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ABSTRACT

Increased levels of greenhouse gases in the atmosphere, especially carbon dioxide, are leading contributors to a significant increase in the
global temperature, and the consequent global climatic changes are more noticeable in recent years than in the past. A persistent increased
growth of such gases might lead to an irreversible transition or tipping of the Earth’s climatic system to a new dynamical state. A change of
regimes in CO2 buildup being correlated to one in global climate patterns, predicting this tipping point becomes crucially important. We
propose here an innovative conceptual model, which does just this. Using the idea of rate-induced bifurcations, we show that a sufficiently
rapid change in the system parameters beyond a critical value tips the system over to a new dynamical state. Our model when applied to real-
world data detects tipping points, enables calculation of tipping rates and predicts their future values, and identifies thresholds beyond which
tipping occurs. The model well captures the growth in time of the total global atmospheric fossil-fuel CO2 concentrations, identifying regime
shift changes through measurable parameters and enabling prediction of future trends based on past data. Our model shows two distinct
routes to tipping. We predict that with the present trend of variation of atmospheric greenhouse gas concentrations, the Earth’s climatic
system would move over to a new stable dynamical regime in the year 2022. We determine a limit of 10.62 GtC at the start of 2022 for global
CO2 emissions in order to avoid this tipping.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0135266

The Earth’s climate has seen many changes over the years, affect-
ing the physical environment (be it terrestrial, marine, or the
atmosphere). These major changes or regime shifts from one sta-
ble dynamical state of the physical environment to another, each
of which may persist for several years, produce major shifts in
natural ecosystems involving trophic structures, changes in com-
position, and abundance of species. The climatic system moves
over to a new regime once it crosses a climatic tipping point—a
threshold crossed irreversibly by the system’s dynamics. Anthro-
pogenic influences brought about in the physical environment
invariably contribute in a substantial way to climate change glob-
ally as the dynamics of the climatic system is governed by the
coupling between the land, the atmosphere, and the oceans. An
increase in levels of greenhouse gases in the atmosphere mainly
caused by human activities, especially carbon dioxide, has been
one of the important contributing factors leading to climate
change in the last few decades. We present here a theoretical
model that well captures the rate of increase of the total global

concentrations of carbon dioxide, the major contributing green-
house gas in the atmosphere. We then employ the concept of
rate-induced bifurcations to demonstrate that it is possible to
determine the climatic tipping points from our model. This way,
we predict that the climatic system would relocate to a new sta-
ble state early in the year 2022. It has been widely accepted that
tipping point mechanisms can be used to study climate change.
In this paper, we shall introduce and apply a rate-induced tipping
model to global fossil-fuel emissions data. Our model shows two
distinct routes in which tipping can occur, and the parameters
describing these can be calculated from data and are physically
measurable. Through the application of this model, we identify
crucial tipping points, which lead to climate change and quan-
tify exact boundaries crossed that induce tipping. Control can be
exercised over the parameters describing tipping, if desired, such
that tipping can be prevented. The methods developed can fur-
ther be applied to any growth curve that may have undergone
rate-induced tipping.
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I. INTRODUCTION

Technological advances over the years, especially with the
advent of the industrial revolution, have been synonymous with
increasing measures of fuel consumption and the consequent release
into the atmosphere of the by-products of their burning. Global
carbon dioxide concentrations in the atmosphere have drastically
increased by an order of magnitude between 1926 and 2014 due to
burning of fossil fuels. In the four decades between 1970 and 2014,
the carbon dioxide concentration increased about 2.43 times, while
NOx and methane concentrations rose by about 2 and 1.8 times,
respectively. Global temperatures have consequently risen consid-
erably, and climatic conditions globally have changed compared to
past years accompanied by rising sea levels. The Earth has also seen
declining levels of Arctic sea ice and declining mass of land ice sheets
in Greenland and Antarctica. Changes in natural ecosystems—both
terrestrial and marine, change of habitat of fauna and flora, changed
patterns of insect pest outbreak cycles, etc.—have been observed,
and these are believed to have occurred as a consequence of the
changed climate.1–4

It is, thus, of extreme interest and importance to know whether
and when the next drastic change in the climate is likely to occur.
If the rate of variation in concentrations of greenhouse gases in the
atmosphere continued to follow the present trend, could one predict
when Earth’s climatic system would tip over irreversibly to a new
dynamical state?

We propose here a theoretical model for the variation in the
concentrations of the greenhouse gases in the atmosphere. We
assume that the growth rate of the substance in the atmosphere and
the carrying capacity for the gas are not constant but evolve in time.
Using the concept of rate-induced bifurcations, we then show that
a sufficiently rapid change in the system parameters beyond a crit-
ical value causes the system to tip or move away from a branch of
attractors taking the system to a new dynamical state. We apply our
theoretical model to recorded data of CO2 emissions available in5

and compare it with the available global temperature anomaly data.
We find that our theory matches very well with climatic tipping
point years interpreted in the literature from observations of vari-
ous natural ecosystems. We then predict that with the present trend
of variation of greenhouse gas concentrations in the atmosphere, the
Earth’s climatic system would move over to a new stable dynamical
regime in the year 2022.

While climatic regime shifts may best be described and under-
stood using global climate models, such as general circulation
models,6–8 fluxes and transport of carbon dioxide and other gases,
including other greenhouse gases between the atmosphere, land, and
ocean are also affected by the changing climate. In our work, we
introduce a conceptual model and a systematic procedure to study
the growth of atmospheric fossil-fuel CO2 and to identify regime
shift changes in it, which we posit are also climatic regime shifts.

The growth of carbon dioxide and other greenhouse gases, such
as methane and nitrous oxide, which are by-products of human
lifestyle and needs, is continually changing and is limited only by the
changing technologies. One of the most popular choices to model
a growth process is the logistic equation used in various disciplines
because of its simplicity and practicality. Since the growth rate of the
concentration of these gases in the atmosphere is not vanishing, their
respective carrying capacities are not constants but time-varying.

A general form of this equation is the following:

dN

dt
= A0 + rN

(

1 −
N

K

)

,

having two non-zero fixed points: N∗ = Kr±K
√

r2+4 r
K A0

2r
with the

smaller value of N∗ being unstable and the other being stable. We
will use this logistic equation augmented with a shift in the parame-
ters to fit the growth curve of global CO2 emissions from fossil fuels
and analyze tipping points.

Tipping happens when a system undergoes a dramatic change
from one state to another new stable state.9,10

In our system, we observe two different ways in which tipping
can occur. One is a rate-induced tipping (defined to occur when
there is failure to follow a quasi-equilibrium state, which happens
due to rapidly varying parameters) and the second is when CO2

levels exceed a certain threshold.
The first type of tipping happens when the rate of change in the

parameters of the system is too high. Suppose we have a stable state
and now, we allow the parameters of the system to change. Then, the
stable state will also change along with the parameters. However, if
the change is too fast, the system will not be able to keep up with the
changing parameters and fails to track its quasi-equilibrium state,
leading to rate-induced tipping. In our system, the parameter µ, the
speed of the shift of the equilibria, describes this.

Ashwin et al.11 discussed rate-induced tipping and how it could
be a possible mechanism for studying regime changes in climate sys-
tems. Building on this work, Ritchie and Sieber12 analyzed a simple
model for rate-induced tipping and early warning indicators for this.

