
IOP Conference Series: Materials Science and Engineering

PAPER • OPEN ACCESS

Computational Simulations of the Lateral-
Photovoltage-Scanning-Method
To cite this article: S Kayser et al 2018 IOP Conf. Ser.: Mater. Sci. Eng. 355 012019

 

View the article online for updates and enhancements.

You may also like
Cosmology in the Canaries - 2-

The activities and funding of IRPA: an
overview
Geoffrey Webb

-

NEWS-

This content was downloaded from IP address 194.95.157.26 on 02/03/2023 at 11:42

https://doi.org/10.1088/1757-899X/355/1/012019
/article/10.1088/0031-9120/31/3/004
/article/10.1088/0952-4746/22/1/607
/article/10.1088/0952-4746/22/1/607
/article/10.1088/0031-9120/36/3/801
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsttxQrQJVKzotjLkTpO2zdPaoRwpb3Owzi0RqHqfhv302_C-ePp6kxRZiZPUvNwM80H5XFlO26mm8d-S2AuPCWohsScMiO16tmspjkxJAQQKTBCrgVCzmCU4b_Wl61EIwW15cnmNICQ0i7S3Cb2etpEDLnMDt1CGrnFLDSNgYfzW-94Vy69UrQJdOrjMWVCcL-gibv6AxuKnNH93-6US8wu3pM5VCRvdCcA6ldjXBVOejzJJHGiFTGiSMIyJZCzM16nu3fRaEQTDxJALI_7qZQ8fNBuQ7mtCUZuI1IqvcZxdg&sai=AMfl-YQ1UfnqZeuzLtr3mLWpuvorlUNOp9l4Y8shD6gqRHItsdzuGxAZzJ2-lmGDeznc81hR06dIwA1ZyzttwLk&sig=Cg0ArKJSzKYKJdhf59mn&fbs_aeid=[gw_fbsaeid]&adurl=https://ecs.confex.com/ecs/244/cfp.cgi%3Futm_source%3DIOP%26utm_medium%3Dbanners%26utm_campaign%3D244AbstractSubmit


1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890‘’“”

VIII International Scientific Colloquium on Modelling for Materials Processing IOP Publishing

IOP Conf. Series: Materials Science and Engineering 355 (2018) 012019 doi:10.1088/1757-899X/355/1/012019

 

 

 

 

 

 

Computational Simulations of the Lateral-Photovoltage-

Scanning-Method 

S Kayser, A Lüdge and K Böttcher 

Leibniz Institute for Crystal Growth, Max-Born-Straße 2, D-12489 Berlin, Germany  

 

e-Mail: Stefan.Kayser@ikz-berlin.de  

 

Abstract. The major task for the Lateral-Photovoltage-Scanning-Method is to detect doping 

striations and the shape of the solid-liquid-interface of an indirect semiconductor crystal. This 

method is sensitive to the gradient of the charge carrier density. Attempting to simulate the signal 

generation of the LPS-Method, we are using a three dimensional Finite Volume approach for 

solving the van Roosbroeck equations with COMSOL Multiphysics in a silicon sample. We 

show that the simulated LPS-voltage is directly proportional to the gradient of a given doping 

distribution, which is also the case for the measured LPS-voltage. 

1.  Introduction 

Among the methods for crystal growth from the melt there are several techniques where the growing 

crystal is in permanent rotation inside of an inhomogeneous temperature field. For the Floating Zone 

technique this is, above all, caused by the gap in the heating coil. Consequently, each point of the melt 

sees a periodically changing temperature field leading to corresponding convection patterns. The 

additionally fluctuating doping concentration at the crystal-melt-interface leads to 3-dimensional 

concentration profiles roughly in form of a spiral staircase. The geometric shape of the 3D profiles 

follows the shape of the crystal-melt-interface. Making a cut through the crystal in growth direction 

results in a crystal surface with a periodical concentration pattern that reveals the growth history of the 

crystal-melt-interface, which again represents a finger print of the individual single crystal. The Lateral-

Photovoltage-Scanning-Method (LPS) is known to be the method of choice for detecting these doping 

inhomogeneities in grown semiconductors, such as silicon [1], germanium [2] and silicon-germanium 

[3]. 

 A first important question is, which local resolution can be achieved with respect to the mean free 

path of the charge carriers. In order to answer this question, a simulation of this measurement technique 

is established using a Finite Volume approach.   

