
Roskilde
University

Host heterogeneity and epistasis explain punctuated evolution of SARS-CoV-2

Nielsen, Bjarke Frost; M. Saad-Roy, Chadi; Li, Yimei; Sneppen, Kim; Simonsen, Lone;
Viboud, Cécile; Levin, Simon A.; Grenfell, Bryan T.
Published in:
PLOS Computational Biology

DOI:
10.1371/journal.pcbi.1010896

Publication date:
2023

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Nielsen, B. F., M. Saad-Roy, C., Li, Y., Sneppen, K., Simonsen, L., Viboud, C., Levin, S. A., & Grenfell, B. T.
(2023). Host heterogeneity and epistasis explain punctuated evolution of SARS-CoV-2. PLOS Computational
Biology, 19(2), [e101089]. https://doi.org/10.1371/journal.pcbi.1010896

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain.
            • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact rucforsk@kb.dk providing details, and we will remove access to the work
immediately and investigate your claim.

Download date: 07. Mar. 2023

https://doi.org/10.1371/journal.pcbi.1010896
https://doi.org/10.1371/journal.pcbi.1010896


RESEARCH ARTICLE

Host heterogeneity and epistasis explain

punctuated evolution of SARS-CoV-2

Bjarke Frost NielsenID
1,2*, Chadi M. Saad-RoyID

3,4, Yimei Li5, Kim Sneppen2,

Lone Simonsen1, Cécile Viboud6, Simon A. Levin5, Bryan T. Grenfell5

1 Department of Science and Environment, Roskilde University, Roskilde, Denmark, 2 Niels Bohr Institute,

University of Copenhagen, Copenhagen, Denmark, 3 Department of Integrative Biology, University of

California, Berkeley, California, United States of America, 4 Miller Institute for Basic Research in Science,

University of California, Berkeley, California, United States of America, 5 Department of Ecology and

Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America, 6 Division of

International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health,

Bethesda, Maryland, United States of America

* bjarkefrost@ruc.dk

Abstract

Identifying drivers of viral diversity is key to understanding the evolutionary as well as epide-

miological dynamics of the COVID-19 pandemic. Using rich viral genomic data sets, we

show that periods of steadily rising diversity have been punctuated by sudden, enormous

increases followed by similarly abrupt collapses of diversity. We introduce a mechanistic

model of saltational evolution with epistasis and demonstrate that these features parsimoni-

ously account for the observed temporal dynamics of inter-genomic diversity. Our results

provide support for recent proposals that saltational evolution may be a signature feature of

SARS-CoV-2, allowing the pathogen to more readily evolve highly transmissible variants.

These findings lend theoretical support to a heightened awareness of biological contexts

where increased diversification may occur. They also underline the power of pathogen

genomics and other surveillance streams in clarifying the phylodynamics of emerging and

endemic infections. In public health terms, our results further underline the importance of

equitable distribution of up-to-date vaccines.

Author summary

The coronavirus responsible for the COVID-19 pandemic, SARS-CoV-2, has shown a

remarkable ability to evolve novel, increasingly transmissible variants. Using large

amounts of viral sequences sampled during the pandemic, we map the genomic diversity

over time. We find that the pathogen has followed a clear pattern of punctuated evolution,

where periods of genetic drift are interrupted by sudden large increases in diversity fol-

lowed by similarly abrupt collapses. This is in contrast to the pattern previously identified

for influenza, which does not show similarly sudden increases in diversity. Using a mathe-

matical model, we show that the observed pattern can result from rare evolutionary jumps

(saltations) occurring within some hosts, in combination with epistasis. One possible

explanation for such jumps is accelerated evolution within immunocompromised hosts,
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underscoring the importance of equitable vaccine distribution. Furthermore, a simple

modification of the model to include incomplete cross immunity offers an explanation for

recently observed patterns of variant co-circulation.

Introduction

During the coronavirus disease 2019 (COVID-19) pandemic, the responsible pathogen, severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has continuously evolved. However,

evolution has by no means happened at an even pace, but rather through a pattern of steady

diversification punctuated by sudden large jumps involving dozens of point mutations.

Indeed, it has been suggested that SARS-CoV-2 exhibits saltational evolution, a process where

evolution proceeds by large multimutational jumps, rather than gradually [1].

A simple way to quantify the genomic diversity existing at a given time is through the pair-

wise Hamming distance. Given two genomes, the pairwise Hamming distance simply mea-

sures how many nucleotides the two sequences disagree on. This rather crude measure turns

out to reveal surprisingly robust patterns of viral diversification.

Due to the large amount of full genome sequencing performed on SARS-CoV-2 specimens

during the COVID-19 pandemic, Hamming distances can be computed not just at the level of

summary statistics, but as temporally varying distributions (Fig 1; S1 Video), revealing a pat-

tern of slowly increasing diversity punctuated by abrupt increases and subsequent collapses in

diversity.

That much can be gleaned from considering the time-development of the mean (or

median) Hamming distance. However, the dynamics of the often multimodal distribution is

not captured by the mean Hamming distance, even if temporally resolved, and much less by

the usual static treatment. The full time-dependent Hamming distribution possesses further

structure, which reveals that successive variants are well-separated in sequence space; this sug-

gests that one did not arise from the other by a string of single-point mutations accruing in

successive hosts. Rather, an evolutionary jump—a saltation—seems to have taken place at each

major transition (see S1 Video). Recently, a somewhat different pattern of variant co-circula-

tion and rapid turnover of variants has appeared—a phenomenon that we will also comment

on in this paper, from the perspective of the Hamming distribution.

Dynamical explanations

There are several plausible mechanisms that may contribute to saltational evolution in SARS-

CoV-2, including increased build-up of mutations in immunocompromised individuals

infected with SARS-CoV-2 [1, 3–9] and evolution in animal reservoirs followed by animal-to-

human transmission [10, 11].

In this paper, we present a mathematical model aimed at capturing the particular punctu-

ated evolutionary pattern of SARS-CoV-2. Our goal is to recapitulate the main features of the

temporal Hamming distribution observed during the COVID-19 pandemic (see Fig 1A) as

parsimoniously as possible in a dynamical model.

We show that the overall pattern can be captured by combining epistasis with heteroge-

neous within-host evolution. The model is sufficiently general that it does not make any

assumptions about the detailed biological mechanism behind saltations.

The proposed model is conceptually related to the NK Model of [12] and [13] in that it

operates on the space of possible genotypes, with each genotype corresponding to a preas-

signed fitness value. This is in contrast to phenotypic fitness landscape models which operate
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directly on the space of possible values of some quantifiable trait. The most well-known among

those is perhaps Fisher’s geometric model [14] which assumes a continuous phenotypic

(‘trait’) space with a single optimum [15] and that the effects of single mutations are mild [16].

The NK Model, a genotypic fitness landscape model, instead explicitly allows for a rough (epi-

static) fitness landscape. The NK model, however, does not include the concept of neutral
space—in that model, mutations are generically accompanied by a change in fitness. Our

model includes neutral mutations and is, in that respect, closer to the models of [17, 18].

However, a crucial component of our model is the presence of sign epistasis, i.e. that the fit-

ness contribution of a point mutation may change sign (going from deleterious to beneficial or

vice-versa) depending on the presence of other mutations. This property turns out to offer an

explanation for the role of saltation in evolving high-fitness SARS-CoV-2 genotypes.

