertainty is high and the data often
resemble random numbers. We can get the feeling, the
choice of input parameters for the algorithms gives
quite biased result. This fact often causes struggles in
any numerical data analysis. Techniques and algorithms
which reduce the number of parameters bring in some
way releasing feeling of the unbiased result by the per-
son using it, a good example is, e.g. finding embedding
parameters [15]. Another intuitive reason can be iden-
tified within this context—the less free parameters the
algorithms, equations, or models require, the closer we
move to the ground physical theories, laws of nature,
expressed by elegant formulas.

In Sects. 2 and 3, we provide brief explanation of
RQA with the description of the averaging approach.
In Sect. 4, we describe the testing of the new approach,
and in 5, the technical implementation of the algorithm
for GPUs. Finally, the results are presented in Sect. 6
and discussed in 7.

2 Recurrence quantification analysis

Recurrence quantification analysis (RQA) is a handy
and versatile tool of nonlinear analysis, introduced in
1992 by [16] and extended by [14]. RQA provides mea-
sures of complexity that evaluate the properties of the
recurrence plot (RP), a graphical tool used for investi-
gating the behaviour of state space trajectories xi [17].

The basis of RQA is calculating the recurrence matrix

Ri, j = H(ε − ‖xi − xj‖) i, j = 1, ..., N , (1)

where N is the number of measured points xi, ‖·‖ is
a norm which, in this work, is the maximum norm
‖x‖max:= max(|x1|, . . . , |xn|) for x ∈ R

n. ε is a thresh-
old distance, defining the recurrence of a state by its
spatial closeness to a former state. The selection of ε
is crucial and depends on the specific research question
and can have a strong effect on the result. H(·), is the
Heaviside function, defined as

H(ε) =
{

1, ε > 0
0, ε ≤ 0.

(2)

Equation (1) results in a symmetrical square matrix
that consists of binary values, i.e. zeros and ones. The
RP is obtained as a plot of this square matrix.

There RQA measures we use in this work are

1. Recurrence rate (RR)

RR =
100
N2

N∑
i, j=1

Ri, j , (3)

which provides a measure for the density of recur-
rence points in the RP. Henceforth, we express this
measure in percentages instead of decimals. RR is
directly related to the threshold ε and is often used
as the alternative way to preselect ε [18].

2. Determinism (DET), quantifying how deterministic
or well behaved a system is

DET =

∑N
l=lmin

lP (l)∑N
i, j=1 Ri, j

, (4)

where P(l) denotes the frequency distribution of
the lengths l of the diagonal lines and lmin denotes
the minimal amount of points considered as line
and it is set up to 2 as minimal value for all the
calculations within this study.

Diagonal lines of the RP, parallel to the main diagonal
point to the joint period when a trajectory accompanies
locally close paths. Therefore, diagonal lines in the RP
present the information of predictability and the deter-
ministic content of the dynamical system. This property
naturally suggest that the DET measure should be able
to distinguish between signal of deterministic origin and
stochastic noise.

3 Averaged RQA

As mentioned above, we consider a range of thresholds
ε to cover all scales in the variability of the time series.
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Instead of setting ε to a certain value, we preselect RR
and use the corresponding value for ε[18].

The novel approach here is to use averaged RQA
quantities, which are calculated for a range of RR val-
ues. For example, for the measure of determinism we
define the averaged determinism

DETRR∗ =
1
n

RR∗∑
RR=1

DETRR, (5)

where the DETRR denotes the DET corresponding to
a given value of the measure RR, n is the number of
considered RR values for averaging, and RR∗ means
the highest RR to which is averaged and it can take
any value from the interval [0, . . . , 100]. Naturally, the
case n = 1 cannot be seen as averaging and the case
RR∗ = 100 should not be included, because the result-
ing RP does not contain any useful information about
the dynamics. In this work we test the averaging for
RR∗ ∈ [1, 2, 3, . . . , 99].

Naturally, this approach can also be applied for other
RQA measures [2] to catch their behaviour on more
scales. This idea somehow resembles the concept of
unthresholded recurrence plots discussed, e.g. by [19],
where instead of constructing a RP by thresholding
the pairwise distances ‖xi − xj‖ and representing the
matrix by two colours, the entire distance matrix is rep-
resented, encoding the nonlinear properties of the sys-
tem on all scales.

