
Roskilde
University

Cost-Aware and Distance-Constrained Collective Spatial Keyword Query

Chan, Harry Kai Ho; Liu, Shengxin; Long, Cheng; Wong, Raymond Chi Wing

Published in:
IEEE Transactions on Knowledge and Data Engineering

DOI:
10.1109/TKDE.2021.3095388

Publication date:
2023

Document Version
Peer reviewed version

Citation for published version (APA):
Chan, H. K. H., Liu, S., Long, C., & Wong, R. C. W. (2023). Cost-Aware and Distance-Constrained Collective
Spatial Keyword Query. IEEE Transactions on Knowledge and Data Engineering, 35(2), 1324-1336.
https://doi.org/10.1109/TKDE.2021.3095388

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact rucforsk@kb.dk providing details, and we will remove access to the work
immediately and investigate your claim.

Download date: 07. Mar. 2023

https://doi.org/10.1109/TKDE.2021.3095388
https://doi.org/10.1109/TKDE.2021.3095388

Cost-Aware and Distance-Constrained
Collective Spatial Keyword Query

Harry Kai-Ho Chan, Shengxin Liu, Cheng Long, and Raymond Chi-Wing Wong

Abstract—With the proliferation of location-based services, geo-textual data is becoming ubiquitous. Objects involved in geo-textual
data include geospatial locations, textual descriptions or keywords, and various attributes (e.g., a point-of-interest has its expenses and
users’ ratings). Many types of spatial keyword queries have been proposed on geo-textual data. Among them, one prominent type is to
find, for a query consisting of a query location and some query keywords, a set of multiple objects such that the objects in the set
collectively cover all the query keywords and the object set is of good quality according to some criteria. Existing studies define the
criteria either based on the geospatial information of the objects solely or simply treat the geospatial information and the attribute
information of the objects together without differentiation though they may have different semantics and scales. As a result, they cannot
provide users flexibility to express finer grained preferences on the objects. In this paper, we propose a new criterion which is to find a
set of objects where the distance (defined based on the geospatial information) is at most a threshold specified by users and the cost
(defined based on the attribute information) is optimized. We develop a suite of two algorithms including an exact algorithm and an
approximation algorithm with provable guarantees for the problem. We conducted extensive experiments on real datasets which
verified the efficiency and effectiveness of proposed algorithms.

Index Terms—Spatial keyword queries, spatial database, query processing

F

1 INTRODUCTION

NOWADAYS , geo-textual data which refers to data with
both spatial and textual information is ubiquitous.

Some examples of geo-textual data include the points-of-
interests (POIs) in the physical world (e.g., restaurants,
shops and hotels), geo-tagged web objects (e.g., webpages
and photos at Flicker), and geo-social networking data (e.g.,
users of FourSquare have their check-in histories which are
spatial and also have their profiles which are textual). En-
tities of geo-textual data, which we call geo-textual objects,
are associated with various attributes as well. For example, a
restaurant is usually associated with some expense attribute
(e.g., in the Yelp APP, this information is shown by the
number of “$” symbols), a tourism site would require the
admission fee, and most point-of-interests (POIs) have their
popularity reflected by users’ ratings.

Many types of queries have been proposed on a database
of geo-textual objects [16], [6], [31], [38], [35], [4], [21], [3], [7],
[8], where a query usually consists of a location called the
query location (e.g., the current location of a user who issues
the query) and some keywords called query keywords (e.g.,
those which express the interests of a user who issues the

• H.K.-H. Chan is with the Department of People and Technology, Roskilde
University, Denmark. E-mail: kai-ho@ruc.dk (Partial of the work was done
at Nanyang Technological University as a visiting PhD student)

• S. Liu is with the School of Computer Science and Technology, Harbin
Institute of Technology, Shenzhen, China. E-mail: sxliu@hit.edu.cn

• C. Long is with the School of Computer Science and Engineering,
Nanyang Technological University, Singapore. E-mail: c.long@ntu.edu.sg

• R.C.-W. Wong is with the Department of Computer Science and Engineer-
ing, The Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong. E-mail: raywong@cse.ust.hk