2.  Experimental  

Figure 1 shows the measurement setup of the LPS-Method. Here, a modulated laser (𝑓 = 1 kHz, square-

wave) is focused (∅ = (10 − 30)  µm) on a semiconductor sample and generates excess photo carriers. 

If a dopant gradient exists at that observation point, the generated electrons and holes will drift in 

different directions due to the inner electric field [4]. Hence, a local dipole will be generated temporarily. 

This leads to a potential difference between the ohmic rim contacts (𝑈LPS), which can be amplified and 

detected with respect to the modulation frequency.  

http://creativecommons.org/licenses/by/3.0
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The measurement is carried out by changing the focal point of the laser and detecting 𝑈LPS (𝑥, 𝑦). 

This signal is known to be proportional to the gradient of the dopant distribution: 𝑈LPS (𝑥, 𝑦) ∝
∇x 𝑁D 

+(𝑥, 𝑦) [1]. 

 

 
Figure 1. Scheme of the LPS-measurement setup. A modulated laser generates electrons/holes locally. 

If there is a gradient on the doping distribution at the observation point, a voltage difference will be 

detectable at the ohmic rim contacts. This voltage is amplified with respect to the modulation frequency. 

3.  Computational Simulation 

3.1.  Equation System 

The fundamental equation system for the charge carrier flow and the electrostatic potential in a 

semiconductor structure is named after van Roosbroeck [5]. This system consists of three nonlinear 

coupled partial differential equations for the three physical variables, the electrostatic potential 𝚿(𝒓), 

the densities of electrons 𝑛(𝒓) and of holes 𝑝(𝒓). The potential and the charge carrier densities obey the 

Poisson equation of the electric field, which is in detail: 

 

 −∇ ⋅ (ϵ0ϵr ∇𝚿(𝒓)) = q(𝑝(𝒓) − 𝑛(𝒓) + 𝑁D
+ − 𝑁A

−),  (1) 

 

 

with the vacuum permittivity ϵ0 and relative permittivity ϵr, the elementary charge q, and the densities 

of ionized donors and acceptors 𝑁D
+ and 𝑁A

−. 

 The continuity equations for electrons (2) and holes (3) consider both the generation rate 𝐺(𝒓) and 

the recombination rate 𝑅(𝒓): 

 

 

 𝜕𝑛

𝜕𝑡
−

1

q
∇ ⋅ 𝒋n(𝒓) = 𝐺(𝒓) − 𝑅(𝒓), (2) 
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 𝜕𝑝

𝜕𝑡
+

1

q
∇ ⋅ 𝒋p(𝒓) = 𝐺(𝒓) − 𝑅(𝒓). (3) 

 

 In the van Roosbroeck equation system (1), (2) and (3) the current densities are modelled as a sum 

of drift and diffusion currents: 

 

−𝒋n(𝒓) = q[𝜇n𝑛(𝒓)∇𝚿(𝒓) − 𝐷n∇𝑛(𝒓)], 
−𝒋p(𝒓) = q[𝜇p𝑝(𝒓)∇𝚿(𝒓) + 𝐷p∇𝑝(𝒓)]. 

 

3.2.  Specifications 

For the energy distribution of electrons and holes we choose the Fermi-Dirac statistics, hence, the 

diffusion coefficients of electrons  𝐷n and holes 𝐷p, are related to the mobilities of electrons 𝜇n and 

holes 𝜇p by the generalized Einstein relation 

  

electrons:     
𝐷n

𝜇n
=

kB𝑇

q
𝑔 (

𝑛

𝑁c
), 

holes:             
𝐷p

𝜇p
=

kB𝑇

q
𝑔 (

𝑝

𝑁v
), 

 

where 𝑘B is the Boltzmann constant, 𝑇 is the temperature, and 𝑁c and 𝑁v are the conduction and valence 

band density of states, resp., 𝑔 is a nonlinear factor (𝑔 > 1), which considers the Fermi-Dirac statistics. 

The generation of electrons and holes are determined by the energy of the incoming laser beam. The 

laser is moved by a velocity 𝑣L along the 𝑥-direction focussed on the surface of the silicon sample during 

time 𝑡. The laser beam intensity profile is assumed to have a Gaussian distribution, and the laser spot 

size is defined according to the traditional definition at which the diameter is taken transverse to the 

beam axis at which the intensity profile falls to 1/e2   =̂ 13.5 % of the intensity peak [6]. In terms of 

the Gaussian distribution, the standard deviation of the laser intensity in x and y-direction at the surface 

of the silicon sample is just a quarter of the 1/e2-diameter, and we assume them to be identical 𝜎x =
𝜎y = 𝑑1/e2  /4 [6]. 