4 Methodology

The application of the above approach is used for dis-
criminating different levels of noise from a deterministic
signal. To illustrate this, we generate data with differ-
ent fixed lengths, namely 102, 103, 104, and 105, where
the number is in the sense of density of points, itera-
tion, or integration time (divided by 100, because the
step of 0.01) for periodic function, logistic map, and
Lorenz system, respectively (details in Sects. 4.1, 4.2,
and 4.3). To investigate the quantitative information for
every representative we generate 10 data sets of equidis-
tantly different SNRs, where SNR is defined as the ratio
between signal variance and noise variance.

We are studying the ability of sorting according to
the various SNRs (definition below), expressing the
ability to sort the 10 signals with different SNRs, while
it is averaged for 10 realisations. In addition, we gener-
ate the equidistant SNR ratios in 3 intervals to inspect
the boundaries of this approach, namely, [0.01, 0.02,
. . . , 0.1], [0.1, 0.2, . . . , 1], and [1, 2, . . . , 10], where for
each SNR interval, there are 10 equidistantly separated
values denoted as “SNR L. 0.1”, “SNR L. 1”, and “SNR
L. 10”, respectively.

The lowest SNR in this work analysed is of the
order of one hundred of signal to one, or another way
expressed 1:100 (signal:noise) and the highest SNR in
this set is of the ratio 10:1. Overall the testing has been

done on 3,600 time series, what corresponds to: 3 types
of dynamics (periodic, Logistic map, Lorenz system) ×
3 SNR Levels (SNR L. = 0.1, 1, and 10) × 4 lengths
(102, 103, 104, 105) × 10 generated time series corre-
sponding to some SNR Level × 10 realisations.

As a measure evaluate the sorting of time series
according to their deterministic content (estimated by
DETRR∗ or DETRR), we introduce the sorting rate S .
The sorting rate is defined as the difference between the
places in ordering of n = 10 time series by a DETRR∗
or DETRR measure, expressed by vector x and the vec-
tor of the defined positions y in absolute value, summed
and then expressed as percentage of successful sort. It
can mathematically be expressed as

S =

∑10
i=1

(∑10
j=1|zj − yj |

)
i
− ∑10

i=1

(∑10
j=1|xj − yj |

)
i∑10

i=1

(∑10
j=1|zj − yj |

)
i

(6)

where xj is the j -th element of the vector x for some i -
th realisation, denoting the SNR/position of time series
according it’s DETRR∗ or DETRR measure, and yj is
the element of the vector of y of the SNRs/positions
in the natural (sorted) way, i.e. y = [1, 2, 3, 4, 5, 6, 7,
8, 9, 10], and vector z represents the reversed y vector.
The summation over index i is in the sense of the rep-
etition of the same experiment, or in other words for
10 realisations of corrupting the time series by white
noise, for the sake of obtaining a stable result. The
term

∑10
i=1(

∑10
j=1|xj − yj |)i) can be seen as the depar-

ture from the best sorting, and
∑10

i=1(
∑10

j=1|zj − yj |)i)
takes naturally the value of 500 when i, j = 1, 2, . . . ,
10 and represents the worst possible scenario. In the
following, S is expressed as percentages instead of dec-
imals. A value of 100% means a successful sorting, a
value towards 0% means a complete failure of sorting.

4.1 Periodic time series

To simulate periodic signals, we have used the R library
RobPer [20] which has the function tsgen, originally
made for simulating light curves. The function actually
has 11 parameters and allows to simulate periodic sig-
nals, which mimic the data from observations thanks
to the features, e.g. presence of outliers or gaps. We
set up parameter of sampling to “equi” for equidistant
sampling without gaps and the type of the periodic fluc-
tuation to “sine”. The number of sampling cycles that
is observed is set up to 25 (Fig. 1a).