In a recent study, Starr et al. [19] showed by deep mutational scanning that epistasis—

including sign epistasis—is an important feature of SARS-CoV-2 evolution. As a concrete

example, they show that the N501Y mutation (which is present in the Alpha, Beta and

Fig 1. Genomic diversity over time in SARS-CoV-2, UK genomic sureveillance data. (A) Full, time-dependent Hamming distance distribution (UK

data, GenBank via Nextstrain [2]). The 3D map shows the period 2020–03-01 to 2022–05-10, to focus on the major jumps. The insert shows a two-

dimensional heatmap representation of the time-dependent Hamming distribution for the entire data range, 2020–03-01 to 2022–11-11. (B) Time

evolution of the mean and median Hamming distance for the date range 2020–03-01 to 2022–11-11. Each time point represents Hamming distances

between genomes sampled within a one-week window beginning on that date. The three miniature inserts show Hamming distance histograms at three

different time points. (C) Left: A snapshot of the Hamming distance distribution for genomes sampled during a one-week window starting on May

31st, 2021. The three distinct peaks correspond to the Hamming distances between pairs of genomes from each of the prevailing variants at the time,

Alpha and Delta. Right: 47 days later, a single variant (Delta) dominates. Related supporting figures: S1 and S2 Figs. See also S1 Video for the animated

Hamming histogram.

https://doi.org/10.1371/journal.pcbi.1010896.g001
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Omicron variants) and Q498R exhibit sign epistasis. In this case, the presence of the N501Y

substitution changes the contribution of Q498R from deleterious to advantageous, as mea-

sured by angiotensin-converting enzyme 2 (ACE2) receptor binding affinity.

In general, the fitness landscape of an organism is combinatorially large, and the number of

possible evolutionary paths from one genotype to another fitter one is, a priori, enormous.

However, in seminal works, Weinreich et al. [20, 21] showed that only very few such paths are

in fact accessible. The interpretation of this finding in terms of fitness landscapes is that epista-

sis or the ruggedness of the landscape is highly important for understanding evolutionary tra-

jectories [15]. However, even if evolutionary paths seem blocked, this conclusion may only

hold in the weak mutation limit, i.e. when the probability of multiple mutations arising in the

same genome within a generation is low [22]. If saltational evolution is possible, even seem-

ingly inaccessible regions of the fitness landscape may be explored by the organism. Our

model suggests that such saltations may thus increase—or, in some cases, altogether enable—

the emergence of new concerning variants.

Results

SARS-CoV-2 genomic diversity is characterized by punctuated evolution

On the basis of UK sequences (a particularly rich data set), we have computed a time-depen-

dent Hamming distribution for SARS-CoV-2, which is presented in Fig 1. Fig 1A shows the

full Hamming distance histogram as a function of time, from March 2020 to mid-2022, with

the colour and height indicating the frequency of observing sequence pairs with a particular

Hamming distance. The peaks that correspond to saltational variant transitions are clearly visi-

ble as isolated ‘islands’ at large Hamming distance. The insert in the same panel shows a 2D

heatmap representation of the data, including data up to mid-November 2022.

In panel B, time series of the mean and median Hamming distances are shown, revealing

clear spikes associated with each of the major variant transitions, ancestral variant!Alpha,

Alpha!Delta, Delta!Omicron (BA.1) as well as Omicron BA.1!BA.2 (by “ancestral vari-

ant”, we mean the lineages circulating before the Alpha transition, whether including the

D614G substitution or not [23, 24]). Each of these transition events is marked by a very sudden

spike in the typical Hamming distance, as is especially clear when considering the median

(Fig 1B, dashed line) which increases almost discontinuously at these transitions. It should be

noted that data quality is highest after the end of 2020, when sequencing capacity was greatly

increased, and before February 2022. As a concrete example, 4,945 sequences were included

for June of 2020, while 72,292 sequences were included for the month of June, 2021.

In Fig 1C (left), a snapshot from May 31st 2021 shows three well-defined peaks. Each peak

corresponds to comparisons between pairs of genomes, with the members of each pair belong-

ing to either the Alpha or Delta variant. The peak corresponding to the highest Hamming dis-

tance is of course that due to comparisons between the ‘new’ and ‘old’ variant, since these are

furthest from each other in a genomic sense. Similarly, the plot clearly shows that variation

within the Delta variant is, at that point in time, much lower than within the Alpha variant,

since each of the Delta variant genomes belong to a clade with a recent common ancestor. In

the right half of Fig 1C, the situation 47 days later is shown, once the Hamming distribution

has collapsed to a single peak, corresponding to the then-dominant Delta variant.

During the month of March, 2020, the Hamming distribution appears bimodal, but there

are no signs of saltation. This transient bimodality, present in the early pandemic, can most

clearly be seen in S1 Video. This can be explained by the D614G substitution, which was asso-

ciated with a clade that dominated from around the end of March/beginning of April 2020

[25]. This early, saltation-free transition is reminiscent of a result by [12], who suggested that
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adaptation on a rugged fitness landscape is associated with two separate time scales. First, the

pathogen searches its neighbourhood in the fitness landscape until it finds a local maximum.

This does not require saltation and happens rather rapidly. Then, on a slower time scale, the

pathogen may transition to new fitness peaks by saltation.

Due to the relatively high quality of SARS-CoV-2 genomic surveillance in the United King-

dom, both in terms of the absolute number of publicly available sequences and per capita cov-

erage, we have based the bulk of our observations on UK sequence data. However, patterns

similar to those presented here can be observed in US data, the analysis of which is included in

S1 Appendix.

For each day in the included range (2020–03-01 to 2022–05-10) a 7-day window (consisting

of the indicated day and the 6 following days) was considered. All high-quality sequences

obtained within that window were pooled, and a distribution of Hamming distances was com-

piled by repeatedly picking out random pairs from the sequence pool and comparing.

While the Hamming distance is a somewhat crude measure of the variance between cir-

culating genomes, it turns out to offer a surprisingly powerful window into the evolution of

SARS-CoV-2 when large amounts of sequence data are available. The aforementioned tran-

sitions all show the tell-tale signs of saltational evolution, i.e. sharply increasing typical

Hamming distances which appear as clearly defined, disconnected ‘islands’ in the full distri-

bution (Fig 1A). The Omicron BA.2!BA.5 transition is less clearly defined, although a

moderately sized genetic jump does appear to be present in the data. It should be noted that

UK sequencing has become less dense since February 2022, meaning that there is not as

much data for the BA.2!BA.5 transition. The BA.2!BA.5 transition was also muddled

somewhat by the BA.2.12.1 subvariant briefly making up as much as 10% of UK sequences

[26]. The main part of our analysis is focused on the four saltational transitions mentioned

above. Since the appearance of the Omicron subvariant BA.5, the simple picture of periods

of linearly increasing Hamming distance interrupted by saltations has been replaced by

a higher degree of variant coexistence and rapid turnover. We comment on this recent

situation and how it may fit into our modeling framework in S3 Appendix as well as in the

Discussion.

