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Abstract. The medical-grade polydimethylsiloxane (PDMS) elastomer is a widely used 

biomaterial in medicine for preparation of high-tech devices because of its remarkable 

properties. In this paper, we present experimental results on surface modification of PDMS 

elastomer by using ultraviolet, visible, and near-infrared ns-laser system and investigation of 

the chemical composition and the morphological structure inside the treated area in dependence 

on the processing parameters – wavelength, laser fluence and number of pulses. Remarkable 

chemical transformations and changes of the morphological structure were observed, resulting 

in the formation of a highly catalytically active surface, which was successfully functionalized 

via electroless Ni and Pt deposition by a sensitizing-activation free process.  

The results obtained are very promising in view of applying the methods of laser-induced 

micro- and nano-structuring and activation of biopolymers’ surface and further electroless 

metal plating to the preparation of, e.g., multielectrode arrays (MEAs) devices in neural and 

muscular surface interfacing implantable systems. 

1.  Introduction 

Polydimethylsiloxane (PDMS) is medical grade silicone and is one of the most widely-used polymeric 

materials in biomedical implantable devices, such as substrate insulator carriers and/or for packaging 

of such devices [1-4]. The popularity of PDMS in such medical application is based on its distinctive 

characteristics, which include tensile strength, chemical and biological inertness, non-toxicity, 

                                                      
6 To whom any correspondence should be addressed, 

http://creativecommons.org/licenses/by/3.0


2

1234567890 ‘’“”

20th International Summer School on Vacuum, Electron and Ion Technologies IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 992 (2018) 012051  doi :10.1088/1742-6596/992/1/012051

 

 

 

 

 

 

permeability to gasses, high dielectric constant and breakdown field, optical transparency in the UV, 

VIS and NIR spectral ranges, which determine its high biocompatible and biostable nature [4]. Owing 

to these advantageous properties and the simple and inexpensive fabrication process, PDMS is a 

suitable and preferred material for fabrication of long-term implantable devices [5]. Overall,      

PDMS-based elastomers are extremely stable and keep their high flexibility. They are excellent 

insulators and have clinical approval according to USP class VI for unrestricted use in chronic 

implants. Photo-detectable PDMS elastomers are also available that increase the absorption in the UV 

region (below 365 nm), thus improving the processing conditions under irradiation by such light 

sources (lasers, excimer lamps). However, they are not applicable in the implantable grades. Surface 

processing of PDMS elastomers is needed to improve their surface properties, like wettability or 

adhesion features for further functionalization, e.g., metallization. Highly-flexible polymeric 

multielectrode arrays (MEAs) based on PDMS-elastomer scaffolds are applied as neural interfacing 

technologies for monitoring and/or stimulation of neural activity by connecting the neurons to 

electronic circuitry [6-8]. Elastomeric MEAs can be rolled and flexed, thus offering an improved 

structural interface with the neural tissues. UV, VIS and NIR ns- and fs-laser processing of the PDMS 

elastomer is a powerful method for surface modification and activation without altering the material’s 

bulk properties [9-18]. Generally, laser micromachining is based on direct laser ablation or surface 

modification for fabrication of tracks, holes and complex 2D/3D structures with dimensions of several 

tens of microns or less in a wide range of materials. It is a low-cost technique, unique with the 

versatile control of the processing parameters. This approach opens up new interesting possibilities for 

rapid patterning of delicate materials on micro- and nano-scale over large areas, especially of 

biodegradable polymers like PDMS for tissue engineering application. Selective metallization has 

been reported of polymers (such as polyamide, polyurethane or polydimethylsiloxane) after laser 

modification (chemical activation and ablation) with Cu, Ni or Pt by using electroless plating [17-20]. 

Since the major demands to implants are biocompatibility and biostability, Pt is the most suitable 

element used in metallization via electroless deposition [17, 19]. 

The aim of this work was to provide complex data on the modification and activation of the PDMS 

elastomer surface by using the traditional method of ns-laser processing followed by successful 

functionalization of the laser-modified surface. The effects of the laser parameters on the chemical 

structure and the morphology after UV, VIS and NIR treatment were studied and compared. The 

trenches produced were successfully metalized by Ni or Pt deposition by an improved autocatalytic 

coating bath – a tin- and palladium-free process. Our work can contribute to the research efforts to 

achieve successful direct laser writing of micro channels via ns-laser processing of polymer materials 

and their functionalization for application as MEAs in neural interface technologies. 