4.2 Logistic map

The Logistic map is a classical example of a simple non-
linear dynamical system exhibiting a variety of periodic
and chaotic dynamics, given by the quadratic equation
xn+1 = rxn(1−xn). For the initial value of the variable
x0 ∈ (0, 1), the logistic map generates sequences of real
numbers xn ∈ (0, 1). The behaviour of the sequence
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Fig. 1 The examples of
studied time series,
(a) periodic function,
(b) Logistic map,
(c) Lorenz system, the
green points denote the
time series disturbed with
white noise, the black
points denote the time
series without noise. Here,
the SNR is 1:1
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xn depends on the parameter r . Roughly speaking, the
behaviour on r ∈ [r0, 4] is chaotic, with some occasional
“islands of regularity”. The transition between regular
and chaotic behaviour happens for r = r0 ≈ 3.56995.
In this work, we generate time series from the logistic
map using r = 3.679, where the band merging causes
frequent laminar states [14] (Fig. 1b).

4.3 Lorenz system

The well-known Lorenz system is continuous nonlin-
ear, non-periodic, three-dimensional, and determinis-
tic. The famous attractor can be reproduced by solving
ẋ = σ(y − x), ẏ = x(ρ − z), and ż = xy − βz), with
σ = 10, β = 8/3, and ρ = 28. The equations are inte-
grated numerically with a Runge–Kutta solver and a
time step 0.01. Finally, we use the x value to emulate
an observation by just one time series (Fig. 1c).

An essential step in nonlinear time series analy-
sis is state space reconstruction. The dynamics of a
m-dimensional nonlinear system can be reconstructed

(in topological sense) from a single time series using
the mathematical embedding theorem [21]. The usual
approach of state space reconstruction is delay coor-
dinate embedding. The original scalar time series is
mapped into a new space which is defined by the num-
ber of delayed dimensions m. The m-dimensional vector
x(t) is constructed from m samples of time series y(t)
using the delay τ by x(t) = [y(t), y(t−τ), y(t−2τ), . . . ,
y(t−(m−1)τ)] In practice, when dealing with unknown
systems, the values of τ and m need to be estimated
numerically [1, 22, 23]. However, in the case of Lorenz
system, the dynamics is known and the parameters are
set up to τ = 3 and m = 3.

5 Technical implementation on a GPU

The measures of RQA are computationally expensive
when computed naively because they are calculated
from a RP, Eq. (1) that grows as O(N2), where N is the
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Table 1 Sorting rate S for
various time series, SNRs
and time series lengths. The
number left of the slash
denotes S of the averaging
approach, when averaged to

RR∗ = 99%, the right side

the case for fixed RR = 1%

Type/length 100 1000 10,000 100,000

sin 0.1 32 / 33.2 40 / 36 40 / 40 60 / 20

sin 1 24 / 30.4 88 / 64 100 / 20 100 / 16

sin10 20 / 32 100 / 64 100 / 80 100 / 92

log 0.1 60 / 42.8 28 / 40 56 / 32 48 / 32

log 1 64 / 32.8 76 / 52 92 / 8 100 / 8

log10 76 / 32.4 100 / 56 100 / 60 100 / 76

lor 0.1 44 / 35.2 76 / 68 76 / 52 80 / 56

lor 1 68 / 36 96 / 68 100 / 84 100 / 84

lor 10 64 / 40.4 96 / 72 100 / 96 100 / 96

length of the time series (or phase space vector) being
analysed. More importantly, the memory footprint also
grows as O(N2). Thus, even modestly sized time series
will take a long time to be calculated on a standard
system. Therefore, developing faster implementations
and techniques to calculate RQA measures is crucial.
[24] have shown that in the special case where the
threshold is zero, some RQA measures can be obtained
with O(N log(N)) complexity in O(N) space and have
proposed approximations for RQA measures that have
same computational complexity for thresholds above
zero [24].

Calculating the RQA measures using a parallel
approach where we can distribute the computational
load to multiple processors/cores is equally important.
GPUs are an ideal platform for RQA implementation
as they possess a good combination of a large number of
processing cores (NVIDIA A100 GPU has 6912 floating-
point cores) and high bandwidth to memory (NVIDIA
A100 has 1555GB/s). We have developed a parallel
GPU accelerated software for NVIDIA GPUs written in
CUDA. There are other packages which take advantage
of parallelising calculations and GPU acceleration. For
example, [25] have implemented RQA calculation using
the OpenCL framework. We have designed the algo-
rithms to have a minimal memory footprint (O(N)) to
allow performing RQA even on very long time series
(100k+ points).