As shown in S2 Appendix, all but one of the saltational transitions are also associated with

a discontinuous increase in the distance to the origin (Wuhan-Hu-1, GenBank reference

sequence accession number MN908947.3). The exception is the Alpha!Delta transition,

where a moderate decrease is observed. In other words, the Delta variant is closer to the ances-

tral variant than Alpha is. In S2 Appendix, we model one possible explanation for this phe-

nomenon, namely the occurrence of persistent infections.

The plots of Fig 1 are based on the entire SARS-CoV-2 genome, meaning that a substitution

leading to an amino acid change in the spike protein (a major antigen) counts just as much

as a synonymous mutation elsewhere in the genome. In Fig 2, we probe to what extent the

observed drift-boom-bust pattern of diversity is driven by changes in the S-gene (coding for

the spike protein) or by (non-)synonymous mutations. Overall, the pattern is present whether

considering only the S-gene (Fig 2B), non-synonymous mutations (Fig 2C) or the entire

genome (Fig 2A). We interpret this to mean that

1. The drift seen between saltations is not driven solely by synonymous mutations but affects

the amino acid sequence as well.

2. When saltations occur, mutations are observed within the spike protein as well as outside it.

3. The observed pattern is quite robust, being observed within the whole genome, in the

amino acid sequence as well as within the S-gene itself.
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It is notable, however, that the S-gene does not undergo quite as much drift as the whole

genome, relatively speaking. That is to say, when the whole genome is considered, the Del-

ta!Omicron jump is associated with a peak that is approximately 5.5 times larger than the

typical Hamming distances in the weeks that preceded it, while the ratio is closer to 11 for the

spike protein. We interpret this to mean that, while the S-gene is subject to large saltations, it

undergoes less drift than an average, similarly sized section of the genome.

Mechanistic modelling captures the essential dynamics

Our goal is to capture the overall temporal pattern of diversity observed in Fig 1 in a mathe-

matical model that is as parsimonious as possible. The model consists of two parts: a branching

process and an evolutionary algorithm incorporating sign epistasis and saltational evolution.

Details of both elements can be found in the Materials and methods section. See also S3 Fig for

a schematic description of the model elements.

The model assumes the existence of a number of possible high-fitness genotypes, but

that each of them are ‘screened’ by epistasis. From a fitness landscape viewpoint, this can be

thought of as a landscape with a number of peaks, each of which is surrounded by a fitness

trough or valley. The extent of sign epistasis is then determined by the depth (and width) of

these valleys.

To get from a moderate-fitness genotype to a local fitness peak, it is thus necessary to either

traverse a region of low fitness, with its potential for extinction, or to somehow jump across

that valley.

Fig 2. Restricting the Hamming distribution to the S-gene or the amino acid sequence. The overall temporal pattern of diversity seen in Fig 1 is

found to persist when the analysis is restricted to the S-gene or non-synonymous mutations. (A) Temporal Hamming distance distribution based on

the whole genome, included for reference. For each time on the vertical axis, the colour encodes the histogram of Hamming distances between genomes

sampled within a one-week window starting on that date. (B) Temporal Hamming distance distribution confined to the S-gene which encodes the

SARS-CoV-2 Spike protein. (C) Time evolution of the Hamming distance distribution as measured by the number of amino acid changes. We use this

as a proxy for non-synonymous mutations, since a synonymous mutation would not produce an amino acid change.

https://doi.org/10.1371/journal.pcbi.1010896.g002
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Evolutionary models typically assume that the ‘weak mutation limit’ holds, meaning that

the probability of several mutations arising in one genome in one generation is negligible [22],

leading to gradual evolution. However, as described in the introduction, there are several

mechanisms which can introduce a sudden burst of novelty within a single host, including by

recombination [27–29]. The most well-documented is perhaps elevated mutation in immuno-

compromised individuals [4, 30–32]. Our model, however, is agnostic with respect to the

precise etiology, but includes saltation simply as rare occurrences of drastically increased evo-

lution within a single host.

As shown in Fig 3, the model replicates the main features observed in Fig 1, including the

long periods of drift (linearly increasing pairwise Hamming distances) punctuated by rapid

rises and subsequent collapses of diversity. Just as in the empirical data, each variant transition

is accompanied by three distinct peaks in the Hamming distribution.

The pattern shown in Fig 3 is the typical outcome of a model simulation, but occasional

coexistence of two variants does occur in the model, see S4 Fig. This happens when two dis-

tinct variants with the same fitness happen to arise close to each other in time.

In the interest of simplicity, we have assumed an epidemic of constant size (constant inci-

dence), however we explore the consequences of relaxing this assumption in the section

Fig 3. Simulated outbreak with saltation (heterogeneous mutation rates) and epistasis. (A) Time evolution of the mean and median Hamming

distance between bitstring genomes present in any given generation of the model simulation. The pattern of genetic drift punctuated by sudden

increases and subsequent collapses in diversity is similar to what is observed in SARS-CoV-2 (see Fig 1). (B) A snapshot of the Hamming distance

distribution in generation t = 218 of the simulated outbreak. Just as in Fig 1, the three distinct peaks correspond to the distances between pairs of

genomes from each of the two prevailing variants at the time. (C) Time evolution of the full Hamming distance distribution. For each generation on the

vertical axis, the colour encodes the histogram of Hamming distances between genomes within that generation. The parameters used in these

simulations were � = 0.0001, d0 = 3, δRH = 1.0, δRL = −1 (i.e. deleterious mutations were fatal to the pathogen). Related supporting figures: S3 and S4

Figs.

https://doi.org/10.1371/journal.pcbi.1010896.g003
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Epidemic dynamics and spatial structure. Note that time in the model is measured (discretely)

in generations, meaning that constant incidence and prevalence both hold.

If epistasis and saltation are turned off, evolution and variant transitions still happen within

the model. The temporal pattern changes, however. In Fig 4, we explore this regime by setting

�, the frequency of saltations, to zero and letting δRL = 0, thus disabling sign epistasis. The

resulting behaviour is characterized by periods of increasing diversity—essentially, genetic

drift—interrupted by sudden collapses of the typical Hamming distance. No sudden spikes are

seen in Fig 4A, rendering the dynamics fundamentally different from that of Figs 1 and 3. The

behaviour observed in this regime is more reminiscent of the dynamics observed for H3N2

influenza in [17]. However, one could object that the temporal resolution of the empirical time

series shown in [17] is not sufficiently high to allow one to discriminate between the scenarios

of our Figs 3 and 4—after all, the periods of drastically increased pairwise nucleotide Ham-

ming distance seen in Fig 1 are brief and require high temporal resolution to discern. While

the amount of genomic data available for SARS-CoV-2 enables this, the picture is murkier for

seasonal influenza. In S2 Fig, we present the result of applying the analysis of Fig 1A to influ-

enza types H3N2 and H1N1. While there is no apparent evidence of saltation, the available

data is relatively coarse-grained.