We, however, consider a more complicated system inspired
from a time-dependent logistic growth model augmented with a
shift in parameters, which is shown to have two distinct ways of
tipping. The parameters related to these tipping mechanisms are
measurable and physically significant. In fact, the model quantifies
exact boundaries, which need to be crossed for tipping to happen.
This allows control over tipping by control over these parameters.

Our model is then applied to a real-world system—fossil-fuel
CO2 emissions. The model helps to identify the points of the regime
shift (tipping points) and calculates important measurable param-
eters (µ, Ntransition), which help in controlling the future growth
and tipping of the system. We also point out a possible correlation
between the regime shift years we calculated and changes in cer-
tain important climate parameters, such as the global temperature
anomaly and a parameter we introduce associated with the ocean
carbon sink.

The second type of tipping happens in our system only when
the first has occurred. In our system, there are four fixed points: one
of which is a sink, two are saddles, and one is a source. The sink
has a basin of attraction. However, if an initial point, i.e., Ntransition is
outside the basin, then no growth to the next stable state will occur. It
will be shown that an explicit condition on Ntransition may be obtained
by which tipping may be prevented.

In short, our system has two parameters describing two differ-
ent ways of tipping. These two parameters can be calculated from
data and are measurable. Thus, tipping can be prevented, if desired,
by controlling these parameters.
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II. THE MODEL

Greenhouse gas emissions, and among these, carbon dioxide,
in particular, are known to be the main contributors to global tem-
perature rise and a consequent climate change. We intend to model
the growth of atmospheric carbon dioxide from fossil-fuel emissions
and based on the premise that climate change is primarily driven
by this growth curve and to understand the dynamical mechanisms
through which climatic tipping to a new stable state occurs.

A careful analysis (see Appendix A) of the recorded data from
Ref. 5 (Fig. 1, purple dots) shows that the growth in the global CO2

fossil-fuel emissions occurs in certain phases. This prompts us to
model this growth with the following system of equations:

dN

dt
= A0(t)+ r(t)N

(

1 −
N

K(t)

)

, (1a)

dλ

dt
= µλ(1 − λ), (1b)

where N denotes CO2 emissions from fossil-fuel in the atmosphere,
with the growth rate r and the carrying capacity K, its growth being
governed by a time-dependent generalized logistic equation. The
time-varying parameter A0(t) is usually negative and brings down
the gas concentration—accounting, thereby, for the carbon sink. We
assume that A0, K, and r are step functions of time and that they
vary together, i.e., when r(t) changes its value, so must K(t) and
A0(t). The real time variation of these parameters may be abrupt
but continuous, and a step function approximation here is eas-
ier to work with as the parameters are constant on a given time
interval. The variations of the parameters A0(t), r(t), and K(t) are
set by A0(t) = a0 + a1λ(t), r(t) = r0 + r1λ(t), K(t) = k0 + k1λ(t)
(a0, a1, r0, r1, k0 and k1 are constants and r(t) > 0, K(t) > 0, and
µ > 0 are constraints we add for the sake of physical interpretation).
Thus, our system of Eqs. (1a) and (1b) can be explicitly written as

dN

dt
= a0 + a1λ(t)+ (r0 + r1λ(t))N

(

1 −
N

(k0 + k1λ(t))

)

, (2a)

dλ

dt
= µλ(1 − λ). (2b)

λ varies in time in the form of a ramp, which we model with its
smoothed approximation, the logistic function [Eq. (1b)]. This mod-
els the growth when the parameters change as step functions of
time,

λ(t) =
1

2

[

tanh

(

µt

2

)

+ 1

]

, (3)

where the quantity µ is the speed of the ramp-like shift in time of
the parameters. We emphasize that we choose this functional form
for the variation of the parameters for the sake of simplicity. We
need only to consider the behavior of the system in the domain
D = [0, 1] × R.

In Fig. 2, we depict how N and the parameters in the system
vary in time. We refer to a period of growth as that which corre-
sponds to the growth of N, while the parameters (r,K,A0) remain
approximately constant. The parameters vary in a transition period.

FIG. 1. Growth in time t of CO2 emissions from fossil fuels in the atmosphere,
N from recorded data (purple dots), and as calculated from our model (green
squares). Dashed vertical lines show tipping/transition years as obtained from our
model.

This period, corresponding to the growth of the parameters, con-
tains two periods of growth of N. The speed µ of the variation of the
parameters or the shift of the equilibria of N is calculated from one
transition period. We refer to the transition point as one where the
second period of growth starts in a transition phase. We define these
terms below.

Definitions. Period of growth: A period of growth is a period
of time where a growth of N occurs, but the parameters r, K, A0 are
assumed to be approximately constant.

Transition phase: A transition phase consists of two adjacent
periods of growth put together. There is growth in N and a change
of parameters in a transition phase.

Transition point: The value of t in one transition period at which
the derivatives of the parameters take the maximum value.

FIG. 2. Illustration of a transition.
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FIG. 3. How the model works: (a) admissible phase portrait,µ small; (b) non-admissible phase portrait; (c) S0–Se and S1–Si connections; (d) S0–Si and S1–Se connections;
(e) non-admissible phase portrait with a saddle–saddle connection, parameter values: r0 = r1 = 1, a0 = −1, a1 = −7, k0 = 6, k1 = 13; and (f) saddle–saddle connection
at µc.

Tmax is the value of t in one period of growth at which dN
dt

attains
its maximum value (see also Appendix A). The solution of Eqs. (1a)
and (1b) in one period of growth where the parameters are assumed
to be constant is given in Eq. (A1) of Appendix A.

The plot depicted in Fig. 1 (green squares) of the measured
CO2 atmospheric fossil fuel concentrations and those calculated

from our Eqs. (1a) and (1b) demonstrates that our model cap-
tures almost exactly their growth in time. The parameters are
found as described in Appendix A. This enables us to iden-
tify the stable and unstable fixed points of the system; Eq. (1b)
describes the rate of shift of the quasi-equilibrium states of the
system.
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Our next task is to identify critical µ, which determines the
future growth (as in Ref. 12) and beyond which the process of
transition to a new state is set into motion.

Our system is much more complicated, but it can undergo rate-
induced tipping by the same mechanism as in Ref. 12.

As described there, a saddle–saddle connection is what defines
our rate-induced tipping point.

However, owing to the complexity of our system, such sad-
dle–saddle connections are present only under certain conditions.
It may be noted (from Peixoto’s theorem) that our system with a
saddle–saddle connection is not structurally stable.

Section II A, Secs. III A–III F, and Appendixes A–G deal with
mathematically examining the system defined in Eqs. (1a) and (1b).

A. Saddle–saddle connections in the system

Figures 3(a) and 3(b) show two phase portraits of the system
(1a) and (1b) for two sets of parameters. We shall prove a theorem
that shows why the first phase portrait has a saddle–saddle connec-
tion, while the second does not. Two important properties of the
first phase portrait that allows it to have a saddle–saddle connection
are as follows:

1. The N nullclines (dashed curves in orange) do not exist for a
certain values of λ.

2. The saddle on λ = 1 sits below the saddle on λ = 0. Note that
λ ∈ [0, 1], and therefore, we need not consider the behavior of
the phase portrait in regions other than λ ∈ [0, 1].

Here, we introduce some notation, which we shall be using through-
out the paper.