For most RQA measures, two types of tasks are
required. First, counting the frequency of lines l of a
given length, producing a histogram of diagonal line
lengths. The second is the density of the RP, which is
used to calculate RR. However, RR can also be cal-
culated from the histogram of line lengths. Thus, the
histogram is used for the calculation of (DET, L, Lmax

and RR). To calculate the histogram, we exploit the
symmetric property of the Ri, j matrix that allows us
to use only the upper triangle of the Ri, j matrix (i.e.
j > i). We also calculate the value of the element Ri, j

on the fly, thus avoiding a significant memory footprint
that would be otherwise required to store the whole
Ri, j matrix or any of its sub-matrices.

To calculate the histogram of line lengths, we use a
stencil operation (a filter applied at every point of the
RP) that flags the beginning and the end of each line.
These flags are then aligned and compared, allowing us
to calculate the length of all lines in a parallel imple-
mentation on multiple GPU workers.

6 Results

We focus on a comparison between the averaging
approach and the approach of a fixed choice of some
threshold value.

In Table 1, the sorting rates S between the DET 99

and the DET1 are presented, what corresponds to the
average of DET for RR ∈ [1, 2, 3, . . . , 99][%] and
just for RR = 1[%], respectively. Thus, DET 99 is the
universal choice which covers all the scales (except for
RR=100%). DET1 is selected for this comparison as
the value of RR as recommended by [26] for the con-
struction of RPs. Here, we find that the choice of DET1

performs better only in few cases when the lengths and
SNRs of the time series are lower (Table 1).

Next, we consider the performance of the sorting
using DETRR∗ for different values of RR∗ as the largest
limit in Eq. (5) and for the single RR based DETRR

(Figs. 2, 3 and 4). We find more robust results by
the averaging approach DETRR∗ when compared to
DETRR.

For better understanding, the results from the first
row in Table 1 are depicted in Fig. 2 as the first left-right
pair from the top where the y-axis is denoted as “SNR
L. = 0.1”. The colours correspond to the considered
time series length. Following this logic, the values 32 /
33.2 (Table 1) representing S for the periodic functions
with the level of SNR ∈ [0.01, 0.02, . . . , 0.1] of the
lengths 100 depicted in Fig. 2, are DET 99, which is
visible as the last point of the light brown line in the left
plot and the DET1 value, which naturally is to observe
in both parts of the figure because of DET 1 = DET1,
as the average of one value is the value itself.
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Fig. 2 This plot shows the sorting rate S of both averaging and classical approach of choosing RR∗ or RR for the disturbed
periodic functions
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Fig. 3 This plot shows the sorting rate S of both averaging and classical approach of choosing RR∗ or RR for the disturbed
Logistic map
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Fig. 4 This plot shows the sorting rate S of both averaging and classical approach of choosing RR∗ or RR for the disturbed
Lorenz system

The most interesting feature of the comparison of
the both approaches is the consistency of the averaging
approach, for which the variability in DETRR∗ tends
to be rather steady with low variance after some values
of RR (Figs. 2, 3 and 4, left panel), while for DETRR

the ability to sort the data is in most of the cases not
steady for neighbouring RRs (Figs. 2, 3 and 4, right
panel).

The simulations of the ability to sort data accord-
ing their SNR measured with the sorting rate S is in
favour of the averaging approach, primarily in such
sense, when we chose some RR value, the averaging
up to that RR results in a more accurate and robust
result. Although some exceptions can be found, the
importance of the averaging is the consistency which is
absent in the standard approach of choosing one fixed
RR. This numerical simulation also shows that there
is no universal, preferred threshold (or RR) value for
which the best results can be achieved (Table 2, Fig. 5).
Here we further average DETRR∗ over all considered
lengths and SNRs (as shown in Figs. 2, 3, and 4) to
provide an aggregated impression of the dependency of
the accuracy with respect to the chosen maximal RR.
We observe some trends, e.g. both approaches perform
better for RR > 15%, which was not so obvious in
Figs. 2, 3, and 4. On the other side of the sorting abil-
ity, the approach with single choice of RR is getting low
for very high roughly RR > 60% where the thresholds
are too high to recognise the determinism, while this
phenomenon is sometimes also present for the averag-
ing approach but to much less extent.

