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Abstract: Computer-aided synthesis design, automation, and analytics assisted by machine learning are promis-
ing resources in the researcher’s toolkit. Each component may alleviate the chemist from routine tasks, provide
valuable insights from data, and enable more informed experimental design. Herein, we highlight selected works
in the field and discuss the different approaches and the problems to which they may apply. We emphasise that
there are currently few tools with a low barrier of entry for non-experts, which may limit widespread integration
into the researcher’s workflow.
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1. Introduction
Artificial intelligence (AI) is becoming integral to chemical

discovery pipelines as data and computational resources fuel a
paradigm shift towards data-driven science.[1] AI research in
chemistry commenced in the 1960s, intending to remove human
bias and improve the efficiency of a chemist’s workflow. Two
pioneering projects emerged during the period. One was for the
design of synthetic routes as proposed by E. J. Corey and led
to the field of computer-aided synthesis planning (CASP).[2] The
second, called Dendral, tackled the structure elucidation of un-
known organic compounds.[3] The recent rise in the availability
of publicly accessible data, computing power and AI algorithms
has led to progress in developing models tailored to chemistry.
As such, AI tools can now provide chemists with assistance in
synthesis and automation tasks.

There exist numerous machine learning (ML) approaches to
retrosynthesis, predictions of yields, andmolecular properties.[4–7]
With lab automation allowing the execution of such syntheses,
the final link in the chain is analysis, where ML offers significant
speed-up.[5,7–9] The availability of open-source tools and afforda-
ble hardware drives the synergy between digital and bench chem-
istry. Here we provide an overview into the process of this syn-
ergy’s consolidation, by highlighting ways in which the strengths
of AI are reflected into valuable tools that can be employed by
bench chemists. We discuss the approaches AI takes to synthesis
planning, automation, and, finally analytical chemistry (Fig. 1). In
the process, we highlight freely-available or open-source software
and discuss their limitations and ways of tackling them. Lastly,
we stress the importance of chemists’ contribution to crystallis-
ing progress by providing high-quality data and feedback on the
existing tools.

2. Synthetic Route Design
Computer-aided synthesis planning (CASP) is a half-century-

old area of research that recently culminated with the integration
of ML into its development.[2] In this framework, synthesis plan-
ning is approached in two overarching steps: the prediction of
individual transformations and the design of a search algorithm
to complete a synthesis route. Although computational methods
hold promise to augment synthetic route planning, they are not

yet mainstream among chemists. This is partly due to their limi-
tations, but equally due to their rapid emergence, with chemists
often finding themselves overwhelmed by the number of CASP
options available.[10,11]

2.1 Retrosynthesis
CASP methods for retrosynthesis are divided into ‘expert’

rule-based and ML-based techniques. The former include the
Chematica/Synthia project and use hand-coded reaction rules in
conjunction with guiding heuristics to navigate and select optimal
synthetic pathways.[12] Although such methods excel in low-data
regimes where few reactions apply to a particular transformation,
they quickly become unfeasible when multiple reactions can
match a transformation, especially with the number of reaction
types discovered per year lying in the low thousands.[13]

ML-based CASP methods are gaining popularity in synthe-
sis planning, and they can be largely categorized into data-driv-
en methods, which entirely discard the use of rules, and hybrid
methods. Similarly to expert rule-based approaches, hybrid
methods rely on templates to identify relevant transformations
for a target. However, they incorporate ML algorithms to assist
the selection of optimal precursors and reactions in such a way
as to avoid combinatorial explosion, as the number of precursors
matching a target can easily reach a few thousands. Moreover,
the possibility to extract template rules in an automated manner
has emerged, releasing the burden on expert chemists to generate
them manually.[14]

