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BACKGROUND: Exposure to air pollution has been associated with a higher risk of type 2 diabetes (T2D), but studies investigating whether deprived
groups are more susceptible to the harmful effects of air pollution are inconsistent.

OBJECTIVES:We aimed to investigate whether the association between air pollution and T2D differed according to sociodemographic characteristics,
comorbidity, and coexposures.

METHODS:We estimated residential exposure to PM2:5, ultrafine particles (UFP), elemental carbon, and NO2 for all persons living in Denmark in the
period 2005–2017. In total, 1:8million persons 50–80 y of age were included for main analyses of whom 113,985 developed T2D during follow-up.
We conducted additional analyses on 1:3million persons age 35–50 y. Using Cox proportional hazards model (relative risk) and Aalens additive haz-
ard model (absolute risk), we calculated associations between 5-y time-weighted running means of air pollution and T2D in strata of sociodemo-
graphic variables, comorbidity, population density, road traffic noise, and green space proximity.
RESULTS: Air pollution was associated with T2D, especially among people age 50–80 y, with hazard ratios of 1.17 [95% confidence interval (CI):
1.13, 1.21] per 5 lg=m3 PM2:5 and 1.16 (95% CI: 1.13, 1.19) per 10,000 UFP=cm3. In the age 50–80 y population, we found higher associations
between air pollution and T2D among men in comparison with women, people with lower education vs. individuals with high education, people with
medium income vs. those with low or high income, people cohabiting vs. those living alone, and people with comorbidities vs. those without comor-
bidities. We observed no marked changes according to occupation, population density, road noise, or surrounding greenness. In the age 35–50 y popu-
lation, similar tendencies were observed, except in relation to sex and occupation, where we observed associations with air pollution only among
women and blue-collar workers.
DISCUSSION: We found stronger associations between air pollution and T2D among people with existing comorbidities and weaker associations
among people with high socioeconomic status in comparison with those with lower socioeconomic status. https://doi.org/10.1289/EHP11347

Introduction
The prevalence of type 2 diabetes (T2D) has increased mark-
edly in countries of all income levels, from 108million in 1980
to 422million in 2014.1 The main risk factor for T2D is an
unhealthy lifestyle, particularly obesity and physical inactivity,1

but a number of studies have also linked T2D with exposure to
ambient air pollution.2 Proposed mechanistic pathways include
air pollution–induced oxidative stress and systemic inflamma-
tion, which are both involved in the pathogenesis of T2D.3,4

Furthermore, epidemiological studies have found air pollution
to be associated with early markers of T2D, including decreased
glucose tolerance and insulin insensitivity.5,6 A recent meta-
analysis of air pollution and incident T2D found risk estimates
of 1.10 [95% confidence interval (CI): 1.04, 1.16] per 10lg=m3

particulate matter (PM) with a diameter <2:5 lm (PM2:5) and
1.02 (95% CI: 0.99, 1.05) per 10 lg=m3 nitrogen oxide (NO2).2

Ultrafine particles (UFP; <0:1 lm in diameter) are potentially
more harmful than larger particles,7,8 and the two studies on
UFP and diabetes found long-term exposure to UFP associated
with increased risk of diabetes.9,10

Previous studies have found socioeconomic inequalities accord-
ing to air pollution exposure, mainly showing higher exposure
among people with low socioeconomic status (SES),11 although this
finding varies across regions/countries if, e.g., living centrally is
highly attractive.12,13 It is unclear whether the harmfulness of air pol-
lution differs in relation to the development of T2D across different
socioeconomic groups, because the studies investigating effectmodi-
fication by sex are inconsistent.14–16 Systemic inflammation is
thought to be a main biological pathway underlying an effect of air
pollution on T2D.17 People with low SES are more likely to have an
unhealthy lifestyle, a higher body mass index (BMI), and are at
higher risk of, e.g., COPD and cardiovascular disease, which are all
habits and conditions characterized by chronic inflammation.18,19 It
is therefore possible that people with low SES are more susceptible
to the harmful effects of air pollution on risk of T2D.14

Associations between air pollution and T2D may differ
between men and women due to socially derived exposure differ-
ences according to gender (e.g., in some countries women spend
more time at home than men); to physiological differences related
to sex (e.g., differences in hormones, lung size, and deposition of
particles); or to a combination of these.20 The studies investigat-
ing these associations and exposure differences are inconsistent,
because some studies find the highest risk estimates among
men,16,21 some studies find them among women,14,15 and some
studies report no difference in risk according to sex.9,22