We observe that the ability to sort the time series
according their SNR is mostly ordered according the
length of analysed time series (Figs. 2, 3, 4), the gap
between the shortest time series and the rest is mostly
visible by the averaging approach, while for the single
choice approach there is often no such clear pattern to
observe.

7 Discussion

In this study, we have proposed a novel approach for
performing a threshold free RQA and demonstrated
its performance. The selection of the threshold can
be avoided by averaging the RQA measure of inter-
est which was calculated for a range of thresholds. We
tested the ability of sorting data sets corrupted by white
noise according their signal-to-noise ratios with the help
of averaged DET measure. The new approach performs
more robust than standard single threshold approach.
The explanation of the results is that the deterministic
behaviour can be detected on more scales and provides
a more robust RQA DET measure.

This property has been also achieved when time series
embedding is applied, as for the Lorenz system, where
the embedding parameters have been set to 3 for the
time lag as for the embedding dimension.

For the purpose of identifying deterministic compo-
nents in noisy signals, the proposed approach might be
the practical choice. The found RR value, out of this
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Table 2 This table shows the RR∗ or RR, for which the best sorting is achieved. The number to left of the slash denotes
the RR∗ of the averaging approach for which the best sorting is achieved, the right side the case for fixed RR, the numbers
in parenthesis denote the amount of higher RR∗ or RR for which the same sorting rate S would be achieved

Type/length 100 1000 10,000 100,000

sin 0.1 45 (14) / 87 (1) 13 (40) / 95 (1) 28 (2) / 28 (1) 24 (2) / 4 (3)

sin 1 23 (8) / 18 (1) 39 (21) / 29 (3) 13 (58) / 10 (6) 10 (90) / 38 (6)

sin10 29 (7) / 25 (1) 10 (90) / 9 (34) 4 (96) / 7 (68) 3 (97) / 6 (75)

log 0.1 22 (7) / 5 (1) 1 (1) / 4 (5) 21 (7) / 6 (4) 21 (1) / 58 (2)

log 1 31 (1) / 16 (1) 12 (8) / 21 (2) 14 (17) / 27 (5) 48 (46) / 28 (1)

log10 42 (58) / 27 (10) 65 (35) / 8 (11) 4 (96) / 5 (30) 15 (85) / 9 (63)

lor 0.1 8 (2) / 3 (1) 9 (1) / 10 (1) 6 (2) / 21 (3) 7 (1) / 29 (1)

lor 1 70 (30) / 40 (4) 65 (7) / 29 (12) 3 (97) / 10 (31) 2 (96) / 4 (45)

lor 10 40 (57) / 30 (2) 10 (15) / 4 (28) 3 (97) / 3 (85) 2 (98) / 3 (83)

Fig. 5 Averaged sorting
rate S of the averaging
approach (blue line) and
fixed threshold approach
(red line). The dashed
vertical lines denote the
position of the maximum.
The presented S are
averages over all lengths
and SNR levels for
(a) periodic functions,
(b) logistic map, and
(c) Lorenz system
respectively. The labels on
y-axis denotes both
approaches, averaging and
fixed one, respectively. We
observe that for most of the
RR∗ and RR values, the
blue line is above the red
line, representing better
sorting performance of the
average determinism
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analysis, up to which the averaging should be performed
is RR∗ ≈ 40%, as in the vicinity of this value the max-
ima of the sorting rates were achieved for all the systems
(Fig. 5). It also corresponds to previous findings that
the discrimination of deterministic signals from noise
works well for a quite large range of thresholds ε [7].

Averaging to larger RR∗ might also work, but could
reduce the robustness of the RQA measures.

However, we are aware of the fact that the complex-
ity of the analysed artificial data is limited, and in the
future, further features could be introduced to explore
the boundaries of this approach, namely gaps, other
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types of noise, different lengths of time series and sam-
pling. The latter factors would help to better mimic
the data obtained from unknown systems as they are
the typical challenges in data analysis. Moreover, the
suggested averaging approach was developed for the
research question on discrimination a signal component
from noisy signals, in particular, to order them with
respect to the SNR. Whether it works also for other
purpose should be studied in more detail in the future.
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