2.  Experimental 

For surface processing of medical grade PDMS elastomers (MED 4860 and SSPM823), we used a    

Q-switched Nd:YAG laser multimode system oscillating at the fundamental wavelengths of 1064 nm 

and its harmonics: second (532 nm), third (355 nm) and fourth (266 nm), with a pulse duration of 

15 ns and a repetition rate of 10 Hz. The thickness of the sheets was between 150 µm and 200 µm. The 

laser beam was focused normally to the sample by UV fused-silica lenses with different focal lengths 

(between 10 cm and 25 cm). In order to obtain a larger laser beam spot, lenses with a higher focal 

length combined with a homogenizer (with relevant parameters) were used. The samples were 

mounted on a stepper-motor computer-controlled x-y stage, which allowed fabrication of single 

trenches by overlapping 10 to 220 consecutive laser pulses. The number of pulses depended on the 

laser spot size on the sample surface and the stage speed of motion. The laser processing was 

performed in air at ambient temperature. The laser fluence was a function of the wavelength and the 

beam spot size. The data on the laser processing parameters are presented in table 1.  

The absorption coefficient () and the penetration depth () were calculated following the       

Beer-Lambert law; as the scattering is ignored, the values represent the linear absorption coefficient. 

After the laser treatment, the PDMS samples were successfully metallized with Ni or Pt via electroless 
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deposition (autocatalytic bath). The metallization was performed without chemical sensitization by Sn 

and activation by Pd of the laser-treated surface. The electroless plating process is based on a 

hydrazine hydrate reducer at different concentrations used to increase the active sites without 

electrochemical methods. The details of this procedure will be described in a forthcoming 

communication. It should be emphasized that the electroless Ni deposition is the best and the cheapest 

analog of the classic Pt electroless plating process.  

Table 1. Summary of the laser processing parameters.  

Wavelength (nm) 266  355  532  1064  

Laser Fluence (J cm-2) 0.5 – 1.5 2.5 – 6.0 9.5 – 12.0 13.0 – 16.0 

 (cm-1) 14.9 7.38 3.58 2.86 

 (µm) 670 1354 2794 3502 

 

The surface topography of the samples was investigated by a VK-9700K color 3D laser microscope 

(KEYENCE, Japan) and scanning electron microscopy (SEM) (Hitachi SU-70 with field-emission 

gun) and SEM/FIB (Lyra/Tescan dual-beam system); the structure modifications were analyzed by a 

µ-Raman spectrometer (Invia, Renishaw) using 514-nm excitation wavelength and beam spot on a 

sample ∼5 µm×5 µm for a 100× objective. 

3.  Results and discussions 

3.1.  Raman spectroscopy inside the trenches 

The influence of the laser radiation in the UV, VIS and NIR spectral ranges on the chemical 

composition of the PDMS elastomer samples was investigated by µ-Raman spectroscopy. The spectra 

were acquired by measuring at different points in each trench. The spectra of areas treated by different 

laser parameters (see Table 1) differ significantly from the spectrum of the untreated sample (figures 1 

and 2). Since the PDMS elastomer belongs to the silicones’ polymeric family, its backbone is 

composed by an alternate succession of Si–O atoms joined by a strong covalent bond of 4.7 eV. Two 

organic CH3 radicals are also coupled to the Si atoms by a Si–C bond with a bond energy of 3.3 eV. 

The Raman peaks of native PDMS characterize the following vibration modes: 488 cm−1 (Si-O-Si 

symmetric stretching); 685 cm−1 (Si-CH3 symmetric rocking); 709 cm−1 (Si-C symmetric stretching); 

787 cm−1 (CH3 asymmetric rocking + Si-C asymmetric stretching); 859 cm−1 (CH3 symmetric 

rocking); 1262 cm−1 (CH3 symmetric bending); 1411 cm−1 (CH3 asymmetric bending); 2909 cm−1  