Road traffic noise has been found to increase the risk of
T2D.23–25 Noise is believed harmful through some of the same

Address correspondence to Mette Sørensen, Work, Environment and
Cancer, Danish Cancer Society Research Center, Strandboulevarden
49, 2100 Copenhagen Ø, Denmark. Telephone: +45 3525 7626. Email:
mettes@cancer.dk
Supplemental Material is available online (https://doi.org/10.1289/EHP11347).
All authors declare no competing interests.
Received 4 April 2022; Revised 5 January 2023; Accepted 17 January 2023;

Published 21 February 2023.
Note to readers with disabilities: EHP strives to ensure that all journal

content is accessible to all readers. However, some figures and Supplemental
Material published in EHP articles may not conform to 508 standards due to
the complexity of the information being presented. If you need assistance
accessing journal content, please contact ehpsubmissions@niehs.nih.gov. Our
staff will work with you to assess and meet your accessibility needs within 3
working days.

Environmental Health Perspectives 027008-1 131(2) February 2023

A Section 508–conformant HTML version of this article
is available at https://doi.org/10.1289/EHP11347.Research

https://orcid.org/0000-0002-7302-4789
https://doi.org/10.1289/EHP11347
https://orcid.org/0000-0002-7302-4789
mailto:mettes@cancer.dk
https://doi.org/10.1289/EHP11347
http://ehp.niehs.nih.gov/accessibility/
mailto:ehpsubmissions@niehs.nih.gov
https://doi.org/10.1289/EHP11347


biological mechanisms as air pollution, including systemic
inflammation and oxidative stress.26 A recent study found that
road traffic noise was associated with higher risk of T2D among
people exposed to high levels of air pollution in comparison with
people exposed to low levels of air pollution, suggesting that
high exposure to one of these two traffic pollutants can increase
the susceptibility to the other.24 Surrounding greenness has been
found inversely associated with T2D, potentially by promoting
physical activity, decreasing psychological stress, or as a result of
lower air pollution and traffic noise levels in such areas.27,28 If
surrounding greenness results in a healthier lifestyle, it might pro-
tect against the harmful effects of air pollution, but this possible
mitigation has not been investigated in relation to T2D.

We aimed to investigate whether the association between
long-term exposure to air pollution (PM2:5, elemental carbon
(EC), UFP, and NO2) and risk of T2D differed according to soci-
odemographic characteristics, financial stress, comorbidity, popu-
lation density, road traffic noise, and green space, based on the
entire Danish population.

Methods

Study Population
All persons living in Denmark can be followed across all health
and administrative registers based on a unique identification num-
ber.29 Using the Danish Civil Registration System, which con-
tains continuously updated information on exact addresses,29 we
identified address histories for all inhabitants born after 1 January
1921 and living in Denmark from 1979 onward (after 1979,
address information is virtually complete). We censored people
at the date of missing address information (>14 consecutive
days), emigration, death, or 31 December 31 2017. Based on this
population, we defined a study base with baseline at 1 January
2005 or age 35 y, whichever came last, such that a person who
was below 35 y of age in 2005 was included into the cohort at the
time the person turned 35 y (N =2,757,813).

Outcome
We identified incident diabetes cases based on the National
Patient Registry30 and the National Prescription Registry,31 using
an algorithm developed by the Danish Health Data Agency for
the purpose of monitoring diabetes prevalence and incidence in
Denmark.32 This algorithm has been used in various register-
based studies based on the Danish population.33,34

The Prescription Registry holds information on all dispensed
drugs. We defined T2D cases as persons with two contacts with a
pharmacy [Anatomical Therapeutic Chemical system (ATC)
codes A10B (blood glucose–lowering drugs, excluding insulins),
though excluding A10BJ02 (liraglutide: only Saxenda®), as well
as A10AE54 (insulin glargine and lixisenatide) and A10AE56
(insulin degludec and liraglutide)] and/or T2D-related hospital
contacts (International Classification of Diseases (ICD) 8 code
250 or ICD10 code E11).We defined a person as case from the sec-
ond register record. A diagnosis of type 1 diabetes [ICD-8 code 249
or ICD-10 code E10 and/or at least one dispensed prescription with
ATC A10A (insulins and analogs), excluding A10AE54 (insulin
glargine and lixisenatide) and A10AE56 (insulin degludec and lira-
glutide)] resulted in censoring (exclusion if before baseline). All
persons with a diagnosis of T2D before baseline (identified as
described above for incident cases) were excluded.