Notation.
S0 and S1: These denote the saddles on λ = 0 and λ = 1,

respectively.
Si and Se: These denote the sink and the source, respectively.
S1–Se connection: The N nullcline connection S1 to Se (if it

exists) is called a S1–Se connection.
S1–Si connection: The N nullcline connection S1 to Si (if it

exists) is called a S1–Si connection.
S0–Si connection: The N nullcline connection S0 to Si (if it

exists) is called a S0–Si connection.
S0–Se connection: The N nullcline connection S0 to Se (if it

exists) is called a S0–Se connection. These connections are depicted
in Figs. 3(c) and 3(d).

N(P): Denotes the N coordinate of a point P.
1m: = N(S1)− N(S0).
We let m0 = N(S0) and m1 = N(S1).
We find it useful to define two kinds of phase portraits, which

the system exhibits.
Admissible phase portrait
A phase portrait with four fixed points and a S1–Si connec-

tion, but no S1–Se connection is called an admissible phase portrait
[Fig. 3(a)].

Non-admissible phase portrait
A phase portrait that is not admissible [Fig. 3(b)].
We state below a theorem (proved in Appendixes B and C),

which we shall use to locate tipping points of the climatic system

from the CO2 growth curve. The theorem gives conditions for the
system to admit a saddle–saddle connection for some finite µ.

Theorem. The following system:

dλ

dt
= µλ(1 − λ), (4)

dN

dt
= A0(t)+ r(t)N −

r(t)

K(t)
N2, (5)

where A0(t) = a0 + a1λ(t), r(t) = r0 + r1λ(t), K(t) = k0 + k1λ(t)
[a0, a1, r0, r1, k0, and k1 are constants and r(t) > 0, K(t) > 0],µ > 0,
admits a saddle–saddle connection if the phase portrait is admissi-
ble and 1m = N(S1)− N(S0) < 0 or if the phase portrait is non-
admissible with four fixed points and 1m > 0. We give the proof of
this theorem in Appendix C.

We prove this by comparing the relative positions of the stable
and unstable manifolds of S1 and S0, respectively, when µ is small
and when µ is large. We will prove that these manifolds intersect for
some µ and, thus, establish a saddle–saddle connection.

We state and prove three lemmata (in Appendix B) to help
establish the theorem, which we then employ to identify tipping
points in the growth of atmospheric carbon dioxide emissions from
fossil fuel.

Non-admissible phase portraits with a saddle–saddle connection:
An example of such a portrait is Fig. 3(e). When we analyze the

data of atmospheric carbon dioxide emissions from fossil fuels, we
find that until now, there has been no transition where this kind
of phase portrait has occurred. This might happen in the future
when the carrying capacity K has an exponential growth (notice that
1m > 0 implies that the unstable root of the next period would be
larger than the stable root of the previous period—this points to a
large growth in K as compared to the other type of phase portrait).
Since the CO2 growth curve is now approaching an exponential
growth trend, we expect to see a non-admissible phase portrait in
the future.

III. RESULTS

A. Critical value of µ

µc is defined to be the critical value of µ such that if µ < µc,
a growth from one stable state to the next one does not occur. In
the system, this means that trajectories starting out from S0 (the pre-
vious stable state) will not grow toward Si (the next stable state) or
S1.

When µc is attained, there is a saddle–saddle connection [see
Fig. 3(f)].

We use a linear approximation of the saddle–saddle connec-
tion as in Ref. 13 to calculate µc. The calculation is described in
Appendix D. As the connection may not, in fact, be a straight line,
we take the average of the estimate µ0 at S0 and µ1 at S1 to give an
estimate of µc,

µc =
µ0 + µ1

2
(6)

[see Eq. (D5) in Appendix D]. µ is calculated from the data using
Algorithm 2 (see Appendix E).
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If we approximate the ramp part of λ by a line, we get the
following relation:

µ ≈
4

1t
, (7)

where 1t is the time taken for the ramp growth. If µ > 4, 1t < 1,
so to actually find accurate values of µ from the data, we should use
monthly data (if given data are yearly), i.e., we need more resolution
to measure µ accurately if it is greater than 4.

B. Asymptotic analysis

We observe in our system that rate-induced tipping is nec-
essary for growth to the next stable state, but it is not sufficient.
A sufficient condition is that the initial conditions must be within
the basin of attraction. In our system under suitable conditions, the
basin is approximately a rectangular region with sides λ = ±1 and
the bottom side given by the stable manifold of S1. The rectangle
is unbounded on top. Fortunately, for our system, the boundary of
the basin can be approximated roughly by a line, and as µ increases,
the approximation is better. We denote the basin boundary given
by the stable manifold of S1 by ψstable. Since it is not easy to calcu-
late, we will derive a simpler condition to prevent growth even when
rate-induced tipping has occurred.

Consider an admissible phase portrait and 1m < 0 with µ

large [Fig. 4(a)].
Observe that for large µ and N < m1, the growth does not

occur. This is because the stable manifold, i.e., the boundary of the
basin, tends to the line N = m1 asµ increases. Furthermore, the con-
tinuous dependence of ψstable on µ ensures that the basin boundary
is always above the line N = m1.

More precisely, note that given any ε > 0, we can choose µ
large enough such that |dN/dλ| < ε in any closed set, which does
not contain the lines λ = 0 or λ = 1 (as on these lines dλ/dt = 0 and
since dλ/dt is a function of µ, while dN/dt is not and in any closed
set maxima and minima are achieved). This line of reasoning shows
that for a phase portrait, if µ is large enough, the slopes |dN/dλ| are
almost zero. The trajectories will then be approximately lines (except
near λ = 0 and λ = 1), which give the observation above (since the
stable manifold of S1 is approximately a line, i.e., ψstable(λ) ≈ m1).

The above observations allow us to define an easily calculable
and measurable quantity Ntransition that helps in choosing such an
initial point, which would prevent growth.

We define Ntransition to be the value of N, where λ = 0.5 in the
trajectory of growth (i.e., midway between the change in the param-
eters). From the observation above, we know that as µ → ∞, the
approximation of ψstable(λ) as m1 gets better, and therefore, in the
limit, ψstable(λ) = m1 (except at λ = 0). Thus, if Ntransition < m1, no
growth toward the next stable state occurs (if Ntransition ≥ m1 growth
may occur depending on µ). See Fig. 4(b) for an illustration of
Ntransition. This gives us another condition, which is a measurable
quantity.

Note that to prevent tipping, one must have µ < µc, and if this
limit is exceeded, the only way to prevent growth to the next sta-
ble state is to prevent the growth of N, for which one must have
Ntransition < m1.

FIG. 4. (a) Admissible phase portrait, µ large; (b) illustration of Ntransition. Tra-
jectories (in orange) are shown for two different initial conditions. Those starting
from (λ1

initial
,N1

initial
) grow toward the next stable state, while points starting from

(λ2
initial

,N2
initial
) fail to grow to the next stable state even though tipping has

occurred.

Note that there is no Ntransition for the non-admissible case since
1m > 0. Thus, in this case, only tipping can prevent growth.

In both admissible and non-admissible phase portraits, tipping
happens if µ > µc (i.e., failure to follow the quasi-stable attractor).
However, in the case of an admissible phase portrait, no tipping
implies the failure to grow to the next stable state; i.e., the system is
“predisposed” to not move toward the next stable state. Here, tipping
causes growth to the next stable state (unless Ntransition < m1). How-
ever, in the case of a non-admissible phase portrait, since there is an
S0-Si connection, without tipping, the system would grow from S0

to Si; i.e., this type of system is “predisposed” to grow unless tipping
happens.