Another influential evolutionary model of influenza is due to [33]. In their model, the

appearance of new variants is driven by immune system memory and a non-linear relation

between Hamming distance and cross-immunity, the latter in the form of short-lived strain-

Fig 4. In the absence of epistasis and saltation, model results do not match observations. In these simulations,

saltations do not occur (� = 0) and sign epistasis is absent (δRL = 0). When a new pathogen variant emerges, the transition

is marked by a collapse of diversity (as measured by the typical Hamming distance), giving a drift-bust-drift dynamics as

opposed to the drift-boom-bust pattern seen in SARS-CoV-2. (A) Time evolution of the mean and median Hamming

distance between genomes present in any given generation of the model simulation. (B) A snapshot of the Hamming

distance distribution for bitstring genomes at generation t = 112 of the simulated outbreak. (C) Time evolution of the

Hamming distance distribution. For each generation indicated on the vertical axis, the colour encodes the histogram of

Hamming distances between genomes within that generation. Related supporting figure: S5 Fig.

https://doi.org/10.1371/journal.pcbi.1010896.g004
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transcending immunity. While a sensible model for seasonal influenza, it gives rise to diversity

dynamics which are closer to Fig 4 than to the pattern observed for SARS-CoV-2.

In the simulations of Fig 4, saltation and epistasis are completely lacking, but in S5 Fig, we

consider what happens if some saltational evolution does occur, without sign epistasis. Qualita-

tively, the picture most resembles the saltation-free scenario of Fig 4, but occasional Hamming

spikes are observed. Overall, this scenario does not conform to the empirical observations in

the form of Fig 1. In the next section, we systematically probe how different levels of epistasis

and saltation affects the evolution of new, highly transmissible variants.

Our focus is mainly on the dynamics of diversity, and for this reason we have emphasized

the distribution of Hamming distances between viral genomes present in the population at

the same time. This goes for the empirical observations (Fig 1) as well as our model simula-

tions (Fig 3). However, in S2 Appendix, we explore the distributions of Hamming distance

relative to the origin (meaning Wuhan-Hu-1, GenBank reference sequence accession num-

ber MN908947.3).

Saltation facilitates the evolution of highly transmissible variants

Saltational evolution may not only be a way to generate vastly different variants, but may

indeed be necessary for the virus to evolve highly fit variants at all. In the presence of strong

epistasis, gradual evolution towards a high fitness genotype can be blocked (see S3A Fig). Con-

ceptually, such gradual evolution under strong epistasis would correspond to traversing a deep

valley in the fitness landscape by a series of small steps before reaching a peak [22, 34]. How-

ever, such a fitness valley indicates the presence of deleterious mutations which impart a high

probability of extinction of the lineage in question, preventing the fitness peak from being

reached.

In Fig 5, we explore how the strength of epistasis and the size of saltations affect the ability

of the pathogen to evolve new, highly transmissible strains. By the strength of epistasis, we

mean the typical depth of a valley in the fitness landscape, |δRL|, i.e. the loss in reproductive

number suffered.

For a pathogen which does not undergo saltational evolution (Fig 5A, dashed curve), signif-

icant sign epistasis (|δRL| ≳ 0.25 at d0 = 3 in our simulations) is a roadblock to evolution of

Fig 5. Saltation allows highly transmissible variants to evolve by facilitating evolution across fitness landscape

troughs. A) Evolution under varying degrees of sign epistasis. The vertical axis indicates the final average reproductive

number in the model population after 300 generations of the simulation, relative to (divided by) the reproductive

number of the initial variant. The horizontal axis indicates the depth of a valley in the fitness landscape, |δRL|,

understood as the reduction in reproductive number suffered due to a deleterious configuration. Here, δRL was

distributed according to a Dirac δ distribution and as such its value was deterministic. This panel is based on 90,000

simulations and the parameters used were d0 = 3 and δRH = 1. B) Evolution with varying degrees of saltation.

Moderate sign epistasis is assumed (δRL = −0.5). All other parameters are as in panel A. This panel is based on 7600

simulations.

https://doi.org/10.1371/journal.pcbi.1010896.g005
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high-fitness variants. However, a pathogen which undergoes saltation (fully drawn curve) can

overcome this epistatic hindrance. Above a certain threshold (at |δRL|� 1 in Fig 5A), stronger

sign epistasis ceases to further impede the emergence of high-fitness variants. The mechanism

behind this is that sign epistasis becomes so strong that a fitness valley may be overcome only

by pure saltation and is no longer traversable by gradual evolution or a combination of the

two.

As shown in Fig 5B, large saltations are necessary to overcome even moderate sign epistasis,

further explaining why the Hamming peaks seen in SARS-CoV-2 are so large.

Epidemic dynamics and spatial structure

In Fig 3, we made a number of simplifying assumptions, the major ones being constant preva-

lence and absence of any spatial or population structure. We first relax the former assumption

by implementing susceptible-infected-recovered-susceptible (SIRS) dynamics. The infected

individuals are now assumed to make up only a fraction of a larger population of total size N.

Our aim is to ascertain whether the diversity dynamics observed in the previous section are

fundamentally altered by allowing a variable number of infected individuals, I(t), as well as sus-

ceptible depletion and waning immunity.

In Fig 6, a typical course of a simulation with SIRS dynamics, epistasis and saltation is

shown. As shown in panel A, the number of recovered (immune) individuals varies non-

monotonically over time, reflecting that individuals acquire immunity after being infected,

and that the immunity eventually wanes. However, as successive variants of greater fitness

Fig 6. Saltational evolution under susceptible-infected-recovered-susceptible (SIRS) dynamics. The reproductive

number of the initial variant is R0 = 1.2 and immunity wanes at a rate of ω = 1/25. Population size is N = 2 × 106. The

parameters of fitness-altering mutations are δRH = 1 and δRL = −1 (i.e. deleterious mutations are fatal to the organism or

prevent transmission). (A) Time evolution of the recovered (or immune) fraction of the population. Successive variants

have higher reproductive numbers (R0), eventually leading to an endemic plateau (until further variants emerge). (B) Even

under variable prevalence, the Hamming dynamics looks similar to that of Fig 3. (C) The full temporal Hamming

distribution is characterized by the same kind of punctuated evolution as in the simpler constant-prevalence case of Fig 3.

Related supporting figure: S6 Fig.

https://doi.org/10.1371/journal.pcbi.1010896.g006
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(greater reproductive number R0) arise, an endemic plateau is eventually reached. While

the epidemiology is very different from that of Fig 3, the Hamming distribution (Fig 6C) is

remarkably similar. This indicates that the mechanism of saltational evolution in conjunction

with sign epistasis robustly reproduces the punctuated evolutionary dynamics seen in Fig 1.

In simulations with variable incidence, higher incidence translates to an increased risk of

emergence of new variants, all else being equal. Since saltations are simulated as a constant-

rate (Poisson) process for each infected individual, the risk of emergence scales with the num-

ber of infected. Since simulations are stochastic, this tendency is not necessarily clear from a

single realization such as Fig 6. A similar frequency dependence is likely to hold for SARS-

CoV-2, since rare occurrences in terms of within-host evolution are proportionally more likely

to be observed with higher incidence.

Next, we probe the impact of spatial separation on the diversity dynamics. Spatial structure

is implemented by augmenting the model with a metapopulation element, see Materials and

methods for details. We find that, if transmission between populations is limited (i.e. spatial

effects are strong), variant transitions become protracted such that the transient multimodality

of the Hamming distribution lasts longer. The duration of coexistence of strains with different

fitness levels is observed to be determined by the transmission rate βij between different popu-

lations (i.e. with i 6¼ j). In S6A Fig, we probe three situations where (relative) inter-population

transmission rates are either 0, 10−4 or 10−3 (with intra-population transmission rates Tii� 1).