Estimation of Air Pollution Exposure
We modeled air pollution concentrations of PM2:5, EC, NO2, and
UFP outside the front door of all addresses in Denmark

(identified from the Building and Housing Registry) using the
Danish Eulerian Hemispheric Model (DEHM) DEHM/ Urban
Background Model (UBM) /AirGIS modeling system.35 This
modeling system calculates air pollution contributions from a) the
regional background, modeled using the DEHM36; b) the local
background, modeled using the UBM37 covering Denmark in a
1 × 1 km grid; and c) traffic in the address street (modeled for
streets with >500 vehicles per day), modeled using the
Operational Street Pollution Model (OSPM®), which takes into
account emission factors, traffic composition and intensity, mete-
orology, and street and building configurations.35,38 We recently
implemented modeling of particle number concentration, as an
indicator for UFP (in this paper denoted as UFP), into the
DEHM/UBM/AirGIS modeling system. In brief, the regional
scale model, DEHM, was extended with the M7 aerosol dynam-
ics module39 to account for number concentrations of particles
with a diameter <1 lm.40 We furthermore developed models for
estimating particle number concentrations at the local scale
(UBM) and street scale (OSPM).41 A validation of the model
results with long-term UFP measurements in Denmark showed
correlations of 0.86, 0.87, and 0.95 between measured and pre-
dicted annual averages at, respectively, the regional, urban, and
street scale.41 For PM2:5, EC, and NO2, correlation coefficients
between measured and modeled air pollution (using DEHM/
UBM/AirGIS) across various measurement periods and loca-
tions have been found to be, respectively, 0.67–0.85, 0.77–0.79,
and 0.60–0.80.42,43 Using the DEHM/UBM/AirGIS system, we
estimated hourly address-specific concentrations (the modeling sys-
tem operates at all scales in a 1-h time resolution) of the four air
pollutants from 2000 through 2017, which we summarized into
monthly averages for each address. We attached the monthly expo-
sures to person-specific address histories and calculated person-
specific time-weighted 5-y running means for the four exposures.

Sociodemographic Variables
All SES variables in the present study were collected from the
nationwide registers that, based on yearly input from relevant
authorities (e.g., the Danish tax authorities for income and all edu-
cational institutions for education), accumulate this information.
From the registries at Statistics Denmark, we obtained information
on a number of individual- and area-level SES variables, selected
based on availability and findings of previous papers showing asso-
ciations between the SES variables and the outcome of interest
(T2D) as well as exposure to air pollution (see Directed Acyclic
Graph in Figure S1 generated in DAGitty, version 3.044).45 More
specifically, we obtained yearly individual-level information from
2005 to 2017 on highest attained education categorized as short
(mandatory), medium (secondary/vocational), and long (e.g., uni-
versity, nursing, and teaching) education, disposable individual
income (calculated as calendar year and sex-specific quintiles
based on the income distribution in the Danish population), occu-
pational status (blue-collar, white-collar, unemployed/retired),
cohabiting status [“live alone,” corresponding to divorced/
widowed/never-married persons who do not share address with
others (except their children) and “cohabiting,” corresponding to
married people as well as people sharing address with one or more
persons (except children)] and country of birth (Denmark, other).
We also obtained yearly information on three neighborhood-level
SES indicators: proportion of inhabitants in each parish with only
basic education, with a non-Western background (corresponding
to being born in a non-Western country), and with a criminal re-
cord. Furthermore, we obtained yearly information on population
density within each parish (<100, 100 to<2,000, and ≥2,000 per-
sons per square kilometer). In 2017, there were 2,160Danish parishes
with amedian of 1,032 inhabitants and amean size of 16 km2.
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We excluded all persons missing information on one or more
of the SES variables described above from the study population.

Financial Stress and Comorbidity
We used the registers of Statistics Denmark to identify people
experiencing one or more “financial stress event(s)” defined as
family income below the Danish relative poverty limit (time-
dependent), personal income drop of 50% or more between
2 consecutive years, family income drop of 50% or more between
2 consecutive years, and/or loss of job. Based on this approach,
we created a time-dependent dichotomous variable of one or more
financial stressful event(s) in the prior 5 y (yes/no).