However, as we will see in Secs. III A–III F and
Appendix A–G, when we apply the system to CO2 emissions data,
the non-admissible portrait does not show up. It might only be
useful when the growth of a system is uncontrolled and exponential.
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TABLE I. Top: Table of parameters of the model [in Eqs. (1a) and (1b)]. Bottom: Com-

parison of predicted and fitted parameters for known transition periods using Eqs. (1a)

and (1b).

Transitions period r K A0 Tmax

1850–1943 0.038 1.800 0.002 1920
1944–1953 3.014 3.181 −2.302 1950
1954–1962 0.0511 2.604 0.084 1949
1963–1980 0.583 7.616 −0.911 1969
1981–1999 1.505 11.741 −4.302 1989
2000–2009 3.033 15.490 −11.436 2004
2010–2015 17.346 18.124 −78.305 2010
2016–2022 20.000 20.200 −100.695 2019
2023–2029 39.400 22.860 −224.866 2025

Parameters From data (fitted) Predicted

Period r K A0 r K A0 Tmax

2000–2009 3.033 15.490 −11.436 3 15 −11.025 2005
2010–2015 17.346 18.124 −78.305 16 18.5 −73.7 2012

C. Application to CO2 data

The methods developed above are applied now to the global
carbon budget data in Ref. 5 plotted in Fig. 1 (green squares).

In this figure, we have already marked the years where transi-
tions occur. This was obtained from the derivative data. The deriva-
tives were fit to quadratic polynomials as explained in Algorithm 1
of Appendix A.

The parameters obtained from this fitting are shown in Table I.
Figures 5(a)–5(c) depict the plots of the parameters as step func-
tions. Using these parameters, we can recalculate N using the

equation N = 1
2
(K +

√

β K
r

tanh( 1
2

√

β r
K
(t − Tmax))) to find out the

goodness of fit. The result is displayed in Fig. 1 (green squares).

D. Predictions

Now, we can use the data to predict two future transition
periods using Algorithm 3. Parameters of the resulting transition
periods are shown in red of Table I. These are plotted in Fig. 5(d)
[see also Figs. 8(e) and 8(f)–8(h) in Appendix F].

Thus, the next transition may occur in early 2022 and is
expected to be the transition to the next stable state unless µ2022

< µc = 0.802 (calculated below). We can approximate Ntransition for
this period by just taking the predicted value of N at the transition
point, i.e., N(2022). It comes out to be Ntransition = 10.62.

We can use Algorithm 3 to predict known periods to check
how good the method of prediction is. We will do it for the last two
periods. The predicted data are displayed in Table I.

In Fig. 5(e), we plot our hindcast predictions of known periods,
along with the known data.

We can also calculate µc for each transition [using Eq. (D5)]
and also the corresponding µ from the data (using Algorithm 2 in
Appendix E). The results are shown in Table II. The transition points
obtained, thus, can be identified with climate change.

The phase portrait for the transition in 1980 is shown in
Fig. 6(a). Those for all other transition years are displayed in
Figs. 6(d)–6(h). As an illustration, Fig. 6(a) shows how the 1980
transition would look like for µ < µc [Fig. 6(b)] and for µ > µc

[Fig. 6(c)].
Regime shifts in the Earth’s climate occur as a consequence of

changes in the physical environment—the atmosphere, land sur-
faces, oceans, and cryosphere and complex interactions between
them.9,10 Such shifts get manifested as visible changes in the climate-
sensitive biosphere, for example, as changes in flowering times of
plants, in population densities of various species, changes in migra-
tory times and patterns of birds, and changes in the dynamics of
various ecosystems over many years.

Several such changes in the biological realm signaling climatic
regime shifts have been observed and documented. It is interest-
ing to note that many of the transition years we find from the CO2

data (1943, 1953, 1980, 1999, 2009, and 2015) lie roughly near the
transition years 1947, 1977, 1999, 2007, and 2014 for the Pacific
Decadal Oscillations (PDOs)14—oscillations between the warm and
cool phases in the surface waters of the Pacific ocean. The PDO
itself is understood to arise as a consequence of different physi-
cal processes, including interactions between the atmosphere and
oceans.15

It was noted in Ref. 16 that decadal regime shifts in the pop-
ulations of anchovies and sardines in the Pacific ocean occur in
association with switches between warmer and cooler than aver-
age ocean temperatures. Considering the 1950–1976 and 1977–1999
regimes, they pointed out that such abrupt biological regime shifts
should be driven by large-scale oceanic and atmospheric processes,
including fluctuations of carbon dioxide in the atmosphere.

It has been shown that fish populations are sensitive to cli-
mate change indicators, such as the PDO and North Atlantic Ocean
(NAO) indices.17 Similarly, bird populations were shown to be syn-
chronous with PDO and NAO linked sea surface temperature (SST)
changes identified as climatic regime shifts in 1977 and 1989.18 A
regime shift delay in the onset of the Indian summer monsoon fol-
lowing the 1976/1977 Pacific SST regime shift has been reported
in Ref. 19. Using data from the Arctic oscillation (AO) index, the
Atlantic multidecadal oscillation (AMO) index, the NAO index, and
regional sea level pressure (SLP) anomalies, regional area averaged
monthly SST anomalies, and benthic macrofauna samples, it was
shown in Ref. 20 that biological regime shifts occurred in 2000/2001
caused by a climatic regime shift.

The year 2000 has been shown to be a regime shift year in the
decadal variation of the Indian Ocean SST caused by a regime shift
in equatorial zonal surface wind patterns, which influence the Indian
monsoon.21

The years 1956–1957, 1964–1965, 1988–1989, and 1998–1999
have been identified in Ref. 22 as significant regime shift years for
marine fish landings globally, associating these with approximate
shift years in the normalized atmospheric planetary wave ampli-
tude index. Planetary wave activity is known to weaken under the
influence of global warming from CO2 forcing.23

The assessment of radiosonde atmospheric temperature mea-
surement data at the Payerene Swiss aerological station for the
period 1959–2011 in Ref. 24 shows warming in the troposphere
and cooling in the stratosphere since the 1960s, with three clearly
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FIG. 5. Model predictions and growth curves. (a) r vs t, (b) A0 vs t, (c) K vs t, (d) predictions from the model for two future transition periods (2016–2022 and 2023–2029)
shown as red triangles, and (e) hindcast prediction (magenta triangles) of atmospheric fossil-fuel CO2 emissions for known transition periods (2000–2009 and 2009–2015).

distinct trends, respectively, for the periods 1959–1980, 1980–2000,
and 2001–2011. These point to a transition to different climatic
regimes in the transition years 1980, 2000, and 2011. These years,
which we identify as transition years in our model, are, therefore,
in close agreement to those identified as possible climatic regime

shift years in the literature. Thus, the transition years (noted as such
from our model) seem to have a clear impact on the climate as seen
in both the ocean sink data as well as in the temperature anomaly
data. The transition at 1943 could have been caused by the rapid
industrialization of the World War II era.

TABLE II. Calculated values of µ. Predicted values are shown in red.