We find that with very low (< 10−3) transmission rates between populations, spatial structure

leads to drawn-out transitions, but that this effect disappears as soon as significant transmis-

sion between populations occur. This intuitively makes sense, since the within-population

transmission rate will dominate as soon as just a few cases of a new variant have spilled into a

population.

The addition of spatial structure also allows us to probe a potential source of apparent salta-

tions. What if a new variant arises by gradual evolution within an unobserved—that is, un-

sequenced—population? Will an eventual spillover to the sequenced popoulation then give

rise to an apparent saltational signal in the Hamming distribution, even if no actual saltations

occur? To investigate this question in a simulation, we consider two populations which are not

initially in contact with one another, see S6B Fig. We think of population 1 as the unobserved

population (although the Hamming distances for this population are still given in the leftmost

panel of S6B Fig). At time t = 30, we let a fitter variant arise in population 1 by only a few point

mutations. This of course leads to a rapid decrease in the typical Hamming distance within

population 1. At time t = 70, the two populations are then put into contact with each other

(the relative inter-population transmission rate is increased from 0 to 0.5). This leads to a spill-

over of the fitter variant from population 1 into population 2. However, no apparent saltation

results.

We conclude that spatial structure—including isolated populations—cannot by itself lead

to the saltational signature seen in Fig 1. By this we mean that a pathogen which evolves gradu-

ally (i.e. obeys the weak mutation limit) in multiple spatial patches will not lead to a sudden

spike in the Hamming distance once spillover happens. The reason for this is that two spatially

remote lineages diverge from each other (in terms of Hamming distance) at approximately

the same rate as less geographically distant pairs of lineages—they follow the same molecular

clock.

In S7 Fig, we show Hamming distribution based on A) global sequences and B) sequences

obtained outside of North America and Europe. First, it is worth noting that the distribution

based on worldwide sequences as well as the plot based on sequences outside of Europa and

North America give Hamming distances which are similar in magnitude to those obtained from

e.g. just the United Kingdom. However, the number of sequences available outside of Europe
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and North America is very low, so we cannot obtain a plot of similar quality. The main observa-

tion from S7B Fig is that transitions are more “smeared out” and that a higher degree of coexis-

tence is observed. This is consistent with what we observed regarding spatial effects in S6 Fig.

Discussion

The pattern of evolution observed in SARS-CoV-2 suggests that transmissibility of the patho-

gen has mainly increased due to large evolutionary ‘jumps’, rather than due to gradual evolu-

tion, something that may turn out to be a signature feature of the pathogen. Our model

simulations highlight how this preference for adaptation by saltation may be explained by an

ability to overcome epistatic ‘fitness valleys’. The implications for public health are clear; any

situation which facilitates such jumps should be treated with heightened awareness. They

represent a high risk for the emergence of new, concerning variants which could not have

emerged through gradual evolution. Below, we discuss and critique the implications of our

results, as well as laying out directions for future work.

Multiple possible sources of saltations

While much attention has rightly been given to the role of immunocompromised individuals,

it is important to realize that other probable mechanisms of saltation exist. For instance, con-

sider reverse zoonosis—the transmission from humans to animals. The epistatic landscape

may be very different in animals, affording a way of bypassing what would otherwise be

troughs in the human SARS-CoV-2 fitness landscape. Reintroduction of the mutated lineage

into the human population would then constitute a ‘jump’ in terms of Hamming distance, and

potentially also phenotypically. An example of such back-and-forth transmission between

human and animal hosts leading to a large number of novel mutations was the so-called Clus-

ter 5 variant, which evolved in mink (Neovison vison) in Denmark and subsequently spread to

humans [35]. This mink-derived variant, which was only one of several which escaped into the

human population, exhibited 35 substitutions and four deletions in the spike protein alone

[11]. However, there is at present no strong evidence that reverse zoonosis explains the

observed jumps associated with the major variant transitions.

From a public health perspective, these possible mechanisms have one important thing in

common; they underscore the importance of widespread and equitable distribution of up-to-

date vaccines, since saltational evolution in disadvantaged or remote populations carries a risk

of emergence of new, highly transmissible variants.

While we have modelled each jump as a saltation occurring in a single individual, we should

stress that we cannot rule out that the observed jumps occurred as a product of accelerated

evolution in a chain of a few individuals, such as a string of immunocompromised individuals

experiencing moderately increased pathogen mutation rates. The meager amount of data from

outside Europe and North America (see S7B Fig) underscores that this cannot be ruled out,

although substantially increased mutation rates would be required to account for the observed

saltations. The plurality of potential etiologies highlights the need for comprehensive research

into the mechanisms which may underlie the observed saltational/accelerated evolution. Such

studies would be most welcome and would have to consider multiple scales, from molecular

mechanisms and within-host evolution to the epidemiological dynamics which may contribute

to saltations.

Extensive sequencing is paramount

The type of analysis performed in this study requires large amounts of sequence data, beyond

what could usually be obtained for infectious diseases prior to COVID-19. As shown in S2 Fig,
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a similarly clear and detailed distribution of nucleotide distances could not be obtained for

influenza H1N1 or H3N2. This is just one example of how incredibly useful the high level of

genomic surveillance achieved for SARS-CoV-2 is, and more generally highlights the potential

that extensive sequencing of pathogens holds for advancing phylodynamic understanding

across pathogens [36]. While many countries have since scaled down the level of testing and

sequencing of SARS-CoV-2, scientific insights based on this data will no doubt continue to

emerge and have a lasting impact on our understanding of pandemics—as well as endemic

infections—more broadly.

The role of immunity

In our simulations so far, we have not explicitly modelled any effects of immune memory. We

have allowed for new variants with higher effective reproduction numbers to arise, but have

not distinguished between whether that advantage stemmed purely from higher infectiousness

or from some degree of immune escape. However, it is worth noting that the empirical pattern

of punctuated evolution held for every major transition up to and including Omicron BA.5

(Fig 1). When e.g. the Alpha variant became dominant, only about 3 infections per 100 people

had been recorded in the United Kingdom [37] and vaccinations had not yet begun in earnest.

While this is surely an undercount, a general depletion of susceptibles was not a main driver

for the success or emergence of the Alpha variant. As such, the punctuated evolutionary pat-

tern does not seem to be hinged on a connection between Hamming distance and evasion of

immunity. In the case of the transition to Omicron, immune escape certainly played a role [38,

39], but it would seem that the mechanism of punctuated evolution is more general than that.

In [40], the authors explicitly decompose fitness advantages into intrinsic and antigenic. Intro-

ducing a similar distinction in a genotypic fitness landscape model with saltation is an interest-

ing possible extension of the present work.