Using the National Patient Registry,30 we calculated a
Charlson Comorbidity Index for all cohort members, which is a
standard method of categorizing comorbidities of patients based
on ICD codes.46 The index was calculated as a time-dependent
variable, summing up a score based on diseases during 5 previous
years, calculated with a 1-y lag period (0–1 y; to ensure that the di-
agnosis of T2D did not impact the index). In analyses, we catego-
rized the comorbidity index score into 0, 1, or≥2.

Road Traffic Noise
We modeled road traffic noise at all residential addresses at the
most exposed facade using the Nordic prediction method47 for
the years 2000, 2005, 2010, and 2015 as previously described.48

Input variables included address-specific geocodes; height, road
type, light/heavy vehicle distributions, travel speed, and annual
average daily traffic for all Danish road links38; and screening
effects from buildings, terrain, and noise barriers. We calcu-
lated noise as the equivalent A-weighted sound pressure level
for day (0700–1900 hours), evening (1900–2200 hours) and
night (2200–0700 hours) and aggregated it as Lden. We used
linear interpolation between the 5-y exposure calculations to
quantify exposure for all years in the period 2000–2017.

Green Space
We used BASEMAP02, which classifies land use in a high-
resolutionmap of Denmark, to calculate area proportions of 36 land-
use classes within a 1,000meter radius around all addresses.49,50

Green space of high quality was defined as forest, recreational areas,
andwet/dry open nature areas.

Statistical Analyses
Correlations between air pollutants were calculated as Spearman’s
correlation coefficients. We calculated associations between 5-y
exposure to air pollution and risk of T2D using two different mod-
els: Cox proportional hazard model and Aalen additive hazard
model. Based on the Cox model we calculated hazard ratio (HR;
relative risk estimate) and based on the Aalen model we calculated
the rate difference per 100,000 person-years (absolute risk esti-
mate). In bothmodels, we included age as the underlying time scale
(continuous), and air pollution was modeled as 5-y time-weighted
running means. In brief, this modeling was done by calculating
mean exposure for the 5 y before the T2D diagnosis for all cases,
taking all present and historical addresses in this period into
account (including exposure before baseline when relevant) and
subsequently for each case, and then comparing this exposure with
the 5-y exposure for all noncases at the exact same age as the case
at the time of diagnosis.

In initial analyses based on the whole study population of peo-
ple above 35 y of age (using the Aalenmodel), we observed that all
four air pollutants were associated with higher risk of T2D, mainly
among people between 50 and 80 y of age (Figure 1). We therefore

restricted all main analyses to include only the 1,843,597 persons
within this age group. Start of follow-up in all analyses was age
50 y or year 2005 (whichever came last), and people were censored at
type 1 diabetes or T2D diagnosis, age 80 y, death, missing address,
emigration, or end of follow-up (31 December 2017), whichever
came first. Furthermore, we conducted additional analyses using the
Cox model on the population age 35–50 y, including 1,300,108 per-
sons, with start of follow-up at age 35 y or year 2005 and censoring at
type 1 diabetes or T2D diagnosis, age 50 y, death, missing address,
emigration, or end of follow-up (31December 2017).

We calculated risk estimates for the association between air
pollution and T2D adjusted for sex, calendar year (2-y categories),
educational level, individual income, cohabiting status, country of
birth, and occupation, as well as area-level proportion of inhabi-
tants with only basic education, of non-Western background, and
with a criminal record. Estimates were calculated per 5 lg=m3

PM2:5, 10lg=m3 NO2, 1lg=m3 EC, and 10,000 particles=cm3 for
UFP. To examine the shape of the exposure–response relationship, we
also analyzed associations between the four air pollutants and T2D
among people age 50–80 y based on the Cox model in the following
categories: <10th (reference group), 10th to <25th, 25th to <50th,
50th to <75th, 75th to <90th, 90th to<95th, and≥95th percentiles.

For all four air pollutants, we investigated associations
between air pollution and T2D in strata of sociodemographic
variables (sex, education, income, occupation, and cohabiting
status), financial stress (yes, no), comorbidity (Charlson
Comorbidity Index; 0, 1, ≥2), population density (<100,
100 to<2,000, ≥2,000 persons=km2), road traffic noise (<55,
55 to <60, ≥60 dB), and green space within 1,000 m (<9:8%,
9:8% to <17:6%, ≥17:6%).

Descriptive analyses and Cox proportional hazards model
analyses were done in SAS 9.4 (SAS Institute Inc.) and Aalen
additive hazard model analyses were performed in R (version
3.6.3; R Development Core Team).