Transition
point µ1 µ0 µc = µ0+µ1

2
µcalc =µ(alg.2)

µc

(from phase portrait)
Mean % error

at µcalc

1943 0.478 4.103 2.290 11.98 1.8 10.91
1953 2.281 −0.434 0.923 7.25 0.004a 3.17
1962 −0.196 0.767 0.285 22 0.05a 1.20
1980 0.429 1.222 0.826 5.78 0.77 1.34
1999 1.389 2.364 1.877 31 1.85 1.28
2009 14.665 20.052 17.358 64 17 0.44
2015 0.609 0.994 0.802 No data . . . . . .
2022 23.656 25.829 24.742 No data . . . . . .

aThe saddle–saddle connection could not be computed precisely due to numerical limitations. The given µphase is an approximation. The last
column shows the mean percentage error L′ at µcalculated.
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FIG. 6. Tipping/transition years predicted by the model: (a) transition of 1980, µc = 0.77 (from the phase portrait); (b) phase portrait for 1980 for µ = 0.5 (µ < µc); and
(c) phase portrait for 1980 for µ = 6.8 (µ > µc). Transition of (d) 1943, (e) 1953, (f) 1962, (g) 1999, and (h) 2009.
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Interestingly, the algorithm proposed in Ref. 25 detected
regime shifts in the winter PDO as occurring in 1946, 1977, and 2003
and in the summer and annual PDO as occurring in 1943, 1976,
and 1998.25,26 While the years 1999–2000, 2000–2001, 2008–2009,
2011–2012, and 2010 have been identified in the literature as strong
La Niña years, the years 1998–1999 and 2016–2017 have been
identified as very strong El Niño years.

E. Temperature anomaly and CO2 emissions

From the temperature anomaly graph and the CO2 emissions
graph [Fig. 7(a)], we can see that the transition points we identified
are indeed important. Since temperature is a major part of climate,
we can argue that climate will be affected by the change of CO2

emissions. From the predictions we obtained in Secs. III A–III D
and since µ ≈ 4

1t
, transitions in CO2 growth and correspondingly

climate transitions will speed up as µ increases. To prevent the
transition at the start of 2022, we must have µ2022 < µc = 0.802 01.
However, this parameter cannot change directly, and since µ2009

= 64, it is likely that µc will be exceeded in 2022. Even so, we still
have Ntransition(2022) = 10.62, and so if we can have global CO2 emis-
sions less than 10.62 GtC before early 2022/at the start of 2022, we
should be able to avoid tipping.

F. Ocean sink and A0

A0 is the rate of CO2 emission when N = 0. As shown in
Fig. 7(b), it correlates with the ocean sink of CO2, which is to be
expected since the oceans play an important role in the global carbon
cycle.27,28

Negative A0 values physically mean that some amount of CO2

in the atmosphere is necessary for stable growth. If NCO2 is less than
this amount (Nunstableroot), then N → 0. A0 positive means that CO2

is coming into the atmosphere from some source and is never zero.
A negative value for A0 means that CO2 has a minimum posi-

tive concentration in the atmosphere. Any concentration less than
this value leads to removal of CO2 from the atmosphere. This is
because if A0 < 0, then as A0 is the rate at N = 0, both roots of
the dN/dt equation must be positive. The above observation then
follows directly from the fact that the unstable root has a positive
value.

In the case where A0 > 0, CO2 is pumped into the atmosphere
even if the original concentration was zero. This means that there
will always be CO2 in the atmosphere, and there is not a mini-
mum concentration as in the previous case. The ocean can be both
a CO2 sink and source depending on the condition of the ambient
atmosphere and temperature. Thus, A0 could be a measure of the
sink/source state of the ocean.

It may be noted that for the growth period of 1954–1962 [λ = 0
line in Fig. 6(f)], the smaller root is negative. This is because A0 is
positive in this period. Since in between the roots, all flow direc-
tions must point toward the larger root, and since dN/dt = A0 when
N = 0, the smaller root has to be negative since only then would the
flow directions at N = 0 point toward the larger root, i.e., upward.
Physically, only the larger roots in a period are important since
growth is from one stable state to the next. Negative valued N would
imply the sinks (ocean, land, etc.) are absorbing more carbon than is

FIG. 7. (a) Plot of the temperature anomaly and CO2 emissions. (b) CO2 ocean
sink and −A0.

added in the atmosphere. We recall here that all stable roots are pos-
itive. In our case here, where one unstable root is negative, we can
say that any amount of CO2 in the atmosphere would sustain itself
and in fact grow. This is because since in this case, A0 > 0 even if
N = 0, i.e., no CO2 in the atmosphere, the ocean would input some
CO2 causing growth. Thus, a negative valued unstable fixed point
has a physical interpretation.

IV. CONCLUSIONS

It is well established that there is a direct relation between
CO2 in the atmosphere and temperature. The main reason for the
increase of CO2 in the atmosphere causing a temperature increase
and consequently bringing about a rapid climate change is the con-
sumption of fossil fuels. We show that our model has two distinct
tipping mechanisms driven by measurable parameters.

Our model and methods can help to identify the tipping points
in the growth of CO2 emissions and consequently in climatic systems
from meaningful quantities (µc, Ntransition) that help in prescribing
the limits, which should not be crossed to prevent a climate change.
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Our method can also, in general, be applied to any growth curve to
identify rate-induced tipping.

With the presently available data, we predict that the climatic
system would tip over to a new stable state in early 2022. We find
that if global CO2 emissions can be limited to less than 10.62 GtC at
the start of 2022, tipping can be avoided.

If the growth of a trajectory fails, it tends to −∞; however, this
may not actually happen in the real system. In the real system, this
could be interpreted as either “stalling” of growth or even perhaps
loss of CO2 concentration; other mechanisms may kick in at this
point and the CO2 concentration may stabilize. However, this has so
far not happened in our data. In our data, CO2 has grown continu-
ously. It is not known at this point whether the model can handle
negative growth rates since this violates the positivity condition.
This could be a future avenue for further study.

We note that real-world processes are stochastic in nature, and
therefore, the actual tipping processes would involve stochastic ele-
ments. Perturbations leading to planetary state shifts could lead to
completely changed and entirely different dynamical scenarios for
the system, including the possibility of transient chaos. We do not
consider such perturbations in our system in this work.

Our model is a conceptual one, aimed to be of use as a tool for
detecting tipping points in data already extant, to allow calculation
of tipping rates and to predict future ones, given enough data. We
have not considered a stochastic model because we want at this level
of abstraction a model that allows one to make such calculations eas-
ily. Our model appears to work well as it is. Investigating the more
complex situations with stochastic elements would be outlook for
future work.
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APPENDIX A: FITTING AND CALCULATION OF

PARAMETERS

The logistic equation is easy to fit when we are dealing with a
single phase of growth.

From the assumption that the parameters are step functions of
time, we can infer that on an interval of time where the parameters
are constant, Eq. (1a) has the solution,

N =
1

2

(

K +
√

βK

r
tanh

(

1

2

√

βr

K
(t − Tmax)

)

, (A1)

where β = Kr + 4A0 and Tmax is the value of t in one period of
growth at which dN

dt
attains its maximum.

However, in most real systems, such as the global CO2 fossil-
fuel emissions data, one can expect multiple phases of growth. In
this case, if N is the data, we calculate dN/dt, i.e., the derivatives,
and plot it against N. We fit the data to Eqs. (1a) and (1b) follow-
ing Algorithm 1 (described below). We expect (if the growth was
approximately logistic) for each period of growth a quadratic peak
(

since dN
dt

= A0 + rN − r
K

N2
)

. We can fit each such peak separately
[see Figs. 8(a) and 8(b)]. Once we have fitted each peak, we use the
parameters obtained r, K, A0 and put them into the solution in (A1).
Tmax is the constant of integration, which we have to choose such
that the fit is the best. Thus, we can recalculate N allowing us to
compare the goodness of fit.