Entirely data-driven tools include the RXN platform, which
uses an architecture dubbed the Molecular Transformer, that has
been adapted from natural language processing (NLP) for synthe-
sis planning tasks.[15] In this framework, chemical reactions are
encoded as sentences using reaction SMILES, so that retrosyn-
thesis prediction is regarded as a translation task from products
to reactants, and reaction prediction as a translation task from re-
actants to products.[6,15] In retrosynthesis, after all possible trans-
formations are generated by the Molecular Transformer, a beam
search on the hypergraph of the proposed disconnections is used
to find an optimal synthetic pathway.[6]
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designating preferred disconnection sites in the product to guide
the retrosynthesis.[24] Each step of the synthesis can be edited on
the fly by adding missing reagents or solvents, and interactive
features include further predicting synthesis routes for other com-
pounds involved in the original synthesis.

Chemists’ contribution to the development of AI tools for
synthesis is crucial, both from a data perspective, where larg-
er datasets and increased compound diversity can help models
make more accurate predictions and improve model validation,
and from a method development perspective, where chemists, as
users, can offer invaluable feedback and motivation for improving
the models. For this reason, freely-available retrosynthesis and
reaction prediction platforms provide the end user the option to
offer feedback on their experience and point towards limitations
of the models.

3. Automation
The latest advances in ML within the chemistry domain de-

mand high quality experimental data.[25]Although the vast major-
ity of small molecule syntheses are still performed manually, the
automation of chemical processes is becoming more accessible.
With increased throughput, reproducibility, and precise records,
automated systems facilitate chemical research, reaction optimi-
sation, and discovery.[26,27]

3.1 Digitisation of Reaction Procedures
An important step towards laboratory automation is the adap-

tation of existing synthetic procedures to the available hardware
platform.Various software tools facilitate the extraction of ‘chem-
ical keywords’ (such as chemical names, actions, units, etc.)[28,29]
to build a machine-readable procedure representation. Although
such tools were not designed specifically for automation, they
can be used to provide a list of instructions that can be adapted to
automated execution. However, the adaptation process requires
substantial human labour. To bridge the gap between procedure
representation and executable code, Cronin et al. have proposed
the chemical descriptive language, XDL, a markup language for
chemistry.[30] A web-based application facilitates the translation
of procedures to XDL, and outputs a hierarchy of chemical unit
operations, which can be downloaded and executed on compatible
hardware.[31] Despite the broad scope of chemical operations ac-
counted for by XDL, its rule-based nature limits the possibilities
in understanding the gamut of natural language.

2.2 Synthetic Pathway Ranking
Once multiple reaction steps are generated for a particular tar-

get, a ranking based on their likelihood is determined. This, how-
ever, often leaves users overwhelmed with the number of similar
synthesis options, as the top-ranked options may differ only at
a sub-portion level. Therefore, pathway-level guidance and out-
put diversity have become active areas of research for predicting
synthesis routes.[16] Heuristic strategies have been suggested to
sort pathways by the number of steps involved (making sure few
unproductive steps are present), and scoring functions have been
defined to combine single-step reaction likelihood with degree of
molecule simplification.[17] In addition, application-oriented met-
rics can be used to sort pathways, such as the price of the final
precursors.[18] However, this requires a comprehensive database
of buyable precursors, and consistency of such databases across
different retrosynthesis predictions tools is not ensured.

2.3 Tools for Computer-aided Synthesis Planning
Out of the multiple technologies to employ hybrid tem-

plate-based synthesis planning methods, ASKCOS and
AiZynthFinder provide open-source software which are within
accessible reach by chemists through graphical user interfaces
(GUI).[19,20] AiZynthFinder provides the end-user with a com-
mand-line interface (CLI), as well as with a GUI through Jupyter
Notebooks.[20] The GUI, however, lacks the distinctive features of
the CLI, such as the abilities to process compounds in batch and to
store detailed results on disc. ASKCOS path planning is available
through a website interface that allows users to build retrosyn-
thetic trees where each suggested reaction can be expanded and
evaluated by the built-in reaction prediction tool.[21]Here, the user
has the possibility to inspect recommended conditions, impurity,
regio- and stereo-selectivity predictions generated by the same
software. In fact, there have been major efforts to address the lim-
ited ability of data-drivenmodels to handle regioselectivity. Ree et
al. proposed a combination of QM/ML, which outperforms purely
physics-based methods for predicting the regioselectivity of elec-
trophilic aromatic substitution reactions.[22] Likewise, Guan et al.
combine QM descriptors with ML to predict substitution reac-
tions more generally.[23]Although selectivity models have limited
user accessibility, they play a key role in assessing the quality of
synthetic pathways.[6]