When denoting the peak power of the laser by 𝑃0 and the photon energy by 𝐸ph [Ws] = hc/𝜆  with 

𝜆 as wavelength of the laser beam, h as Planck constant, and c as light velocity, then the total photon 

flow rate is 𝐼tot = 𝑃0/𝐸ph = 𝑃0 𝜆/hc, which still needs to be shaped by the two-dimensional Gaussian 

distribution which itself includes the movement of the laser beam in 𝑥-direction. Finally the photon flux 

is 

 

𝐼F(𝑥, 𝑦, 𝑡) [
1

m2s
] = 𝐼tot

1

2π𝜎x𝜎y
exp [−

(𝑥 − 𝑥0 − 𝑣L𝑡)2

2𝜎x
2

−
(𝑦 − 𝑦0)2

2𝜎y
2

] 

 
The photon flux impinging at the surface penetrates into the depth of the crystal sample which is the 

(negative) 𝑧-direction. The penetration depth is practically limited due to the absorption coefficient 

𝐴c [1/m]. Nevertheless, there is a three-dimensional generation rate of electrons and holes: 

 

𝐺(𝑥, 𝑦, 𝑧, 𝑡) [
1

m3s
] = 𝐴c exp[−𝐴c|𝑧|] 𝐼F(𝑥, 𝑦, 𝑡). 

 

We are denoting that the simulations are done for room temperature, neglecting the heating by the laser. 
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The recombination rate on the right side of equation (2) and (3) consists of the most common 

processes: the direct recombination 𝑅Direct, the Shockley-Read-Hall recombination 𝑅SRH, and the Auger 

recombination 𝑅Auger: 

 

𝑅(𝑥, 𝑦, 𝑧, 𝑡) = 𝑅Direct + 𝑅SRH + 𝑅Auger. 
 

Every recombination process is implemented in COMSOL Multiphysics and is realized by supplying 

material dependent recombination rates. 

Figure 2 illustrates that all boundaries ΓN of the platelet are electrically isolated except the end-faces 

of the silicon sample: one (Γ1) of the two is set to the equilibrium potential, the other is established as 

an ideal ohmic contact with current connection (𝑖Γ2
 (𝑡)) to an external circuit. In order to detect the 

voltage change at the end-faces of the platelet, the experimental setup includes an internal resistance R 

in an electrical circuit model. 

 

 
Figure 2. Scheme of the modelled electrical circuit and the boundary conditions of the sample Ω. 

3.3.  Numerical Procedure 

The computational model was solved by using the software COMSOL Multiphysics V. 5.2a [7]. We use 

the ''semiconductor module'' and the ''electrical circuit module''. 

The variables of the semiconductor part are the electric potential, the electron concentration and the 

hole concentration.  The electric circuit part computes voltages and currents. Due to the thickness of the 

silicon platelet we have a 3-dimensional geometry which is meshed by a mapped grid (𝑥 − 𝑦-plane) that 

is swept in 𝑧-direction.  

We held to the standard options of COMSOL for semiconductor problems: the Finite Volume 

Method is the numerical procedure, the numerical stability is reached by applying the Scharfetter-

Gummel scheme [8]. 

4.  Results and Discussion 

The crystal is assumed to have a doping profile of boron or phosphorus, caused by segregation 𝑁D,seg, 

which is characterized by a macroscopic gradient along the sample length and local fluctuations. This 

profile is modelled by the formula: 

 

 𝑁D
+ = 𝑁D,seg + 𝑁D,fluct = 𝑁D,0 (1 +

𝑎

𝐿
𝑥 + 𝑏 ⋅ 𝑓(𝑥, 𝑦, 𝑧)), (4) 