(CH3 symmetric stretching); and 2970 cm−1 (CH3 asymmetric stretching). Obviously, the laser 

treatment leads to chemical modification of the PDMS surface. A typical tendency in the spectra is 

observed at all wavelengths applied. The intensity of the O-Si-O bond at 488 cm−1 decreases or almost 

disappears and a new sharp and strong peak appears between 515 cm-1 and 519 cm−1. This peak is 

attributed to mono and/or polycrystalline or only to monocrystalline silicon (c-Si) [21]. This can be 

explained by chemical transformations occurring during the laser processing – breaking of the O-Si-O 

bonds and formation of crystalline Si as a result of the higher pressure and temperature in the laser 

spot area. It is worth noting that the intensity of the other peaks of the native PDMS elastomer 

decreases. This indicates that the Si-CH3, CH3, and Si-C bonds are also broken and probably 

contribute to the c-Si formation. The comparison of the spectra of trenches obtained at different 

processing parameters show complex dependence on the wavelength, laser fluence and number of 

pulses. At the wavelengths of 266 nm and 355 nm and low fluences, the c-Si peak appears after 110 or 

more pulses, but its intensity is still weak. As the laser fluence increases, the O-Si-O peak’s intensity is 

reduced, while the intensity of c-Si peak is strongly enhanced. Also, this peak becomes very intensive 

and sharp even at low number of pulses (5-18) when higher fluences are applied. This tendency is also 

observed at the wavelengths of 532 nm and 1064 nm (figure 2); however, the fluence values needed to 

break the Si-O-Si bond significantly increase compared with the UV wavelengths (between 9.5 J cm-2 

and 12 J cm-2 for 532 nm, and between 13 J cm-2 and 16 J.cm-2 for 1064 nm) at number of pulses 
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a) 

b) 

c) 

between 11 and 33. The chemical transformations observed after UV laser irradiation is in accordance 

with the known data of the photon energy of 4.7 eV for the wavelength of 266 nm (and probably 

3.5 eV for 355 nm), which is needed for the direct breaking of the covalent bonds, like Si-O-Si 

(4.7 eV), and/or C-H (4.3 eV), and/or S-C (3.3 eV), respectively. Probably, photochemical dissociation 

of the covalent bonds can take place during laser irradiation at the wavelength of 266 nm. However, at 

the longer wavelengths (355 nm, 532 nm and 1064 nm), the photon energy (3.5 eV, 2.3 eV and 1.2 eV, 

respectively), is not sufficient to cause photochemical dissociation, especially for the Si-O-Si bond. 

Therefore, the chemical decomposition observed can rather be the result of heat accumulated with 

each subsequent pulse per unit area. In the current experiments on ns-laser irradiation of the PDMS 

polymer, the ablation mechanism can be due predominantly to the thermal (vibrational) relaxation of 

the excited states, especially at the wavelength of 355 nm and longer. It can also be assumed that 

during the ultraviolet irradiation at 266 nm, photothermic reactions contribute to the mechanism of 

ablation simultaneously with the photochemical reactions. The ratio between them depends both on 

the laser parameters and the properties of the polymer. In summary, all µ-Raman spectra provide 

evidence that the PDMS elastomer surface is chemically transformed and activated after ns-laser 

processing. 

 

 

 

Figure 1. µ-Raman 

spectra of native (non-

treated) and ns-laser 

treated PDMS elastomer 

at: a) 266 nm; b) com-

parison between treat-

ment at 266, 355, 532 

and 1064 nm. 

 

 

 

 

 

 

 

Figure 2. Laser microscope images - 

photographs and profiles: a) 266 nm, 

0.5 J cm-2 and N=22 pulses; b) 1064 nm, 

13 J cm-2 and N=22 pulses;              

c) U-shaped high definition track 

produced at 266 nm, 1.5 J cm-2 and 

44 pulses. 

3.2.  Laser microscope views of the trenches  

The quality of the profiles of the laser-produced trenches was viewed and assessed by 3D color laser 

microscopy (figure 2). Since the laser system emits a multimode beam, the profiles of trenches are 

generally inhomogeneous, especially in the cases of VIS and NIR irradiation and/or higher number of 

pulses. This is due to the inhomogeneous distribution of the energy density inside the laser beam, 

namely, the existence of “hot” spots in the beam structure. However, in a dynamic mode of laser 

processing, where the overlapping of the consecutive pulses is controlled by varying the x-y table 

speed of motion, one can produce trenches with homogeneous profiles owing to the processing 

equalization after a large number of pulses are applied per unit area. The UV laser treatment results in 
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highly homogeneous profiles (mainly at 266 nm) regardless of the number of pulses and the laser spot 

size on the surface. This is due to the higher absorption coefficient (i.e., the short penetration depth at 

this wavelength) of the PDMS polymer, which for 266 nm is an order of magnitude higher than those 

for the wavelengths of 355 nm, 532 nm, and 1064 nm (see table 1). Using irradiation at the 

wavelength of 266 nm, we were able to produce high-definition U-shaped or straight-line laser tracks.  