Once we have the parameters for all phases of growth, we can
put these values together to obtain step functions for each parame-
ter. Further analysis is done on the transitions of these step functions
(transitions of all parameter step functions occur simultaneously by
the nature of the fit).

We can also extrapolate the data curve further and predict
the future growth curve. We do this using Algorithm 3 (discussed
below).

We shall start with the algorithm for fitting the data.

Algorithm 1: Fitting the data

1. Let D = (t, N) be the dataset with t = time and N = data. Cal-
culate dN/dt for various levels of smoothing.Smoothing: To
calculate the derivatives, we first smooth the CO2 data using
a cubic spline and then calculate derivatives from this cubic
spline. The parameter φ ∈ (0, 1] determines to which extent
the data are smoothed. A larger value of φ denotes higher
smoothing. In our study, we have used φ = 0.2.We use the
function smooth.spline (which is standard in R) to fit a cubic
spline to CO2 data (denoted {ti, Ni}i). The cubic spline estimate
f minimizes

L =
∑

i

(Ni − f(ti))
2 + λ

∫

d2f

dt2
dt
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FIG. 8. Fitting of growth curves and parameter extraction: (a) Derivative dN/dt vs N (CO2 emissions). (b) Derivative dN/dt vs N (CO2 emissions) along with the fit of
derivatives (green squares). (c) β has no roots in the domain. (d) β has roots in the domain. (e) dN/dt vs N with predictions shown as red triangles. (f) r vs t with predictions
shown in red. (g) K vs t with predictions shown in red. (h) A0 vs t with predictions shown in red.
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over the class of twice differentiable functions. The param-
eter φ controls λ by the equation λ = r × 2563φ−1. Here,
r = tr(X′WX)/tr(6), where X, W and 6 are certain matrices.
The code works by solving a linear system under the above
minimization condition.

2. After considering plots of dN/dt vs N for various levels
of smoothing, pick out the quadratic peaks by partitioning
D′ = (t, N, dN/dt) such that in each sub-dataset, there is only
one quadratic peak (after the choice of time points where
the data are to be partitioned is decided, we use unsmoothed
(or little smoothing) derivatives for further calculations) [see
Figs. 8(a) and 8(b)].

3. Fit each sub-dataset to the equation dN
dt

= A0 + rN − r
K

N2,
where the parameters A0, r, K are to be found.

4. Repeat step 3 for all sub-datasets.

APPENDIX B: THREE LEMMATA AND A THEOREM

We do not consider cases with less than four fixed points as
these quasi-stable equilibria might not exist for certain fixed points.
For example, consider the case where there are three fixed points.
This happens if two fixed points on λ = 0 (or λ = 1) have become
equal. Then, no quasi-stable equilibria do exist for this fixed point
for λ > 0 as no roots of dN/dt = 0 do exist after this point. Since the
focus of our work is rate-induced tipping for which quasi-equilibria
are necessary, we will not consider cases where the number of fixed
points is less than 4.

The following three lemmata are useful in proving the theorem
we have stated below, which gives conditions for admitting sad-
dle–saddle connections, which define rate-induced tipping points.

Lemmata:

1. Lemma 1: There are at most four fixed points.
We shall solve Eqs. (1a) and (1b) for fixed points.
dλ/dt = 0 and dN/dt = 0 give λ = 0 and λ = 1. Putting these
values in dN/dt = 0 gives

a0 + r0N −
r0

k0

N2 = 0,

a0 + a1 + (r0 + r1)N −
r0 + r1

k0 + k1

N2 = 0,

(B1)

which gives at most four solutions.
2. Lemma 2: If there are four fixed points, then N(S0) > N(Se) and

N(Si) > N(S1).
This means that on the λ = 0 line, always, Se is below S0, and
on the other line, S1 is below Si. This can be proved easily. The
Jacobian J(λ, N) is

(

µ(1 − 2λ) 0
η(λ, N) ω(λ, N)

)

, (B2)

with η(λ, N) = a1 + r1N − r1(k0+k1λ)−k1(r0+r1λ)

(k0+k1λ)
2 N2 and ω(λ, N)

= (r0 + r1λ)(1 − 2N
(k0+k1λ)

). The two fixed points on λ = 0 are

N =
k0r0 ± k0

√

r2
0 + 4 r0a0

k0

2r0

=
k0

2
±

k0

2r0

�, (B3)

where � =
√

r2
0 + 4 r0a0

k0
> 0. Let N1 = k0

2
+ k0

2r0
� and N2

= k0
2

− k0
2r0
�. Clearly, N1 > N2 [since r(t) > 0, K(t) > 0]. The

eigenvalues of the Jacobian on λ = 0 are µ and r0

(

1 − 2N
k0

)

.

Then,

r0

(

1 −
2N

k0

)

= r0

(

1 −
(

1 ±
�

r0

))

= ∓�. (B4)

Thus, for N1, we have eigenvalues µ > 0 and −� < 0, which
means that the fixed point at (0, N1) is a saddle, and sim-
ilarly, for N2, µ > 0 and � > 0, i.e., a source. Given N1

> N2, we have that Se is below S0. We can proceed similarly
for the λ = 1 line and get that Si lies above S1. We let m0

=
k0r0+k0

√

r20+4
r0a0
k0

2r0
= N(S0) and m1 = N(S1).

m1 =
(k0+k1)(r0+r1)−(k0+k1)

√

(r0+r1)
2+4

(r0+r1)(a0+a1)
(k0+k1)

2(r0+r1)
.

3. Lemma 3: A phase portrait is admissible iff there is a S0–Se
connection and no S0–Si connection.
Proof: Consider the equation of the N-nullclines,

N(λ) =
K(λ)r(λ)± K(λ)

√

r2(λ)+ 4 r(λ)A0(λ)

K(λ)

2r(λ)
. (B5)

The equation is quadratic [r(t) > 0,K(t) > 0] for a given λ.
So, at any λ, there are at most two points of the N nullcline.

The nullcline does not exist if r2(λ)+ 4 r(λ)A0(λ)

K(λ)
< 0 ⇐⇒ β(λ)

= K(λ)r(λ)+ 4A0(λ) < 0 [see Figs. 8(c) and 8(d)]. Expanding
this, we get the polynomial inequality

(k0r0 + 4a0)+ λ(k0r1 + k1r0 + 4a1)+ k1r1λ
2 < 0. (B6)

Consider the polynomial P(λ) = (k0r0 + 4a0)+ λ(k0r1 + k1r0

+ 4a1)+ k1r1λ
2. This polynomial encodes the behavior of the

nullclines. It can be checked that P(0) and P(1) are both strictly
positive. Then, in an interval around λ = 0 and λ = 1, the
polynomial is positive since it is continuous. If both roots of
P(λ) = 0 are different, then both either lie in λ ∈ [0, 1] or out-
side. This follows since if only one root lays in [0, 1], then P(0)
and P(1) would have opposite signs or one of them would be
a zero, both of which are not acceptable (if one of them is a
zero, then there would not be four fixed points). If the roots are
outside (both roots are the same or different), P(λ) > 0 for all
λ ∈ [0, 1]. Thus, for every λ ∈ [0, 1], there would be 2 points on
the nullcline. This would imply an S0–Si connection and S1–Se
connection [the other possibility is ruled out since both null-
clines cannot cross (P(λ) > 0)]. If both roots (roots different)
are in [0, 1], then for some interval in [0, 1], P(λ) < 0 and the
nullclines do not exist. This implies an S0–Se and S1–Si connec-
tion. If there is only one single root and it lies in [0, 1], then there
are simultaneously all four connections: S1–Si, S1–Se, S0–Se, and
S0–S1. This would not be an admissible portrait. From the above
line of reasoning, it is clear that S0–Se connection and no S0–Si
connection ⇐⇒ S1–Si connection and no S1–Se connection
⇐⇒ admissible. Additionally, a non-admissible phase portrait
with four fixed points has all four connections simultaneously
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or S1–Se and S0–Si connections. The above discussion also gives
the following condition for an admissible phase portrait:

β±
roots =

−(k0r1 + k1r0 + 4a1)

2k1r1

±
√

(k0r1 + k1r0 + 4a1)
2 − 4k1r1(k0r0 + 4a0)

2k1r1

∈ (0, 1). (B7)

This also implies that k1r1 > 0; i.e, K and r must have the same
change of sign.

