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1 Bayesian Optimization

In this section, we provide the mathematical foundation for Bayesian optimization (BO) to promote
its practical application for chemical reactions. BO is a strategy to maximize (or minimize) a
‘black-box function’, defined here as an oracle which is expensive to query (Equation 1):

x∗ = argmax ormin
x∈X

f(x)

where x∗ is the input which optimizes the oracle evaluation, f(x). In this work, the oracle eval-
uation refers to the reaction outcome and the objective being optimized, e.g., yield. Sequential
decision-making in BO relies on the prior and the posterior. The former is the initial belief in how
the reaction behaves, i.e., the prior knowledge, and provides a starting point to propose more opti-
mal input, x. For example, one may hypothesize that electron withdrawing groups on the substrate
will promote the reaction, thus constituting prior knowledge. The posterior model represents our
model of the reaction landscape after making new observations. For example, it may turn out
that it is the pKa of the base which is most important. Correspondingly, BO iteratively proposes
new x, i.e., reaction conditions conditioned on previous observations and until convergence or the
experimental budget is exceeded. For a detailed discussion of BO, we refer the reader to a review
by Shahriari et al. [1]

2 Surrogate

The surrogate model takes input x, i.e., descriptors for a reaction, and outputs f(x), e.g., the yield,
stereoselectivity, or both. The choice of the surrogate model represents the function form used to
model our belief in how the reaction outcome behaves. Generally, there are three criteria for a
surrogate model:

• The function should be flexible enough to model the potential reaction landscape. As an
extreme example, linear regression is not used for BO as it imposes a linear relationship
between the descriptors and the reaction outcome which is likely not the case.

• The model should output an associated uncertainty with its prediction.

• Training and querying the model should be much less resource intensive than querying the
oracle. In the case of reaction optimization, this should be automatically satisfied as surely,
performing and analyzing the reaction will be more expensive than model inference.

The most common surrogate used in BO is a Gaussian Process (GP). GPs output a prediction
and an associated uncertainty that follows a Gaussian distribution which allows one to obtain an
analytical expression for popular acquisition functions, i.e., the heuristic used to decide which new
experiment to perform. In the following sections, we provide a more formal background on GPs in
addition to Neural network (NN) surrogate models.
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2.1 Gaussian Process

Gaussian Process (GP) models random variables as multivariate Gaussian distributions. [1,2] Con-
cretely, for any finite set of inputs, x1, x2, ...xn, there is a corresponding multivariate Gaussian
distribution which models the probability distribution of the reaction outcome. GPs output pre-
dictions and uncertainties using the mean function, m(x), and the covariance function, κ(x, x

′
),

respectively:

f(x) ∼ GP (m(x), κ(x, x
′
))

Since Gaussian distributions are completely characterized by its mean and variance, for any input,
x, GPs predict the expected reaction outcome, f(x) as the peak of the Gaussian and the uncertainty
is quantified by the width of the distribution.

Moreover, the kernel function quantifies the relationship between data points and thus encodes
inductive bias into the model. For example, a popular kernel is the squared exponential (SE, also
known as the radial basis function, RBF):

KSE(x, x
′
) = e(−

(x−x′)2
2 )

here, the simplest form of the SE kernel is shown without any hyperparameters. The SE kernel
is used for continuous functions and returns a scalar whose magnitude depends on the difference
between x and x′. In particular, a larger difference yields a larger scalar and vice versa. The
inductive bias encoded here is that similar (in input space) data points should yield similar GP
predictions. For example, performing a reaction at 100 degrees should yield a similar outcome to
101 degrees. Finally, with a kernel function selected and given a query data point, the following
equations return the mean and standard deviation of the Gaussian distribution, respectively:

µ(x
′
) = K(x, x

′
)K(x, x)

−1
f

σ(x
′
) = K(x′, x

′
)−K(x, x

′
)TK(x, x

′
)−1K(x, x

′
)

where x
′
and σ(x

′) are the mean and standard deviation of the Gaussian distribution of the query
data point, x

′
. For details on the derivation, we refer the reader to Williams and Rasmussen. [2]

2.2 Neural Network

Neural Networks (NNs) are not often used in BO applications for chemical reaction due to relatively
small datasets as NNs typically require at least hundreds of data points, i.e., reaction outcomes to
train. Nonetheless, examples exist in which feed-forward neural networks (FFNNs) have demon-
strated success in predicting reaction outcomes. [3] The standard computations performed by FFNN
are:

H = ϕ(XW1 + b1)

O = HW2 + b2

where ϕ is the activation function that confers non-linearity, X is the input matrix, W is the weight
matrix, b is the bias, H is the hidden layer, and O is the output layer. Model inference simply
involves forward propagation of an input, i.e., a series of matrix multiplications.