To facilitate user interaction, the RXN platform has a GUI
that is freely available and includes additional features such as
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3. Heat to 50 °C
...
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Fig. 1. Schematic showing the
different types of AI-based tools
that are currently accessible by
the chemist.
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degree of control. This is exemplified by the breadth of literature
on cross-coupling reactions, discovery of new reactivities, and
formulation development.[47–49]

Although execution of synthetic procedures has been demon-
strated in the examples given, a system to automatically charac-
terise and quantify the results is not yet implemented.

4. Analytical Tools
To close the synthesis prediction and automation loop,we need

a system that can automatically characterise and quantify the com-
ponents present in spectroscopic data.[9] ML shows promise as a
core component of predictive analytics tools; however, the rate at
which algorithms have been adopted in the analytical domain is
comparatively lower than for other areas of chemistry.[50] Despite
the plethora of analytical software on the market, only some pro-
vide functionality for the automated annotation and quantification
of spectral components. Similarly, the integration of automated
analysis pipelines without prior calibration or extensive plann-
ing into general laboratory automation is rare in synthetic chem-
istry.[51] As such, characterisation, annotation, and quantification
still require a significant amount of manual labor and specialist
knowledge, representing a bottleneck. Here, we highlight exam-
ples of ML in analytical chemistry, divided into three general are-
as: processing, prediction, and interpretation of spectra.

4.1 Processing
While spectra are routinely processed using both commercial

and open-source programs, in many cases human efforts outper-
form these algorithms making spectral processing a tedious and
time-consuming task.[52] In one recent example, Bruker intro-
duced two deep learning algorithms for their TopSpin software.
The first is based on a combination of convolutional and recurrent
neural networks, allowing the automated correction of both phase
information and the baseline of 1H NMR spectra.[52] Using a sim-
ilar approach, Bruker was also able to automate the peak picking
of spectra.[53] Both algorithms outperform commonly used tech-
niques and match human capabilities. In addition, there is a large
body of research on processing techniques incorporating ML for
other types of spectra.[54,55] However, so far all of these require
expert knowledge to use.

4.2 Prediction and Simulation
Ab initio methods have traditionally been used for the pre-

diction of spectra. However, recent studies have shown that ML
approaches can reach comparable performance on a significantly
faster time scale. This has been demonstrated for the prediction of
IR, MS and NMR spectra.[56–58]Yet, MLmethods are only starting
to emerge in products usable by chemists.

At present, Modgraphs NMR Predict provides an approach-
able software integrating neural networks to predict 13C spectra.[59]
Alternatively, the MestreNova plugin NMR Predict provides an
ensemble approach, based on Modgraph and Mestrelab for the
prediction of 1H and 13C spectra.[60] Both methods are able to pre-
dict spectra in minutes, whereas ab initio methods often require
hours. Methods incorporating ML for other spectra currently re-
main out of reach as they require expert knowledge to use.