Results
From the study base of 2,757,813 people, we excluded 13,535
persons with type 1 diabetes and 88,934 with T2D before base-
line. Also, we excluded 23,856 persons missing information on
one or more potential confounders. Of the remaining 2,631,488
persons, for the main analyses we excluded 787,891 persons
who were below age 50 y at end of follow-up or above 80 y of
age at start of follow-up. This approach yielded a study popula-
tion of 1,843,597 persons with a median follow-up of 9.5 y dur-
ing which 113,985 developed T2D. Also, we conducted
additional analyses on a population of persons between 35–50 y
of age, consisting of 1,300,108 persons, of whom 19,662 devel-
oped T2D.

We found that people exposed to UFP above the median were
more likely to be women, live alone, have high income, have lon-
ger education, be of non-Danish origin, be retired/unemployed,
and live in neighborhoods with a higher proportion of people
with a non-Western background and a criminal record in compar-
ison with people exposed to UFP below the median (Table 1;
Table S1). T2D cases were more likely to be men, have a low
SES, with low education and income, and working in blue-collar
jobs, as well as have comorbidities in comparison with noncases
(Table S2). The distributions of 5-y exposure to PM2:5, UFP, EC,
and NO2 at baseline are shown in Figure S2, Table 1, and Table
S3. UFP, EC, and NO2 were found skewed to the right. The four
air pollutants were correlated with RSpearman coefficients between
0.75 and 0.94 (Table 2).

In the main population of people age 50–80 y, exposure con-
trasts of 5 lg=m3 PM2:5, 10,000UFP per cm3, 1 lg=m3 EC, and
10lg=m3 NO2 were associated with a higher risk of incident
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T2D, with overall HRs 95% CI of 1.17 (95% CI: 1.13, 1.21),
1.16 (95% CI: 1.13, 1.19), 1.10 (95% CI: 1.08, 1.12) and 1.10
(95% CI: 1.08, 1.11), respectively, and overall rate differences
of 123 (95% CI: 96, 150), 124 (95% CI: 104, 144), 102 (95%
CI: 80, 124), and 73 (95% CI: 62, 85), respectively. Inspection
of the exposure–response relationships between the four air pol-
lutants and T2D indicated a linear relationship for EC and NO2,
whereas for PM2:5 and UFP there were some indications of a
leveling off at high exposures (Figure S3; Table S4). For all
four air pollutants, the association with T2D was stronger
among men in comparison with women and among people liv-
ing with a partner in comparison with people living alone
(Table 3). Similar trends were observed for relative (HR) and
absolute (rate difference) risk estimates. We found lower risk
estimates among people with high education in comparison
with low/medium education. When comparing people with low
vs. medium education, risk estimates were highest among peo-
ple with medium education. For income, the risk estimates were
generally highest in the medium category; one exception was
PM2:5, where similar size estimates were observed for people
with medium and high income. No marked differences were
observed between people working in white-collar vs. blue-
collar occupations.

People with any financial stress during the last 5 y, such as
job loss and an income below the poverty limit, were found to

have lower air pollution-T2D risk estimates than people without
such events (Table 4). We found stronger associations between
air pollution and T2D among people with a comorbidity or
comorbidities in comparison with no comorbidity; the association
was strongest for people with a comorbidity score of ≥2. We
found no consistent indications of effect modification by popula-
tion density, road traffic noise, or surrounding green space across
the four air pollutants.

In the population of people age 35–50 y, exposure contrasts of
5 lg=m3 PM2:5, 10,000UFP per cm3, 1 lg=m3 EC, and 10lg=m3

NO2 were associated with overall HRs of 1.05 (95% CI: 0.96,
1.14), 1.05 (95%CI: 0.99, 1.12), 1.05 (95%CI: 0.98, 1.13) and 1.02
(95% CI: 0.99, 1.06), respectively. We observed effect modifica-
tion trends for the age 35–50 y population to be similar to those for
those age 50–80 y [except for sex, where we found stronger associ-
ation among women in comparison with that of men, and occupa-
tion, where we found stronger associations among blue-collar
workers in comparison with those of white-collar workers (Tables
S5–S6)].