3.3. Scanning electron microscope views of the trenches – after laser processing and after electroless 

metal deposition 

Typical SEM images of the trenches produced after ns-laser processing of the PDMS elastomer are 

presented in figure 3. The surface morphology is significantly modified compared to the non-treated 

surface due to the local laser ablation. The SEM analysis shows formation of similar morphologic 

structures at all wavelengths used. An extremely developed relief with a cauliflower-like structure is 

formed on a micro-scale, which can ensure good adhesion of the metal coating. In general, the ablation 

depth increases with the laser fluence and/or the number of the pulses. As it is seen, cavities of 

different size are formed in all cases. However, they become larger at VIS and NIR irradiation or as 

the laser exposure of the sample is increased at a given wavelength. The high-resolution images 

indicate that the modified surface is nanostructured with a granular chondrites-like structure.  

 

 

Figure 3. Trenches 

produced by ns-laser:   

a) 355 nm, N=11, 22, 

33, 44, 55 and 110 

pulses, respectively, and 

4 J cm-2; b) 266 nm, 

N=55 and 1.5 J cm-2; c) 

HR SEM of b); 

d) 532 nm, N=16 and 

9.5 J cm-2; e) 1064 nm, 

N=16 and 13 J cm-2; f) HR 

SEM of e). 

 

 

 

 

 

 

 

 

 

Figure 4. SEM images of 

the metal nanospike 

structures after electroless 

coating of the trenches 

produced at: a) 266 nm – 

Ni metallized; b) HR 

SEM of a); c) 266 nm and 

d) 355 nm after Pt 

metallization in HR 

mode. The inset images 

show whole (c) and d)) or 

part (a)) of the trenches. 
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The laser-modified and thus activated surface of the PDMS elastomer samples ensured their 

successful functionalization by electroless deposition of Ni or Pt metals. The metallization was 

successfully performed regardless of the time-interval between the laser exposure and the autocatalytic 

bath. Figure 4 shows SEM images of electroless deposited Ni (figure 4a) and 4b)) and Pt (figure 4c) 

and 4d)) films. Metal crystallites with a “spiky” structure were uniformly deposited on the laser-

treated areas. The metal nanospikes tended to grow vertically with size ranging from several tens to 

several hundreds of nanometers. Since the hydrazine was used as a reductant in the autocatalytic bath, 

the deposition of Ni and Pt resulted in the formation of nanospike arrays. Depending on the hydrazine 

concentrations, some small differences in the crystallites structure could be found, but the “spiky” 

origin remained. 

4.  Conclusions 

The results obtained in our study of laser-induced surface modification of the PDMS elastomer and its 

further functionalization can be summarized as follows: i) ns-lasers, generating in the UV, VIS and 

NIR spectra are effective tools for micro- and nanostructuring and chemical activation of biopolymeric 

elastomers: (1)  a significant increase of the surface roughness by laser ablation, which results in the 

formation of trenches with controllable size depending on the laser beam parameters and (2) chemical 

activation of the laser-processed area by breaking the covalent bonds (Si-O-Si, Si-C) of the PDMS 

polymer and formation of Si micro-crystallites; ii) successful metallization of the ns-laser treated 

PDMS elastomer surface via Pt and Ni electroless plating: (1) excluding Sn sensitization and Pd 

activation by using hydrazine hydrate as catalyst and (2) growth of Pt and Ni nanospike-structured 

arrays on a nanometer scale. 

The results reported describe a simple procedure of biopolymer surface preparation for its 

following functionalization, which opens up new possibilities for rapid prototyping of micro- and 

nano-structures suitable for various applications, such as MEAs in neural implants interfacing 

technologies. 
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