 

where 𝑁D,0 is the background level of the dopant concentration, 𝐿 = 2.4 mm is the sample length, 𝑥 the 

length coordinate, 𝑎 a control parameter for setting the macroscopic gradient of the dopant profile. The 

fluctuations of the doping concentration caused by temperature inhomogeneities are assumed as 

sinusoidal and suppressed by the prefactor 𝑏 = 10−5. The constant macroscopic gradient of the dopant 

profile, i.e. the linear behaviour of the profile, is assumed due to the small sample length: indeed there 

is a rather exponential distribution due to the segregation of, e.g., phosphorus in the melt during crystal 

growth. 
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The computation of the simulated LPS-voltage is shown in figure 3 for different values of the control 

parameter 𝑎 in the time intervall 𝑡 ∈ [0.3 0.4] s. During this, the focus of the laser (𝜎 = 7.5 µm) has 

moved between 𝑥 ∈ [0.9 1.2] mm (see upper axis).  After a short loading phase of electrons and holes 

(where generation and recombination are not in equilibrium; see the vertical line at 𝑡 = 0.3 s after the 

switch on) the computation yields a nearly constant LPS-voltage for each 𝑎-value when time runs. 

 

 

Figure 4 shows the proportionality of the simulated LPS-voltage on the gradient of the dopant profile a. 

Additionally, Figure 4 reveals an offset of the LPS-voltage for 𝑈Sim|𝑎=0 . In that case only the sin-

shaped dopant fluctuations remain, hence, the offset cannot have physical reasons. 

Therefore, we analysed, whether the offset depends on the model itself. We started to increase the 

sample width (from 𝑤𝑑 = 150 µm) and thickness (from 𝑡ℎ = 2 µm). As shown in figure 5, enlarging 

the sample width by a factor of 10 reduces the offset roughly by the same factor, however, the reduction 

of the offset is not a linear function of the sample width. 

 

 

Figure 3. Result of time-dependent simulations 

of the LPS-voltage relative to the parameter 𝑎. 

Sample size: 𝑡ℎ = 2µ𝑚, 𝑤𝑑 = 500µ𝑚.   

Figure 4. Dependency of the simulated LPS-

voltages on the gradient parameter 𝑎. 

Figure 5. Behaviour of the offset with respect to 

the width of the simulated sample. 

Figure 6. Dependency of the offset from the 

sample thickness. After an increase related to the 

penetration depth of the laser, a decreasing trend is 

visible. 
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The effect of the thickness on the offset is more complicated, see figure 6: as long as the sample 

thickness is below the penetration depth (𝑝𝑑 = 15.4 µm), thickness enlargement increases the total 

number of charge carriers and the offset voltage is rising.  But even before reaching the saturation of the 

total number of charge carriers, which may be reached at 𝑡ℎ ≈ 3𝑝𝑑 (95 %), the offset decreases. The 

enlargement from the rather small thickness (𝑡ℎ = 2µm) with maximum offset (𝑡ℎmax,off ≈ 9µ𝑚) to a 

thickness of 𝑡ℎ = 200 µm reduces the offset by a factor of eight. Because of 𝑡ℎ ≫  𝑝𝑑, the non-reflected 

energy of the laser is absorbed (99.9998 %) by the semiconductor and transmission is highly 

suppressed. Combining the increased thickness and width of the sample, the offset is reduced 

tremendously and, thus, is negligible.  

The linear dependency of the simulated LPS-voltage on 𝑎 and the knowledge that  𝑈LPS ∝ ∇x 𝑁D
+ 

[1] allows the following relation: 

 

𝑈Sim ∝ 𝛼 ∝ ∇x𝑁D
+  ∝ 𝑈LPS. 

 

This shows that the simulated LPS-voltage corresponds to the measured LPS-voltage. 

5.  Conclusions and Outlook 

For large enough samples (𝑤𝑑 ≥ 1500 µm, 𝑡ℎ ≥ 200 µm) we have shown that the simulated LPS-

voltage is directly proportional to the measured voltage 𝑈Sim ∝ 𝑈LPS as expected from experimental 

results. Simulation costs are high for such large samples, but can be reduced using symmetry 

assumptions (e.g. 𝑁D
+ (𝑥, 𝑦) = 𝑁D

+ (𝑥, −𝑦)).  

Now the local resolution can be calculated and related to the LPS-measurement method. Also, for a 

given mean charge carrier density (e.g. via Hall-measurements) it is possible to calculate the absolute 

value of the doping concentration by integration of the LPS-measurement results. This could lead to a 

resistivity profile with an improved local resolution compared to 4-point-measurement systems. We 

estimate the order of magnitude of the resolution to be hundred microns. 
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