Discussion
In a nationwide study of Denmark, we found that air pollution was
associated with higher risk of T2D among people age 50–80 y in
comparison with people age 35–50 y. In the population of people

Figure 1. Associations between 5-y exposure to air pollution (PM2:5, ultrafine particles, elemental carbon, and NO2) and risk of type 2 diabetes according to
age, expressed as cumulative coefficients (middle curve) with 95% confidence intervals (upper and lower curve).
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age 50–80 y, we found higher risk estimates among men in com-
parison with women and a pattern of higher risk estimates among
people with low or medium education (highest for medium edu-
cation) in comparison with high education, among people with
medium income vs. low or high income, among people living
with a partner vs. living alone, among people with comorbidities
vs. without comorbidities, and among people without financial
stress vs. people with financial stress. No marked changes in risk
estimates were observed according to occupation, population
density, road traffic noise, and surrounding green space. We
observed similar tendencies among people 35–50 y of age,
except in relation to sex and occupation, where we observed
associations with air pollution only among women and blue-

collar workers. The results showed similar tendencies for relative
and absolute risk estimates.

For all four exposures, we observed weaker associations
with risk of T2D among people age 35–50 y in comparison with
people age 50–80 y. A potential explanation is that a diagnosis
of T2D at a young age may have a stronger genetic component
than diabetes later in life, and therefore environmental pollu-
tants like air pollution may play a minor role in the develop-
ment of diabetes in this age group. Also, there could be a higher
degree of outcome misclassification among people below 50 y
of age, e.g., the general practitioner (GP) may be less likely to
test for T2D in younger patients, because the disease is less fre-
quent in this age group.

Table 1. Baseline sociodemographic characteristics and exposures among the Danish study population of people age 50–80 y in the period from 2005–2017
according to baseline 5-y exposure to UFP below and above the median.

Baseline Characteristics
Cohort

(N =1,843,597)
UFP<11,064 particles=cm3

(n=921,797)
UFP≥11,064 particles=cm3

(n=921,800)

Individual level
Men (%) 47.7 49.4 46.4
Age [y (mean± SD)] 58:9± 9:1 57:6± 8:9 60:3± 9:1
Cohabiting status (%)
Cohabiting 74.9 79.0 70.9
Living alone 25.1 21.0 29.1

Individual income (%)
Low (quintile 1) 23.8 24.0 23.6
Low-medium (quintile 2) 20.5 20.8 20.3
Medium (quintile 3) 17.0 18.3 15.6
Medium-high (quintile 4) 17.8 18.6 16.9
High (quintile 5) 21.0 18.4 23.5

Highest attained education (%)
Mandatory education 34.8 36.8 32.7
Secondary or vocational education 46.1 46.5 45.7
Medium or long education 19.1 16.7 21.6

Country of birth (%)
Danish 98.1 99.0 97.3
Other 1.9 1.0 2.7

Occupational status (%)
Blue-collar 31.4 35.5 27.2
White-collar level 26.6 27.1 26.0
Retired or unemployed 42.1 37.4 46.8

Financial stress (%)
Yes 17.8 18.9 16.7
No 82.2 81.1 83.4

Charlson Comorbidity Index (%)
0 86.9 88.6 85.3
1 7.4 6.6 8.3
≥2 5.7 4.8 6.5

Address level
Road traffic noise [5-y (%)]
<55 dB 50.6 57.6 43.6
55 to <60 dB 21.6 20.0 23.1
≥60 dB 27.9 22.4 33.4

High-quality green space in 1,000 m (%)
<9:8% 34.0 38.2 29.8
9:8 to <17:6% 33.4 30.0 36.8
≥17:6% 32.6 31.8 33.5

Air pollution [5-y (mean±SD)]
PM2:5 (lg=m3) 10:9± 1:3 10:1± 1:1 11:6± 1:0
UFP (particles=cm3) 11,578± 3,231 9,075± 1,316 14,082± 2,571
EC (lg=m3) 0:70± 0:29 0:54± 0:10 0:87± 0:31
NO2 (lg=m3) 16:5± 5:9 12:5± 2:5 20:5± 5:6

Area level
Area-level SES (mean± SD)
% with only basic education 10:3± 3:4 11:2± 3:3 9:5± 3:3
% non-Western background 5:2± 6:0 3:3± 3:9 7:1± 7:0
% with criminal record 0:49± 0:31 0:40± 0:25 0:57± 0:34

Population density
<100=km2 26.7 47.4 6.0
100 to<2,000=km2 55.2 48.6 61.8
≥2,000=km2 18.2 4.1 32.2