Exploring recent co-circulation of SARS-CoV-2 variants

As mentioned in the Results section, the sequence landscape has been increasingly complex

since the transition to Omicron BA.5, with a higher degree of co-circulation and rapid strain

turnover. In S3 Appendix, we extend our mathematical model with a simple implementation

of (tunably) strain-specific immunity. Here, we find that incomplete cross-immunity between

strains provides a selective pressure which can lead to co-circulation of several variants, even

in the absence of intrinsic transmissibility advantages. Furthermore, the appearance of an

intrinsically more transmissible variant into a heterogeneous immunity landscape does not

necessarily lead to a diversity bottleneck. Rather, the development of the Hamming distribu-

tion depends on the levels of cross immunity (and, conversely, strain-specificity of immunity)

between variants. Two possible outcomes are shown in Fig 7, with more details given in S3

Appendix. If cross immunity is absent (left panel), the appearance of a new highly transmissi-

ble variant is unlikely to lead to a homogenization of the antigenic landscape. However, if

there is even partial cross-immunity between circulating variants (right panel), the emergence

of a new intrinsically fitter variant is likely to ‘refocus’ the Hamming distribution and lead to a

bottleneck. These simulations are highly conceptual in nature and by no means provide an

exhaustive description of the late-2022 situation of SARS-CoV-2 co-circulation and rapid vari-

ant turnover, which we deem outside the scope of this paper. However, the simulations may

provide some of the building blocks for such an analysis, which would be a highly worthwhile

direction for future research.

At the time of writing, a recombinant SARS-CoV-2 lineage by the name of XBB, including

the particularly concerning member XBB.1.5, is circulating at appreciable levels in much of the
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world [26] and is understood to have a transmissibility advantage [41]. It remains to be seen

whether this variant will be ‘homogenize’ the Hamming distribution in the sense described

above, by out-competing the several co-circulating variants.

Even in the presence of (partial) cross-immunity, there are good reasons to believe that sal-

tations will continue to play a role in facilitating the emergence of new variants. As described

by [42], accumulating immunity changes the fitness landscape of a pathogen over time, lower-

ing some fitness peaks while rendering other peaks relatively more advantageous for the virus.

Saltations can then enable the pathogen to reach those fitness peaks. Indeed, as we have seen,

it is plausible that high levels of (more or less strain-specific) immunity in a population may

increase the rate at which new strains emerge by saltation. Such a connection further under-

scores the importance of broadly effective and widely available vaccines as well as any mea-

sures which decrease the likelihood of accelerated evolution within hosts, with its risk of

seeding saltation events.

Future directions

As a consequence of the parsimony of our model, we have not explicitly modelled recombina-

tion events, but rather assume that each multi-site jump involves a random set of sites. Recom-

bination has been reported in SARS-CoV-2, including—but not limited to—in conjunction

with treatment of immunosuppressed patients [27, 28, 43, 44]. Future work could explore the

implications of allowing for recombination events in this type of model. Doing so would

Fig 7. Highly transmissible variant emerging in a heterogeneous immunity landscape. In these simulations, we

explore what happens when an intrinsically more transmissible variant emerges in a scenario with several co-

circulating variants in a heterogeneous immunity background. See S3 Appendix for details on implementation,

including the definition of the cross immunity parameter, ξ. Left: At ξ = 0, there is no cross immunity (e.g. immunity is

completely strain-specific). In this case, co-circulation continues although a more transmissible variant is introduced at

time t = 250. The new variant shows up as a peak at low Hamming distance, becoming visible around t = 175. Right:

At ξ = 0.5, there is appreciable (albeit partial) cross immunity. In this case, the emergence of a new, more transmissible

variant homogenizes the genomic landscape, with a single peak at low Hamming distance beginning to dominate

around t = 175.

https://doi.org/10.1371/journal.pcbi.1010896.g007
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require a higher level of detail, resulting in a model that would conceivably be closer to biologi-

cal ‘ground truth’ but not as parsimonious.

The influenza model of [17], which gives rise to Hamming dynamics reminiscent of the sal-

tation-free simulations of Fig 4, does so in a very different way. There, it is assumed that the

pathogen explores a neutral network (a set of antigenically and fitness-wise equivalent geno-

types which are connected by one-mutation neighbours [18]) in the vicinity the prevailing

strain. This goes on until the ‘random walk’ happens upon a configuration which is substan-

tially antigenically different from the prevailing cluster, albeit connected to it by a single muta-

tion. Once this happens, a new cluster emerges which has only limited cross-immunity with

the prevailing strain. Since all steps along the way are small, the new variant will be very close

(genotypically) to a member of the previous cluster. Consequently, this type of dynamics does

not produce abrupt spikes in Hamming distance, such as the ones shown in Figs 1 and 3.

There are a few models in the literature that seek to address the connection between salta-

tion, epistasis and the likelihood of emergence of new variants ([22] and [34], the latter of

which is based on the model by [45]). However, in contrast to existing theoretical studies, we

address the empirical temporal development of diversity and propose a model which can

directly replicate the main features of that distribution.

We have focused on capturing the main features of the evolution of SARS-CoV-2 as parsi-

moniously as possible and although we have explored a number of biologically motivated

extensions, our model still represents a theoretical foundation upon which more sophisticated

models can be built. There is much to be done in terms of understanding and modelling the

precise fitness landscape of SARS-CoV-2, including its dependence on host immunity history.

More broadly, an increase in genomic surveillance across multiple pathogens will doubtlessly

lead to new insights into the diversity dynamics of other pathogens. This would not only

enable research into the evolution of individual pathogens, but allow us to question how co-

circulating pathogens affect the diversity dynamics of one another.

Materials and methods

Temporally resolved Hamming distributions from sequence data

In this section, we describe the data processing workflow which was used to generate the

Hamming distance plots of Figs 1 and 2. We have used the open, GenBank-derived dataset of

aligned SARS-CoV-2 sequences from Nextstrain [2]. In our main analysis, we have used UK

sequences from the 1st of March 2020 onwards. See also S1 Fig for an illustration of the follow-

ing workflow:

• For each day t in the interval:

– Select 5,000 random pairs of whole-genome sequences (i.e. 10,000 sequences) obtained

within a 1-week time window starting on day t.

– For each pair of sequences si and sj:

� Go through both sequences, site by site, and record the number of differences between

them, Hij. This is the pairwise Hamming distance.

– Compute a probability density/histogram pt(H) based on the observed Hamming dis-

tances {Hij}.

It is then this function, pt(H), that is plotted in Fig 1A. In practice, we have used the meta-

data provided by Nexstrain, which contains fields describing the nucleotide differences

relative to the reference strain Wuhan-Hu-1 (GenBank reference sequence accession number
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MN908947.3), rather than operating directly on the whole-genome sequences. Numerically,

this makes no difference, but it affords a large increase in performance, since it allows us to

avoid processing unchanged regions of the genome, which do not contribute to the Hamming

distance.

For Fig A in S2 Appendix, which instead shows the distance to the reference sequence (the

‘absolute’ Hamming distance), the above workflow is slightly altered:

• For each day t in the interval:

– Select 5,000 random whole-genome sequences obtained within a 1-week time window

starting on day t.

– For sequences si:

� Go through the sequence, site by site, and record the number of differences Hi between

si and the reference sequence. This is the absolute Hamming distance.

– Compute a probability density/histogram p0,t(H) based on the observed Hamming dis-

tances {Hi}.

It is then this function, p0,t(H), that is plotted in Fig A in S2 Appendix.

Branching model with saltational evolution

The mechanistic model developed for this study is a discrete-time branching model coupled to

a genotypic fitness landscape model.

In the simulations of Figs 3 and 4, we assumed a constant prevalence, for simplicity. This

amounts to keeping the mean effective reproductive number across the population at unity. In

Fig 6 we relax this assumption and explore a version of the model with epidemic dynamics.

We start by documenting the constant-prevalence version of the model, as well as the geno-

typic fitness landscape element, before we go on to describe how we incorporate SIRS dynam-

ics and spatial structure.