4.3 Interpretation
In the field of automated spectra interpretation two schools of

thought dominate: either the spectrum is assigned through com-
parison to other spectra, or by direct interpretation of the spectra,
which can be further broken down into ‘targeted’ and ‘untargeted’
analysis. Targeted analysis is the most common, and used when
there is prior knowledge of the components of the mixture. As
such, methods based on comparison, e.g. database similarity
searching, are commonly used to automatically interpret MS-MS
data. A large number of algorithms exist for this purpose with

An alternative approach using natural language processing
(NLP) to extract chemical actions from procedures was suggested
by Vaucher et al.[32] The resulting model, despite mistakes in the
order of actions and quantities of materials, is capable of trans-
lating the procedure into a sequence of unit operations. The unit
operations may be used to execute a synthesis either manually or
on a robotic platform, as demonstrated by the RXN tool.[24] The
concept was later extended to the prediction of an entire procedure
based on the reaction SMILES which encodes the structure of the
reactants and products.[33] In contrast to the XDL approach which
translates a procedure into a set of unit operations, the one devel-
oped byVaucher et al. only requires the encoded chemical species
(including reagents, solvent, and catalyst) to output a set of unit
operations. Despite its limited accuracy, to the best of our knowl-
edge, it remains the only model capable of complete reaction pro-
cedure prediction including addition order and work up details,
and is available for non-expert users through a web-browser.

3.2 Synthesis Automation
Automated systems are well suited to screening, optimisation

problems, and execution of well-established unit operations.[34]
Within chemical synthesis, this includes finding an initial or opti-
mal set of reaction conditions, and expanding the substrate scope
of a reaction.[35]

The basic requirements for an autonomous platform are hard-
ware, analytical instruments, and orchestration software.[36] Most
of the progress in automated systems was achieved in flow chem-
istry,[37,38] but the adoption of flow techniques requires specialised
knowledge for establishing the reaction pathway and execution
set-up. In contrast, batch systems leverage existing laboratory
workflows, however the process of building such autonomous
platforms is hampered by initial investments costs, personnel
training, choice of vendors and running costs for maintenance and
support.[39] Furthermore, the lack of standardised communication
protocols between machines blocks autonomous decision mak-
ing.[40,41] This means that data cannot be easily extracted, charac-
terised, hypothesis generated, and tested in an autonomous man-
ner, although each individual step is routinely conducted using
manual labor. To address the communication issue, both proprie-
tary and public toolkits have been developed, however they have
not yet reached widespread adoption.[42] ChemOS is one such
system, capable of managing hardware and orchestrating experi-
mental planning, being backed with a diverse range of ML-based
optimisation algorithms.[43] Furthermore, capabilities for database
management support and the remote control of automatic hard-
ware may drive the development of self-driving laboratories, as
demonstrated for the optimisation of cross-coupling reactions.

Cronin et al. have proposed an open-source solution, namely
The Chemputer (now ChemPU), that aims to automate traditional
laboratory operations.[44] It is a modular robotic platform, capa-
ble of a diverse range of chemical operations – from synthesis to
work-up and purification. The open-source approach to hardware
enables the 3D printing of modules, which can be coupled with
existing laboratory equipment, and using the XDL framework can
translate high-level unit operations (e.g. add reagent) into low-lev-
el hardware primitives (e.g. syringe pump movements). This re-
duces the barrier of adoption for the community, and enables col-
laborative development. Recently, the platform has been coupled
with a benchtop NMR for automated analysis and adjustment of
reactions on the fly.[45]

In cases where the availability of capital may be a limiting
factor, several groups have opted to repurpose and modify exist-
ing commercial hardware. Using in-house scripts coupled with
the programming interface of the hardware, routine tasks such as
controlling the addition of reagents may be automated.[46]Despite
the restricted applicability of such an approach, they may help
alleviate the researcher of routine operations and afford a greater
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many offering GUIs or webtools.[61,62] Inroads are also being
made in integrating ML into these methods.[63] However, these
tools are limited by the database that is being searched and as
such are often specialised to a certain domain (e.g.metabolomics).