APPENDIX C: PROOF OF THE THEOREM

We wish to show the existence of a saddle–saddle connection
at some µ. We will prove the statement of the theorem by observing
that the stable manifold of S1 is close to the N-nullcline for small µ
and will move “downward” as µ increases. Similarly, the unstable
manifold of S0 is close to the N-nullcline for small µ and will move
“upward” with increasing µ. For very large µ, they must eventually
“flatten out” and be approximable by the lines N = m1 and N = m0,
respectively. Since 1m < 0, this means that the manifolds should
have intersected somewhere in between.

Let N = ψunstable(λ) and N = ψstable(λ) be the equations of the
stable and unstable manifolds of S1 and S0, respectively.

Let (λ, ψunstable(λ)) ∈ Unstable(S0) (λ is fixed), we apply the
mean value theorem to get

ψunstable(λ)− m0

λ− 0
=

dN

dλ
(λ0,ψunstable(λ0)),

where (λ0, ψunstable(λ0)) is some point in between (0, m0) and
(λ, ψunstable(λ)) on Unstable(S0). Similarly, construct the relation for
Stable(S1) with the point (λ, ψstable(λ)) (the same λ)

ψstable(λ)− m1

λ− 1
=

dN

dλ
(λ1,ψstable(λ1)),

where (λ1, ψstable(λ1)) is some point in between (1, m1) and
(λ, ψstable(λ)) on Stable(S1). Then,

ψstable(λ)− ψunstable(λ)−1m

= (λ− 1)
dN

dλ
(λ1,ψstable(λ1))− λ

dN

dλ
(λ0,ψunstable(λ0))

= −(λ
dN

dλ
(λ0,ψunstable(λ0))+ (1 − λ)

dN

dλ
(λ1,ψstable(λ1))

= 1D(λ, µ)

ψstable(λ, µ)− ψunstable(λ, µ) = 1D(λ, µ)+1m.

The quantity ψstable(λ) is always defined and finite for λ ∈ (0, 1)
since the stable manifold must connect to a fixed point or be asymp-
totic to λ = 1. Similarily, ψunstable(λ) is also finite and well defined
for λ ∈ (0, 1). Therefore, the difference ψstable(λ)− ψunstable(λ)

makes sense for λ ∈ (0, 1). Also, in the last line, we made the implicit
dependence on µ explicit. Since ψstable and ψunstable are trajectories,
they are solutions of the system and, hence, are continuous inµ. The
LHS is continuous inµ; therefore, the RHS, in particular,1D(λ, µ),

must be continuous in µ for µ > 0. Note that if1D(λ, µ) = −1m
for a fixed λ, we have ψstable(λ, µ)− ψunstable(λ, µ) = 0, and if there
is one point of intersection between the unstable and stable mani-
folds, then they intersect at all points. Thus, we have a saddle–saddle
connection.

1. Admissible phase portrait

There exists an interval I ⊂ [0, 1] where no nullclines exist
and dN

dλ
< 0 for all such λ ∈ I and any N. Pick some λa ∈ I and

observe that dN
dλ
(λ, ψunstable(λ)) < 0 for all 0 < λ < λa since if it

were positive, it would mean that ψunstable passes into the region
enclosed nullcline. However, ψunstable starts above the nullcline—at
(0, m0)—and since dN

dλ
(λ, N) > 0 within the region inside the null-

cline, ψunstable cannot pass into it. A similar line of reasoning gives
dN
dλ
(λ, ψstable(λ) < 0 for all λa < λ < 1. Thus, 1D(λa) > 0 since

λ0 ∈ (0, λa) and λ1 ∈ (λa, 1). We also note that when we let µ
→ ∞, 1D(λ, µ) → 0 since dN

dλ
→ 0 for all λ and N. Suppose

λb ∈ I and ψunstable(λb, µ) , ψstable(λb, µ) are the intersection of the
unstable and stable manifolds with λ = λb. Then, as µ → 0, dN

dλ

→ −∞ on λ = λb, and since there are no nullcines intersecting
with λ = λa,

dN
dλ
(λb, µ) < 0 for allµ and the differenceψstable(λb, µ)

− ψunstable(λ, µ) increases. Thus,1D(λb, µ) → ∞, and therefore, if
1m < 0, we can adjust µ and, thus, obtain some µc and a fixed λ
where1D(λ, µ) = −1m.

2. Non-admissible phase portrait

When µ → 0, the stable and unstable manifolds closely
follow the nullclines, and therefore, ψstable(λ, µ)− ψunstable(λ, µ)
< 0. However, when µ → ∞, we have 1D(λ, µ) → 0, and there-
fore ψstable(λ, µ)− ψunstable(λ, µ) → 1m. Therefore, if 1m > 0,
we have a saddle–saddle connection since for some 0 < µc < ∞,
ψstable(λ, µ)− ψunstable(λ, µ) = 0.

Thus, for an admissible phase portrait with1m < 0 and a non-
admissible phase portrait with 1m > 0, saddle–saddle connections
exist at finite µ.

Note: The conditions β±
roots

= −(k0r1+k1r0+4a1)±
√
(k0r1+k1r0+4a1)

2−4k1r1(k0r0+4a0)

2k1r1
∈ (0, 1) can be used

to check analytically if the phase portrait is admissible or nonad-
missible and then the sign of 1m gives the necessary and sufficient
conditions for a saddle–saddle connection in the system.

APPENDIX D: CALCULATING THE CRITICAL µ

Now, we proceed to calculate µc by using a linear approxima-
tion of the saddle–saddle connection as in Ref. 13. Then, the slope of
the eigenvectors at S0 and S1 will be the same as the slope of the line
connecting S0 − S1. Then, for S0,

∣

∣

∣

∣

η(0, m0)

µ− ω(0, m0)

∣

∣

∣

∣

= |1m|

⇒ |µ− ω| = |
η

1m
|, (D1)
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and we have µ > 0 and at S0, ω(0, m0) = −
√

r2
0 + 4 a0r0

k0
< 0. Thus,

|µ+ |ω|| = µ+ |ω| =
∣

∣

∣

η

1m

∣

∣

∣

⇒ µl =
∣

∣

∣

∣

η(0, m0)

1m

∣

∣

∣

∣

− |ω(0, m0)|. (D2)

For S1, ω(1, m1) =
√

(r0 + r1)
2 + 4 (a0+a1)(r0+r1)

(k0+k1)
> 0, and since

the Jacobian here is

(

−µ 0
η(1, N) ω(1, N)

)

, we have

| − µ− |ω|| = µ+ |ω| =
∣

∣

∣

η

1m

∣

∣

∣
, (D3)

and therefore,

µh =
∣

∣

∣

∣

η(1, m1)

1m

∣

∣

∣

∣

− |ω(1, m1)|, (D4)

where µ1 is the estimate at S1 and µ0 is the estimate at S0. Since the
actual connection may not be a straight line, we average these two
estimates to get a better estimate of µc. Thus,

µc =
µ0 + µ1

2

=
| η(0,m0)

1m
| − |ω(0, m0)| + | η(1,m1)

1m
| − |ω(1, m1)|

2
. (D5)

Note that to prevent tipping, one must have µ < µc.