Manuscript received 10 Mar. 2020; revised 8 May, 2021; accepted 24 Jun.,
2021 (Corresponding Authors: Shengxin Liu and Cheng Long)

query). Among these queries, a popular one is to search
for a set of multiple objects that collectively cover all query
keywords and are desirable to the user based on some crite-
rion [4], [21], [3], [7], [8]. For example, a tourist who wants
to do sight-seeing, shopping, and dining could issue such
a query with a location such as his/her current location as
the query location and keywords “sigh-seeing”, “shopping”,
and “dinning” as the query keywords, and the query would
return to the tourist a few POIs which collectively satisfy the
tourist’s needs and also be of high quality according to some
criterion (e.g., the POIs are physically close to the query
location). If an object set covers all query keywords, such
object set is said to be a feasible set. There are usually many
feasible sets given a query - each combination of objects
covering different query keywords would be a feasible set.
Therefore, a key question that needs to be answered is
that among all possible feasible sets, which one should be
returned, i.e., what criterion should be used for picking a
feasible set?

Most studies define the criterion based on the geospatial
aspects of the objects solely [4], [21], [3], [8]. Specifically, the
criterion is to find the feasible set which has the smallest
“distance” wrt the query location, where the distance of a
set of objects wrt the query location is defined based on the
distances between the objects and the query location and
also those among the objects. For example, in [4], [21], the
distance of a set of objects wrt a query location is defined
as the sum of the maximum distance between an object
and the query location and the maximum distance between
two objects. While using this criterion would help to find
a feasible set with some notation of distance optimized,
it pays no attention to the attribute aspect of the objects
which results in no guarantee on the desirability of the
returned feasible set in the attribute aspect. For example, it

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The published version is available at:
https://doi.org/ 10.1109/TKDE.2021.3095388.

may happen that a user who prefers restaurant with low or
moderate prices is returned with a restaurant with a super
high price simply because the restaurant is close to the user.

A more recent study defines the criterion such that it
considers both the geospatial aspect and the attribute aspect
of objects [7]. Specifically, it interprets an object’s attribute
as a form of “cost” (e.g., the expense of a restaurant is
interpreted as monetary cost, the popularity of a shop
can be captured by cost = e−score where score ∈ [0, 1]
can be a user rating) and the criterion is defined to find
the feasible set with the smallest product between a “cost”
and a “distance”, where the cost of an object set is defined
as the maximum cost of an object and the distance is
defined similarly as previous studies [4], [21], [3], [8] that
use distances solely. With this criterion, the query would
tend to find a feasible set with a small cost and also a small
distance. While this criterion is superior over previous ones
that ignore the cost part, it lacks of capability of providing
users a finer grained control on their preferences on the cost
part and the distance part. Specifically, this criterion simply
mixes the two parts together with the product operator
and gives no interface for users to express which part they
care about more and which less. For example, a common
scenario is that a user would want to find a feasible set
whose “distance” is within a range, e.g., 1km, and has its
“cost” as small as possible, and yet this cannot be handled
by the criterion in [7]. Moreover, a cost and a distance may
have different semantics and scales, and combining them
together using a product operator may cause problems such
that one dimension dominates the other and essentially only
one aspect is captured.

Motivated by the above discussion, in this paper, we
propose a new criterion which is to find a feasible set such
that its distance is at most a pre-defined threshold and its
cost is as small as possible. Our rationale is that (1) using the
distance and the cost separately would give more flexibility
for users to express their preferences and (2) imposing a
constraint on the distance and optimizing the cost would
capture more use cases since after all a user cares about
the cost more as long as the distance is being acceptable
(i.e., being below a threshold). We call the resulting query
the Cost-Aware and Distance-Constrained Collective Spatial Key-
word Query (CD-CoSKQ). Same as [7], the attribute aspect of
an object is interpreted as the cost of the object, and the
cost of an object set corresponds to an aggregated form
of the costs of the objects. Depending on the semantic of
the attribute, the costs of objects should be aggregated in
different ways. For example, in the case where the attribute
corresponds to some expense, the costs should be better
aggregated using the sum function while in the case where
the attribute corresponds to some dissatisfaction reflected
by ratings, the costs should be better aggregated using the
max function. Therefore, in CD-CoSKQ, we consider two
cost definitions, namely costSum(⋅) and costMax(⋅), where
costSum(⋅) defines the cost of an object set as the sum of
the costs of the objects and costMax(⋅) as the maximum
cost of an object. Regarding the distance of an object set,
some distance functions have been proposed in the litera-
ture of collective spatial keyword query, and in this paper,
we consider two of them, namely distDia(⋅) [21], [8] and
distMaxSum(⋅) [4], [3], [21], [8] and leave others for future

q 300m

𝑜!(3)

𝑜"(2)
𝑜#(3)