Note: EC, elemental carbon; SD, standard deviation; SES, socioeconomic status; UFP, ultrafine particles.
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The previous studies investigating associations between air
pollution and metabolic syndrome/T2D according to sex are
inconsistent, with some studies reporting the highest risk estimates
for men16,21 and others for women,14,15 whereas some studies
report no difference.9,22We found the association between all four
air pollutants and T2D to be stronger among men, especially for
the absolute risk estimates, where the rate differences were 3–7
times higher in comparison with women. It is unclear whether
these differences are caused by socially derived differences in ex-
posure according to gender, by physiological differences related
to sex, or a combination of these.20 Previous studies observing
stronger associations between air pollution and T2D among
women in comparison with men, suggested that it may be due to
less exposuremisclassification inwomen, because theymay spend
more time at home (where exposure is modeled).14 However, in
Denmark both parents usually work when bringing up their chil-
dren, and thus fewer differences according to time spend at home
are expected in our population. Therefore societal differences
across countries may partly explain differences in results across
studies. The physiological differences between men and women
that could lead to different risk in association with air pollution are
numerous, such as differences in lung size, in deposition of par-
ticles, and in inflammatory responses.20,51 Also, men have a
higher incidence of T2D and comorbidities, such as cardiovascu-
lar disease, than women, partly due to a protective effect of estro-
gen.52,53 It is therefore possible that men due to inherent sex-
related physiological differences are more susceptible to the haz-
ardous effects of air pollution. An interesting finding was that in
the subpopulation of people age 35–50 y, air pollution was associ-
ated with higher risk of T2D only among women, whereas no
associations were observed among men. These opposite findings
in different age groupsmay partly explain inconsistencies in previ-
ous studies with regard to effectmodification by sex.

We observed that air pollution was associated with a lower
risk of T2D in people with long education in comparison with
people with short or medium education, which was most pro-
nounced for the absolute risk estimates. Only a few studies have
investigated associations between air pollution and T2D in dif-
ferent strata of education, with one study reporting highest risk
estimates among people with high education16 and two studies
observing slightly lower risk estimates among the highly edu-
cated.14,15 Two of these studies investigated only two levels of
education, an approach that may be too crude to capture the
potentially complex relationship between SES, air pollution, and
T2D. Having a short or medium education is associated with a
lifestyle that is less healthy than that of people with a long edu-
cation, e.g., physical inactivity, smoking, and high BMI.54 These
are all risk factors for T2D, which are believed harmful through
some of the same mechanistic pathways as air pollution, including
oxidative stress and systemic inflammation.18,19 It is possible that
people with an unhealthy lifestyle are more susceptible to the
harmful effects of air pollution because their systems are already
challenged, which could explain the lower risk found among the
highly educated in our study.

We found that air pollution was associated with lower risk of
T2D among people with short education in comparison with T
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Table 2. Spearman correlations between 5-y exposure to PM2:5, ultrafine
particles, elemental carbon, and NO2 for the main study population (ages
50–80 y) in 2005 (N =1,252,432).

PM2:5 Ultrafine particles Elemental carbon NO2

PM2:5 1 0.75 0.75 0.79
Ultrafine particles 0.75 1 0.90 0.92
Elemental carbon 0.75 0.90 1 0.94
NO2 0.79 0.92 0.94 1
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people with a medium education. A similar pattern was observed
for income. Although it seems counterintuitive that the people
with the lowest education and income are less susceptible to the
harmful effects of air pollution than groups with higher SES, out-
come misclassification may be part of the explanation: At least
24% of all T2D cases in Denmark are estimated to be undiag-
nosed.55 It is well known that, even in countries like Denmark
with free health care for all residents, people with low SES are
less likely to visit a GP for regular examinations or act on mild
symptoms, such as frequent urination, weight loss, and fatigue,
which are early symptoms of T2D.56–58 Therefore, they will in
general be diagnosed later than people with higher SES. If such
delay of a diagnosis last for several years, the 5-y exposure time
window preceding the diagnosis (or part of it), which we applied
in the present study, will also cover exposure after the person
should have been censored, and thus result in exposure misclassi-
fication, which potentially could drive the risk estimates toward
the null. In support, we also observed lower risk estimates
between air pollution and T2D among people experiencing one
or more “financial stress events,” which is a group of people who
potentially have reduced “resources” to act on mild symptoms, as
well as among people living alone, and therefore with no spouse
to encourage seeking health care.59