Evolutionary branching model with constant prevalence. In the model, each new gener-

ation of infections consists of a fixed number of individuals, N, and generations do not overlap.

Consequently, there are N infected individuals at any given time. Each infected individual i has

an associated bit-string Gi of length L, representing the genome of the pathogen. We do not

explicitly model any within-host diversity, as we are only interested in the genome of the path-

ogen that is eventually transferred during transmission.

At each time step (corresponding to one generation), a new random individual i is repeat-

edly selected and allowed to infect a number zi of new individuals, selected from a Poisson dis-

tribution with mean Ri, i.e. zi� Pois(Ri). This continues until a total of N new transmissions

have occurred in that generation, ensuring that the prevalence is kept constant. At transmis-

sion, the pathogen genome of the infector is copied to the infectee. The personal reproductive

number Ri is determined by the fitness of the bit-string Gi, the details of which are discussed in

the next subsection.

In each newly infected individual, there is a risk of mutation. The number of point muta-

tions mi that occur within the i’th host is drawn from a distribution. In the case of homoge-

neous mutation (i.e. absence of saltation), mi is drawn from a Poisson distribution

characterized by a mutation rate μ0 < 1. Saltation, on the other hand, is simulated by drawing

mi from a bimodal distribution characterized by two different mutation rates/sizes μ0 and μ1,

ensuring that an outsized amount of mutation can take place within a single host on rare
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occasions. Concretely, we have used the distribution Ps(m) given by:

PsðmÞ ¼ ð1 � �ÞPoisðm; m0Þ þ �Uðm; m1 � DmÞ ð1Þ

Where U(m; μ1 ± Δμ]) is the uniform distribution centered on μ1 with half-width Δμ, and Pois

(m; μ0) is a Poisson distribution with mean μ0. �� 1 is a small dimensionless quantity measur-

ing the frequency of saltational mutation. The parameter μ0 gives the rate of non-saltational

mutation while μ1 is the typical size of a saltation.

We use this simple bimodal distribution out of convenience, but our results do not change

qualitative if another bimodal distribution is used.

Once the quantity mi has been drawn, a number mi of random bit flips are then performed

in the genomic bitstring Gi, each flip corresponding to a point mutation.

Modelling sign epistasis

Before simulations start, a number of Ne of ‘epitopes’ (regions in the genome on which fitness

depends), each of length Le, are designated. We assume non-overlapping epitopal regions and

thus require LeNe� L.

Within each epitope, a number NH of highly fit combinations are assigned. We have

assumed NH = 1 for all of our simulations, but since the general NH case is no more compli-

cated, we include the parameter here. The fitness of each combination is measured in terms of

its contribution δRH to the individual reproductive number. In general, δRH for each combina-

tion may be drawn from a distribution PH(δRH) to allow for a variety of combinations with dif-

ferent fitness values.

Tunable sign epistasis is modeled by assigning a fitness contribution δRL� 0 to each com-

bination which lies within a Hamming distance d0 of a high-fitness combination. The overall

fitness of a given genotype is then obtained by adding up the contributions for each of the Ne

epitopes:

R0 ¼ Rinitial
0
þ
XNe

i¼1

dRi; ð2Þ

with the constraint that R0� 0. In practice this constraint is enforced by letting

R0 ¼ max ð0;Rinitial
0
þ
XNe

i¼1

dRiÞ; ð3Þ

High sign epistasis is then achieved when d0 > 1 and δRL� 0. However, the model also allows

for incomplete or partial sign epistasis: if δRL for each combination is drawn from a distribu-

tion PL(δRL) which has support at δRL = 0, then each peak in the fitness landscape will not be

completely surrounded by troughs. In other words, in that case it may be possible to evolve to

a highly fit variant through a series of single point mutations without suffering decreased fit-

ness in the process.

Unless otherwise specified, we run our simulations with the parameter values given in

Table 1.

Incorporating SIRS dynamics

In the simulations of Figs 3 and 4 we assumed constant incidence, meaning that the number of

infected within any given generation was I(t) = I0 with I0 a constant (thus, prevalence was con-

stant as well). However, to relax this assumption we incorporate susceptible-infected-recov-

ered-susceptible (SIRS) dynamics.

PLOS COMPUTATIONAL BIOLOGY Host heterogeneity and epistasis explain punctuated evolution of SARS-CoV-2

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010896 February 15, 2023 17 / 24

https://doi.org/10.1371/journal.pcbi.1010896


In order to achieve this (and to simplify the later addition of strain-specific immunity to

the model), we implement a discrete-time agent-based version of our model, in which we also

track susceptible and recovered individuals, and not just the infected population. We denote

the total number of susceptible, infected and recovered individuals in generation t by S(t), I(t)
and R(t), respectively. Here, we detail the version of the dynamics with complete cross-immu-

nity (i.e. recovered individuals are immune to all variants until immunity wanes). A version

with strain-specific immunity is discussed in S3 Appendix. The simulations proceed as follows.

At time t = 0, let:

Sðt ¼ 0Þ ¼ N � I0;

Iðt ¼ 0Þ ¼ I0;

Rðt ¼ 0Þ ¼ 0:

Each infected person will cause a number of new infection determined by their effective

reproductive number, which is given by the basic reproductive number of the strain they are

infected with, discounted by the current fraction of susceptible individuals to model suscep-

tible depletion. Each recovered person has a constant probability rate ω for becoming suscep-

tible once again. In other words, this is modeled as a Poisson process with rate ω. Note that

this not only corresponds to waning of immunity, but also to any other mechanism by which

a recovered individual may become replaced by a susceptible one (such as population turn-

over). However, we will refer to ω as the rate of waning. In our simulations (Fig 6 and S6

Fig), we set 1/ω = 25 meaning that duration of immunity averages 25 generations. This figure

is not supposed to reflect any particular value for SARS-CoV-2, but is rather used to illustrate

the robustness of the pattern of punctuated evolution to waning immunity. In the interest of

simplicity, we have ignored any seasonal effects on transmission. We consider this a reason-

able simplification, both due to the conceptual nature of our model and the understanding

that susceptible dynamics rather than seasonality is the major limiting factor in the pandemic

phase [46].

Table 1. Model parameters and their values.

Parameter Description Value (base case)

N (constant-prevalence simulations) Infected population size 50,000 (= prevalence)

N (agent-based SIRS simulations) Total population size 2 × 106 (= S + I + R)

L Genome length (bits) 1000

Le Length of each epitopal sequence 5

NH Number of highly fit configurations of each epitope 1

Ne Number of epitopes 5

d0 Width of troughs in fitness landscape 3

hδRHi Avg. change in R0 due to beneficial genotype 1

hδRLi Avg. change in R0 due to deleterious genotype −1 (no transmission)

μ0 Base mutation rate (for whole genome) 0.3

� Frequency of saltation 0 or 0.0001

μ1 Typical size of saltations 150

Δμ Half-width of saltation size distribution 50

Tij Relative transmission rate betw. populations i, j. 0–1

ω Rate of waning of immunity in SIRS simulations 0.04/generation

https://doi.org/10.1371/journal.pcbi.1010896.t001
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Spatial structure

We implement a minimal model of spatial structure by incorporating a metapopulation ele-

ment. Let there be npops populations, each with total population Ni (i 2 {1, . . ., npops}). At time

t = 0, let the number of susceptible, infected and recovered individuals in each population be

given by:

Siðt ¼ 0Þ ¼ Ni � Ii;0;

Iiðt ¼ 0Þ ¼ Ii;0;

Riðt ¼ 0Þ ¼ 0:

In our simulations (S6 Fig) we assume identical population sizes, Ni = N/npops, and an initial

equipartitioning of infected individuals Ii,0 = Ii/npops, where N = ∑i Ni and I0 = ∑i Ii,0.