Uncertainty quantification adds slight complexity compared to GPs and RFs. The most
straightforward method would be to the train the FFNN to output both a prediction and an
uncertainty. However, this requires the training data to also report uncertainty which is often
unavailable. The brute-force solution is to train an ensemble of FFNNs and take the variance in
the predictions to be the uncertainty, but this can impose a significant computational overhead
as an N -size ensemble would require N networks to be trained. An alternative method is Monte
Carlo dropout (MC dropout). FFNNs can be trained with dropout, i.e., deactivate neurons with
a probability, which mitigates overfitting. During inference, one can keep dropout such that re-
peated queries to the model yield different results. Thus, only one model needs to be trained and
the prediction and uncertainty are the average and variance of the results, respectively. [4]
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3 Acquisition Function

The acquisition function (AF) is the final ingredient for BO and represents the heuristic used to
propose the next reaction conditions to try. There have been many AFs proposed, each showing
improved performance in certain problem set-ups. Following the sentiment from Shahriari et al. [1],
AFs are less important than the choice of surrogate model for BO performance. Correspondingly,
we do not aim to give an exhaustive list of AFs. Instead, we introduce the exploration-exploitation
balance and present the most popular AFs used for reaction optimization.

3.1 Random Acquisition

One can randomly choose the next reaction condition to try. This is usually the baseline comparison
in BO applications as one would hope that a meaningful AF is better than just random choice.
We include this as random acquisition represents a purely explorative AF and also shows that any
heuristic can be considered an AF.

3.2 Greedy

In contrast to random acquisition, greedy acquisition is a purely exploitative AF where the most
optimal prediction is chosen as the next reaction condition to try. In a scenario where one wants to
optimize yield but has only performed experiments changing the temperature, greedy acquisition
will likely only exploit this knowledge and propose reaction conditions that change the temperature.
Consequently, greedy acquisition does not explore reaction conditions for which the surrogate is
uncertain.

3.3 Probability of Improvement

The Probability of Improvement (PI) [5] measures the probability that a new reaction condition
improves upon the previous best condition. In GPs, the assumption that the reaction landscape
is modelled by Gaussian distributions makes PI meaningful and analytically tractable to compute.
PI is expressed as:

Improvement(x′) = max(f(x)− f(x′), 0)

Recall that every input to the GP has a Gaussian distribution outcome. The area under any prob-
ability distribution is 1. Intuitively, PI measures how much area under the Gaussian distribution
associated with the query x is above (if we are trying to maximize an objective such as reaction
yield) the current optimal point. Since we are working with Gaussian distributions, there is a
closed-form solution given by:

PI(x′) = Φ(
µ− f(x′)

σ(x)
)

where Φ is the Cumulative Distribution Function (CDF) and PI values are bound between 0 and
1. The same expression above can be used with Random Forest (RF) and Neural Network (NN)
surrogate models by simply replacing f(x′) with the prediction by the corresponding model. In
practice, PI can be too exploitative, leading to sub-optimal performance.

3.4 Expected Improvement

The Expected Improvement (EI) [6] attempts to quantify how much better a new reaction condition
will be. The starting expression for EI is:

EI(x′) =

∫ ∞

−∞
Improvement(x′)Probability(z)dz

the expected improvement is the improvement (same expression as in PI) multiplied by the prob-
ability function. After performing some operations, we arrive at a closed-form solution:

EI(x′) = (µ− f(x′))Φ(
µ− f(x′)

σ(x)
) + σϕ(

µ− f(x′)

σ(x)
)

EI is the most widely used AF in the BO for chemical reactions literature. [7] A variant of EI to
facilitate batch acquisition is Batch Expected Improvement (qEI). [8,9] In qEI, the model makes
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a prediction on the best expected improvement, the prediction is taken by faith and is used to
re-train the surrogate [10], the model is used to make a new prediction, and this process is repeated
until the batch number of reaction conditions has been acquired. [7] The same expression above can
again be used in random forest (RF) and NN models.

3.5 Upper-Confidence Bound

The Upper-Confidence Bound (UCB) is a linear combination of the prediction and uncertainty:

UCB(x′) = µ(x′) + βσ(x′)

where β is a hyperparameter that controls how much exploration we want to encode in the AF.
UCB takes the prediction by the surrogate and adds the standard deviation scaled by β. If β is 0,
we recover the Greedy AF which simply chooses the optimal predicted reaction condition. Larger
β would encourage the model to explore reaction conditions for which it is more uncertain about.
UCB has been used for reaction optimization, though less frequently than EI. [11,12]
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