A different comparison-based approach has been used to inter-
pret NMR spectra. This method is based on a user predicted struc-
ture whose spectrum is calculated. Using the known experimental
and the calculated spectrum, the peaks in the experimental spec-
trum are assigned. Concurrently, the probability of the experimen-
tal spectra matching the proposed structure is calculated.With this
method the peaks of the spectra can be assigned but a major short-
fall is the need of a user provided structure. MestreNova’s Auto
Assignment function follows this approach using the above-men-
tioned spectra prediction, with a similar approach being imple-
mented by Goodman et al. in the DP4-AI framework.[64,65] Both
tools implement a GUI, however DP4-AI requires a compute
cluster and is based around DFT calculations making the use of
MestreNova significantly easier for the non-expert user.

Research on the direct interpretation of spectra without re-
quiring a database or the prediction of spectra is more limited.
Numerous reports ofML algorithms used to directly predict struc-
ture from anNMRorMS-MS spectrum exist.[66–70] Similarly there
are reports of the use of ML to predict functional groups from
IR-spectra.[71] However, these techniques are still in their infan-
cy with comparatively low accuracies and the accessibility being
low.[72,73]

5. Conclusions
Overall the incorporation of ML methods into the synthetic

chemistry workflow holds promise. Chemists are starting to use
synthetic route design software that relies on ML approaches.[74]
For the researcher, the biggest hurdle in the adoption of these
methods is their ease of use. Currently, very few predictive models
and automation platforms, whether for route design or analytics,
provide a GUI. The few that do are typically integrated into com-
mercial offerings at amoremature stage of their development, thus
limiting the access researchers have to newly developed methods.
While many reports on both automation and analysis can be found
in the literature, the advancements so far do not translate into the
day-to-day workings of chemists. This can largely be attributed to
the amount of initial investment and expert knowledge required
in the field of automation, and respectively the lack of accessible
tools for analysis.

Nevertheless, efforts to collect and refine data persist and
method development inML ismore active than ever. These trends,
corroborated with a push from the community towards molecule
discovery and synthesis that fit today’s demanding timeframes,
are setting the scene for a revolution in chemistry laboratories.
The existent tools, although imperfect, are already equipping the
chemist with valuable assistance, and the authors anticipate that
more advancements will likely be transferred into the laboratory
in the near future.

Acknowledgements
This publication was created as part of NCCR Catalysis (grant num-

ber 180544), a National Centre of Competence in Research funded by
the Swiss National Science Foundation.

Received: December 1, 2022

[1] A. F. de Almeida, R. Moreira, T. Rodrigues, Nat. Rev. Chem. 2019, 3, 589,
https://doi.org/10.1038/s41570-019-0124-0.

[2] E. J. Corey, W. T. Wipke, Science 1969, 166, 178,
https://doi.org/10.1126/science.166.3902.178.

[3] R. K. Lindsay, B. G. Buchanan, E.A. Feigenbaum, J. Lederberg, Artif. Intell.
1993, 61, 209, https://doi.org/10.1016/0004-3702(93)90068-M.

[4] M. H. S. Segler, M. P. Waller, Chem. Eur. J. 2017, 23, 6118,
https://doi.org/10.1002/chem.201604556.



ArtificiAl intelligence in chemicAl reseArch CHIMIA 2023, 77, No. 1/2 21

[39] M. Christensen, L. P. E. Yunker, P. Shiri, T. Zepel, P. L. Prieto,
S. Grunert, F. Bork, J. E. Hein, Chem. Sci. 2021, 12, 15473,
https://doi.org/10.1039/D1SC04588A.

[40] A. J. S. Hammer,A. I. Leonov, N. L. Bell, L. Cronin, JACS Au 2021, 1, 1572,
https://doi.org/10.1021/jacsau.1c00303.

[41] J. Bai, L. Cao, S. Mosbach, J. Akroyd, A. A. Lapkin, M. Kraft, JACS Au
2022, 2, 292, https://doi.org/10.1021/jacsau.1c00438.

[42] C. Elliott, V. Vijayakumar, W. Zink, R. Hansen, JALA: J. Assoc. Lab. Autom.
2007, 12, 17, https://doi.org/10.1016/j.jala.2006.07.012.