The transmission rate between populations is then determined by the matrix elements βij =

βTij where each element Tij gives the relative transmission rate from population i to j and β
represents the transmissibility of the strain the infected individual carries. We assume that T is

a symmetric matrix, Tij = Tji.

In S6 Fig we took T to have the following form:

T ¼

1 � ε ε 0

ε 1 � 2ε ε

0 ε 1 � ε

2

6
6
6
4

3

7
7
7
5

ð4Þ

with ε at either 0 (panel A), 10−4 (panel B) or 10−3 (panel C). This corresponds to a linear lay-

out of three populations, with transmission occurring only between adjacent compartments.

Modelling decreasing absolute Hamming distance

As described in S2 Appendix, the typical Hamming distance between circulating genomes and

the ancestral variant is not necessarily monotonically increasing with time. We call this dis-

tance the absolute Hamming distance, in contrast to the pairwise distance between concur-

rently circulating genomes which we call the relative Hamming distance (to reflect that the

absolute Hamming distance is measured with respect to a fixed point in the genomic space).

We begin by describing a very simple variation upon the model which has the effect of

allowing the absolute Hamming distance to decrease (as well as increase) at variant transitions.

In this section, we assume a constant prevalence of N infected individuals.

Assume that a fraction pd of the first generation (i.e. pdN individuals) have prolonged infec-

tions, lasting τd typical generations before onward transmission. Assume furthermore that

mutations happen at a rate μd for these individuals, such that a number of point mutations,

μdτd, occurs before onward transmission. Here, μd is the mutation rate associated with these

prolonged infections. The rest of the population is assumed to be homogeneous with respect

to the occurrence of mutations, all possessing a mutation rate μ0. We draw τd from a uniform

distribution with support throughout the entire simulation (which is assumed to have duration

tf), τd� U(τd; tf/2 ± tf/2). Furthermore, the fitness advantage δRH of different epitope configu-

rations was drawn from a uniform distribution as well, to avoid fitness degeneracy (multiple

equally fit variants).

This simple modification of the model enables a non-monotonic time development of the

absolute Hamming distance, as shown in Fig B in S2 Appendix (panel B), while preserving the

dynamics of relative Hamming distance shown in Fig 3.
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This is of course a highly simplistic variation upon the base model, but it serves to show

that prolonged infection or introduction of (mutated versions of) previous variants can

account for absolute Hamming distance sometimes decreasing at variant transitions.

Supporting information

S1 Fig. Data analysis workflow. To generate the Hamming distribution for a given point in

time, all sequences sampled within a week-long window starting on the given day are pooled.

Then, pairs of sequences are repeatedly selected at random from this sequence pool, and the

pairwise Hamming distance (number of sites which differ) is computed. All the computed

Hamming distances are then pooled and a distribution (histogram) is generated.

(TIF)

S2 Fig. Hamming distributions for influenza H3N2 and H1N1. Based on the Hemagglutinin

(HA) gene. With influenza, the amount of genomic surveillance data is much more limited

and the temporal Hamming distributions are less well-defined. In order to ensure sufficient

data for each time point, a sampling window of 30 days was used, as opposed to the 7 days

used for SARS-CoV-2 in the main text.

(TIF)

S3 Fig. Model schematics. A) The fitness landscape and epistasis components of the model.

The majority of the fitness landscape is assumed neutral. In the case of gradual evolution

devoid of saltation (top), the pathogen performs a random walk in this neutral space until it

hits upon a deleterious configuration. As a model of sign epistasis, beneficial configurations

are surrounded by deleterious ones. In the case of gradual evolution, the deleterious regions

are unlikely to be traversed before the lineage dies out. However, in the case of saltational evo-

lution (bottom), several point mutations may occasionally happen in the same genome within

the same generation, leading to a jump which can enable the pathogen to bypass a deleterious

region. Note that this is only a 1-dimensional conceptual representation of a highly multidi-

mensional fitness landscape. B) In each generation of the branching model, each individual

stochastically infects z new individuals. Upon transmission, the pathogen genome (depicted as

a string of black and white squares) is inherited. Occasionally a point mutation will occur, as

indicated in the lower right genome. In the case of saltation (see panel A), multiple such point

mutations can occur within the same genome in the same generation.

(TIF)

S4 Fig. Temporary coexistence of two equally fit variants.

(TIF)

S5 Fig. Saltational evolution in the absence of sign epistasis. When saltational evolution is

allowed, but epistasis is absent or very weak, a mixture of qualitatively different transitions

occur. Some resemble the diversity spikes seen in Fig 3, but more commonly transitions will

involve a gradual, linear increase in diversity followed by a collapse, as seen in Fig 4. A) Time

evolution of the Hamming distance distribution. For each generation indicated on the vertical

axis, the colour encodes the histogram of Hamming distances between genomes within that

generation. B) Time evolution of the mean and median Hamming distance between genomes

present in any given generation of the model simulation. In these simulations, δRL = 0 (no

epistasis) while saltations were of typical size μ1 = 150.

(TIF)

S6 Fig. Simulations with spatial (metapopulation) structure. Here we simulate the same

SIRS dynamics as in Fig 6, but in a metapopulation consisting of multiple subpopulations. A)
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Here we probe the significance of the level of transmission between populations. The within-

population transmission rate Tii� 1 (i 2 {1, 2, 3}) is assumed much greater than the between-

population transmission rate Tij (with j = i ± 1). (Left) With inter-population transmission

rate βi,i±1 = 0, mutations never spread from one population to another and coexistence of vari-

ants with different fitness can last indefinitely. (Middle) With an inter-population transmis-

sion rate of 10−4, transitions are severely prolonged but coexistence of variants with different

fitness values does not last indefinitely. (Right) At an inter-population transmission rate of

10−3, transitions are only moderately prolonged compared to the non-spatial dynamics of

Fig 6. B).

(TIF)

S7 Fig. Hamming distributions based on global sequences. A) Hamming distribution based

on available SARS-CoV-2 sequences, regardless of origin. B) Hamming distribuion computed

on the basis of sequences from outside of Europe and North America. These comprise approx-

imately 1.4% of the global sequences (i.e. of those included in panel A).

(TIF)

S1 Video. Animated Hamming distribution. Day-by-day time development of the Hamming

distribution for UK samples obtained between March 2020 and November 2022. Each snap-

shot is based on samples obtained within a one-week time window. The insert shows the frac-

tion of UK sampled sequences belonging to each variant. The EU1 (B.1.177) cluster, which

preceded the Alpha variant in the UK, is shown as well.

(MP4)

S1 Appendix. Diversity dynamics based on US sequences.

(PDF)

S2 Appendix. Fitting the origin-centered Hamming distribution.

(PDF)

S3 Appendix. Variant dynamics under strain-specific immunity.

(PDF)
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