APPENDIX E: ALGORITHM 2: CALCULATING µ FROM

DATA

1. Select two adjacent datasets and let t0 be the transition point
between them and let N0 be the first value of the combined
datasets.

2. We numerically integrate the differential equation dN
dt

= a0

+ a1λ+ (r0 + r1λ)N − r0+r1λ

k0+k1λ
N2, where λ(t) = 1

2
(1 + tanh( 1

2
µ

(t − t0)) with the initial condition N0.
3. Let Ncalc be the resulting calculated value, then we calculate the

loss L = 100
|Ndata−Ncalc|

Ndata
. Let the average percentage loss be L′.

4. We minimize L′ over µ to get the calculated value of µ for the
transition t0.

Notes:

• It may be the case where L′ decreases continuously with µ with-
out heading to a finite minimum. This happens because when
the minimum is large—when µ is large, the step function has
steep growth, and therefore, the per-year sampling of the step
function that we have does not have the resolution to differen-
tiate between step functions of large µ. In this case, we assume
when the values of L′ do not change much, that we have reached
the actual minimum. We fix a tolerance value of 10−2; i.e., when
|L′(µi)− L′(µi+1)| < Tol, we take µi to be the calculated value.

• When numerically integrating the differential equation, the
numerical solution may tend to −∞ if the value of µ is too
small. This is because the trajectory fails to fall within the sta-
ble manifold of the sink for this particular µ and N0. Choosing

a larger value of µ fixes this problem. Table II contains the
value of µ calculated and the mean percentage error L′ at the
calculated µ.

APPENDIX F: ALGORITHM 3: EXTRAPOLATION

1. Set β = Kr + 4A0 and calculate it.
2. If the quadratic peak of a period is almost complete (i.e., deriva-

tive decreasing and close to zero relatively), then we consider the
period ended. This gives us the starting point of the period to be
predicted.

3. Observe trends in β and K (in our data, we used linear and
quadratic fits, respectively) with respect to the starting time
point of that period and then estimate these values using this
trend for our period. For estimating r, we fit r to an exponential
model in K.

4. Use the equation A0 = β−Kr

4
to estimate A0.

5. Use the parameters to calculate N (for Tmax, set any value of time
> starting point of period to be estimated).

6. We will vary r, K, Tmax, and β (recalculate A0 each time we do
so until an approximate continuity of N and dN/dt is satisfied).
Changing K changes the N position of the quadratic in dN/dt
vs N plot, while changing β changes the dN/dt position of the
peak in the same plot. Changing r changes the width (change it
to match other period widths), and changing Tmax changes the
N position of the predicted curve in t vs N plot.
These predictions are shown in Figs. 8(e)–8(h).

7. Finally, we use N = 1
2
(K +

√

β K
r

tanh( 1
2

√

β r
K
(t − Tmax))) to

calculate predictions of the growth curve [Fig. 5(b)].

Phase portraits for the transitions that occur as per our calcula-
tions in the years 1943, 1953, 1962, 1999, and 2009 are shown in
Figs. 6(d)–6(h).

APPENDIX G: ADDITIONAL NOTES ON THE

DYNAMICAL STRUCTURE OF THE SYSTEM

We have focused here on two tipping processes, but only one
(the rate-induced tipping) is a bifurcation. The second is simply a
threshold that approximates the boundary of the basin of the sink in
the system. The bifurcation in the first process is not a local bifurca-
tion. The system we consider always has four fixed points (one sink,
one source, and two saddles) and neither their stability nor their rel-
ative configurations ever change in the processes that we consider.
This bifurcation that we study is global in nature—we do not con-
sider local bifurcations. The bifurcation occurs when the stable and
unstable manifolds of the two saddles change their configuration
based on the value of the parameter µ. The intersection of the stable
manifold of one saddle with the unstable manifold of the other is the
bifurcation point. This is illustrated in Figs. 6(a) and 6(d)–6(h).

The combined system equations (1a) and (1b) has at most four
fixed points, and we consider only this case. The stability of the fixed
points and their relative positions in the phase plane undergo no
change when µ changes within a period of growth due to the fact
that within a period of growth, the parameters r, K, and A0 are con-
stant. Further, as the period of growth changes, the phase diagram
may change, but the relative positions of the fixed points do not
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FIG. 9. (a) An illustration of the basin of attraction for the sink for small µ(µ
= 0.10). The unbounded forward and backward trajectory of an initial condi-
tion (shown as a square point) outside the basin is also shown. (b) When µ is
increased, the basin boundary is closely approximated by the line N = m1, as
shown here.

change due to the positivity restrictions imposed on r and K—i.e.,
the sink will always be found on the line λ = 1 with a saddle beneath
it on the same line. The source will always be found on the line
λ = 0, with a saddle above it on the same line, etc.

The basin is not the whole space since there are saddles
involved. Consider Fig. 3(a), the blue curve is the stable manifold
of the saddle S1 and is the basin boundary for the attractor Si (red).
The region between the blue and green curve has trajectories that
tend to −∞ in the forward direction, while tending to +∞ in the
backward direction. The region bounded by the green curve is the
basin for the repeller S0 (green) in the time-reversed system. This
is illustrated in Fig. 9(a) for further clarity. Note that the condi-
tion Ntransition is merely an approximation of the basin boundary. In
the course of our investigations, we discovered that even if the rate-
induced bifurcation occurred [which is necessary for any physically
reasonable trajectory to reach the sink (we call this “growth”)], it is

not a sufficient condition for growth. For this to happen, the trajec-
tories must start within the basin of the sink. λ is assumed to jump
in a step fashion; therefore, the physically reasonable trajectories we
consider start with λ ≈ 0, i.e., the CO2 curve is following an approx-
imate logistic growth model at λ ≈ 0 initially, but as λ ramps up, the
trajectory is no longer logistic and enters into the region between the
lines λ = 0 and λ = 1. If the rate µ is high enough (µ > µc ), there
is a possibility that the trajectory reaches the sink—this is “growth”;
otherwise, the trajectory tends to −∞. The trajectory “grows” if and
only if it begins in the basin of the sink, and in our system, the
boundary of the sink can be approximated by the line N = m1 when
m is large enough [see Fig. 9(b)]. The Ntransition condition merely
states whether the trajectory lies in the basin or not. There is no
change in the dynamics of the system, and this is merely a condition
to approximate the basin. The condition works fully when µ is large
enough. However, in the event that µ is small but still greater than
µc, this condition may not ensure that growth will occur since the
approximation of the boundary by the line N = m1 is poor. How-
ever, even in this case, it is guaranteed that growth will not occur
if N < Ntransition, solely because of how the boundary of the basin is
related to µ. The condition can, thus, tell if growth can be prevented
but cannot always guarantee that growth will occur.
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