[43] L. M. Roch, F. Häse, C. Kreisbeck, T. Tamayo-Mendoza, L. P. E.
Yunker, J. E. Hein, A. Aspuru-Guzik, PLOS one 2020, 15, e0229862,
https://doi.org/10.1371/journal.pone.0229862.

[44] S. Rohrbach, M. Šiaučiulis, G. Chisholm, P.-A. Pirvan, M. Saleeb, S. H.
M. Mehr, E. Trushina, A. I. Leonov, G. Keenan, A. Khan, A. Hammer, L.
Cronin, Science 2022, 377, 172, https://doi.org/10.1126/science.abo0058.

[45] M. Bornemann-Pfeiffer, J. Wolf, K. Meyer, S. Kern, D. Angelone, A.
Leonov, L. Cronin, F. Emmerling, Angew. Chem. Int. Ed. 2021, 60, 23202,
https://doi.org/10.1002/anie.202106323.

[46] G. R. D. Prabhu, T.-H. Yang, C.-Y. Hsu, C.-P. Shih, C.-M. Chang,
P.-H. Liao, H.-T. Ni, P. L. Urban, Nat. Protoc. 2020, 15, 925,
https://doi.org/10.1038/s41596-019-0272-1.

[47] D. J. Blair, S. Chitti, M. Trobe, D. M. Kostyra, H. M. S. Haley, R. L. Hansen,
S. G. Ballmer, T. J. Woods,W.Wang, V. Mubayi, M. J. Schmidt, R.W. Pipal,
Greg. F. Morehouse, A. M. E. Palazzolo Ray, D. L. Gray, A. L. Gill, M. D.
Burke, Nature 2022, 604, 92, https://doi.org/10.1038/s41586-022-04491-w.

[48] D. Caramelli, J. M. Granda, S. H. M. Mehr, D. Cambié,
A. B. Henson, L. Cronin, ACS Cent. Sci. 2021, 7, 1821,
https://doi.org/10.1021/acscentsci.1c00435.

[49] L. Cao, D. Russo, K. Felton, D. Salley, A. Sharma, G. Keenan, W. Mauer,
H. Gao, L. Cronin, A. A. Lapkin, Cell Rep. Phys. Sci. 2021, 2, 100295,
https://doi.org/10.1016/j.xcrp.2020.100295.

[50] L. B. Ayres, F. J. V. Gomez, J. R. Linton, M. F. Silva, C. D. Garcia, Anal.
Chim. Acta 2021, 1161, 338403, https://doi.org/10.1016/j.aca.2021.338403.

[51] C. Houben, A. A. Lapkin, Curr. Opin. Chem. Eng. 2015, 9, 1,
https://doi.org/10.1016/j.coche.2015.07.001.

[52] S. Bruderer, F. Paruzzo, C. Bolliger, ‘Deep learning-based phase and base-
line correction of 1D 1H NMR Spectra’, Bruker.

[53] F. Paruzzo, S. Bruderer, Y. Janjar, B. Heitmann, C. Bolliger, ‘Automatic
Signal Region Detection in 1H NMR Spectra Using Deep Learning’, Bruker,
2020.

[54] Z. A. Al-Mualem, C. R. Baiz, J. Phys. Chem. A 2022, 126, 3816,
https://doi.org/10.1021/acs.jpca.2c02605.

[55] U. W. Liebal, A. N. T. Phan, M. Sudhakar, K. Raman, L. M. Blank,
Metabolites 2020, 10, 243, https://doi.org/10.3390/metabo10060243.

[56] C. McGill, M. Forsuelo, Y. Guan, W. H. Green, J. Chem. Inf. Model. 2021,
61, 2594, https://doi.org/10.1021/acs.jcim.1c00055.

[57] F. Allen, R. Greiner, D. Wishart, Metabolomics 2015, 11, 98,
https://doi.org/10.1007/s11306-014-0676-4.