Previous studies investigating comorbidity as a potential
modifier of the association between air pollution and T2D are
inconsistent, with some studies reporting stronger associations
among people without COPD,9 myocardial infarction,9,14,15 and/
or hypertension,9,14 whereas others report stronger associations
in people with COPD14,15 and/or hypertension.15 We found that
air pollution was associated with a substantially higher risk of
T2D in people with comorbidities (assessed by the Charlson
Comorbidity Index) in comparison with people without comor-
bidity. Furthermore, risk estimates were higher among people
with a score of ≥2 compared to a score of 1. Part of the explana-
tion is probably that people with, e.g., cardiovascular disease or
COPD are automatically tested for T2D when hospitalized.
There will, therefore, be fewer persons with undiagnosed T2D
among people with comorbidities than among people without
comorbidities and thus lower risk of outcome misclassification in
this group. However, the difference in risk estimates for PM2:5
and UFP exposure among people with and without comorbidities
is substantial, and it seems unlikely that outcome misclassifica-
tion is the only explanation. Another explanation might be that
comorbidities like cardiovascular disease, COPD, and asthma are
characterized by systemic inflammation and/or oxidative stress,
e.g., as a result of an unhealthy lifestyle and high BMI, which
could make people with these diseases more vulnerable to the
harmful effect of air pollution, because air pollution is believed
to be harmful through the same biological pathways.17

We have previously found noise to be associated with T2D,
with a HR of 1.03 (95% CI: 1.02–1.03) per 10 dB higher road
traffic noise based on the entire Danish population (>35 y).24

However, although previous studies have suggested that noise
can be hazardous through similar mechanisms as air pollution,26

our study does not suggest that noise exposure can modify the
association between air pollution and T2D. Also, we found no
marked differences in risk estimates according to the level of
green space around the home address, suggesting that although
previous studies have found greenness to be associated with a
lower risk of T2D,27 it does not protect against the harmful
effects of air pollution on risk for T2D.

A strength of the present study is the nationwide design,
which minimized the risk of selection bias, and a large number
of T2D cases identified using high-quality hospital and pre-
scription registries.30,31 Furthermore, we obtained information

on individual- and area-level SES covariates, comorbidity,
financial stress, and residential address history from 2000–
2017, using high-quality nationwide registries, and estimated
air pollution and road traffic noise using validated models with
high spatial resolution and high-quality input data.35

Limitations include the large proportion of people with
undiagnosed T2D not captured in the present study. A valida-
tion study estimated that approximately 24% in Denmark had
undiagnosed T2D.55 However, that study applied a different
identification of T2D, including data from the Health Services
Register (diabetic foot therapy) and two clinical databases in
addition to the Patient and Prescription registries used in the
present study. Although results are thus not directly compara-
ble, it is unlikely that the percentage of undiagnosed T2D cases
in the present study deviates substantially from the results
obtained by Jørgensen et al.55 Outcome misclassification may
be differential because people with low SES more often live
with undiagnosed T2D (as described above). Another limitation
is the lack of information on lifestyle covariates, especially adi-
posity. We, however, adjusted for various socioeconomic varia-
bles, which are associated with lifestyle. Furthermore, we
recently conducted a study on long-term exposure to NO2 and
PM2:5 and risk of T2D using a questionnaire-based cohort of
250,000 participants randomly selected across Denmark and with
information on lifestyle habits.13 We found that after adjusting
for various register-based individual- and area-level covariates
(similar to the present study), further adjustment for lifestyle,
resulted in only small changes in HRs, e.g., for PM2:5 the HR was
1.27 before and 1.24 after lifestyle adjustment, including smok-
ing status, BMI and physical activity and intake of fruit, vegeta-
bles, and red meat. Limitations also include the lack of
information on nonresidential exposure to air pollution, e.g., dur-
ing work. We expect such misclassification to be mainly unre-
lated to T2D and draw the estimates toward the null. Another
limitation is that the indicators of green space, financial stress,
and comorbidities used in the present study are based on objective
register-based data that may not capture all relevant aspects of
these factors. Last, although our study was based on the entire
Danish population andwe thus believe that our results can be gen-
eralized to other Western populations, differences in, e.g., genet-
ics, air pollution sources, and concentrations of air pollution have
to be considered when generalizing the results.

In conclusion, we found men and individuals with preexist-
ing comorbidities to be highly susceptible to the harmful effect
of air pollution in relation to T2D, whereas people with high
SES were less susceptible than people with lower SES. These
findings suggest that the health burden of air pollution is not
evenly distributed.
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