[58] E. Jonas, S. Kuhn, J. Cheminf. 2019, 11, 50,
https://doi.org/10.1186/s13321-019-0374-3.

[59] Modgraph C13 NMR Prediction: CSEARCH, http://www.modgraph.co.uk/
product_nmr_network.htm, accessed November 21, 2022.

[60] Ensemble NMR Prediction,
https://resources.mestrelab.com/ensemble-nmr-prediction/, accessed
November 21, 2022.

[61] K. Dührkop, M. Fleischauer, M. Ludwig, A. A. Aksenov, A. V. Melnik, M.
Meusel, P. C. Dorrestein, J. Rousu, S. Böcker, Nat. Meth. 2019, 16, 299,
https://doi.org/10.1038/s41592-019-0344-8.

[62] K. Dührkop, H. Shen, M. Meusel, J. Rousu, S. Böcker, Proc. Natl. Acad. Sci.
USA 2015, 112, 12580, https://doi.org/10.1073/pnas.1509788112.

[63] K. Scheubert, F. Hufsky, S. Böcker, J. Cheminf. 2013, 5, 12,
https://doi.org/10.1186/1758-2946-5-12.

[64] 1HNMRAuto-assignments, https://resources.mestrelab.com/auto-assignments/,
accessed November 21, 2022.

[65] A. Howarth, K. Ermanis, J. M. Goodman, Chem. Sci. 2020, 11, 4351,
https://doi.org/10.1039/D0SC00442A.

[66] C. Zhang, Y. Idelbayev, N. Roberts, Y. Tao, Y. Nannapaneni, B. M. Duggan,
J. Min, E. C. Lin, E. C. Gerwick, G. W. Cottrell, W. H. Gerwick, Sci. Rep.
2017, 7, 14243, https://doi.org/10.1038/s41598-017-13923-x.

[67] J. Zhang, K. Terayama, M. Sumita, K. Yoshizoe, K. Ito, J.
Kikuchi, K. Tsuda, Sci. Technol. Adv. Mater. 2020, 21, 552,
https://doi.org/10.1080/14686996.2020.1793382.

[68] Z. Huang, M. S. Chen, C. P. Woroch, T. E. Markland, M. W. Kanan, Chem.
Sci. 2021, 12, 15329, https://doi.org/10.1039/D1SC04105C.

[69] M.A. Stravs, K. Dührkop, S. Böcker, N. Zamboni, Nat. Meth. 2022, 19, 865,
https://doi.org/10.1038/s41592-022-01486-3.

[70] A. A. Bondarenko, Y. S. Vlasova, M. V. Polynski, V. V.
Ilyushenkova, V. P. Ananikov, Inorg. Chem. Front. 2022, 9, 5279,
https://doi.org/10.1039/D2QI01098D.

[71] A. A. Enders, N. M. North, C. M. Fensore, J. Velez-Alvarez, H. C. Allen,
Anal. Chem. 2021, 93, 9711, https://doi.org/10.1021/acs.analchem.1c00867.

[72] E. Szymańska, Anal. Chim. Acta 2018, 1028, 1,
https://doi.org/10.1016/j.aca.2018.05.038.

[73] ‘Theory and Practical Applications of Automation Solutions in Analytical
Measurements’, http://www.americanlaboratory.com/914-Applica-
tion-Notes/360982-Theory-and-Practical-Applications-of-Automa-
tion-Solutions-in-Analytical-Measurements/, accessed November 23, 2022.

[74] J. P. Janet, A. Tomberg, J. Boström, Nat. Mach. Intell. 2021, 3, 572,
https://doi.org/10.1038/s42256-021-00367-2.

License and Terms
This is an Open Access article under the
terms of the Creative Commons Attribution
License CC BY 4.0. The material may not
be used for commercial purposes.

The license is subject to the CHIMIA terms and conditions:
(https://chimia.ch/chimia/about).

The definitive version of this article is the electronic one that can be
found at https://doi.org/10.2533/chimia.2023.17