𝑜$(2)

𝑜%(2)

𝑜&(2)
𝑜!!(2)

𝑜'(2)

𝑜!((4)

𝑜!"(1)
𝑜!#(1)

attraction

restaurant

shop 𝑜) (6)

𝑜*(2)

Fig. 1. Running example

exploration. Nevertheless, the algorithmic framework is
applicable to other cost functions that are monotonic in-
creasing, and extensible to other distance functions (e.g.,
distMinMax(⋅) [3], distSumMax(⋅) [8] and distMax(⋅) [8])
in the literature, since these distance functions include the
maximum distance between two objects, and our frame-
work utilizes this property to identify candidate set regions
that contain the optimal solution.

Consider a user who wants to buy some medicine, a
computer mouse and a coffee within her/his walking dis-
tance. S/he could issue a CD-CoSKQ with query keywords
medicine, mouse and coffee and a distance threshold of 300m.
When distDia(⋅) and costSum(⋅) are adopted, the query
should return a feasible set with the minimum total cost,
among all feasible sets that satisfy the distance constraint
(i.e., distDia(⋅) ≤ 300m).

To further illustrate the advantages of CD-CoSKQ over
the existing CoSKQ formulations, consider the example in
Figure 1, where we use costSum(G) = ∑o∈G o.w for the
cost definition and distDia(G) = maxo1,o2∈G∪{q} d(o1, o2)
as the distance function. Figure 1 shows the example with
13 objects and a query location, where the value in the
parentheses is the cost of each object. Suppose the query
keywords are attraction, restaurant and shop, and the
distance threshold B = 300m. We compare the optimal
solution for different formulations of CoSKQ, as listed in
Table 1. In particular, we introduce a weighted MaxDotSize-
CoSKQ, which generalizes the cost function in [7] to costw1×
distancew2 , where w1, w2 ∈ [0, 1] allow users to control the
weights for the two parts. In this example, we setw1 = 1 and
w2 = 0.5 to relax the constraint in distance part. The optimal
solution of our CD-CoSKQ has a cost of 6 only, which is the
smallest among all formulations, while its distance is still
within the query distance threshold. This shows that CD-
CoSKQ is able to find a solution that is more desirable to
user in this case.

TABLE 1
Optimal solutions of different CoSKQ formulations

Optimal
Solution G distdia(G) costSum(G)

Dia-CoSKQ [21] {o2, o4, o5} 100m 11
MaxDotSize-CoSKQ [7] {o2, o4, o5} 100m 11
Weighted MaxDotSize-CoSKQ {o1, o2, o3} 150m 8
CD-CoSKQ (this work) {o6, o7, o8} 269m 6

In general, the CD-CoSKQ problem is proven to be NP-
hard with respect to the number of query keywords and
even NP-hard to approximate with constant factors, as we
will prove in Theorem 1 shortly. Yet for queries with a
small number of query keywords, performing a CD-CoSKQ
within a reasonable amount of time is quite doable (e.g., in
the case a query involves two query keywords only, one can

solve the problem exactly by checking all pairs of objects
covering the query keywords and the time complexity is
quadratic). Therefore, we first develop an exact algorithm
called CD-Exact, which uses a carefully designed search
strategy, employs various pruning techniques, and runs
based on the widely used IR-tree [11] augmented with
some cost information. For problems that are NP-hard to
approximate, a popular approach in the literature [22], [15],
[1] is to develop a bi-criteria approximation algorithm. Thus,
we develop an (α, β)-approximation algorithm CD-Appro,
where the returned object set has its cost within a factor
of α from the minimum cost of any feasible set satisfying
the distance threshold constraint, and its distance at most
β times the distance threshold. For different cost functions
and distance functions, α and β are different. For example,
when costMax(⋅) and distMaxSum(⋅) are used, CD-Appro
is a (1, 1.375)-approximation algorithm.

In summary, our main contribution is summarized as
follows.
• First, we propose a new type of query, namely CD-

CoSKQ, which aims to find an object set with the smallest
cost subject to a constraint on the distance. The cost
is based on the attribute aspect of the objects and the
distance on the geospatial aspect. This query provides
users a finer grained interface to express their preferences
on both the geospatial aspect and the attribute aspect of
the geo-textual objects.

• Second, we prove the inapproximability result of the CD-
CoSKQ and develop a suite of two algorithms for the
query, namely an exact algorithm CD-Exact and an (α, β)-
approximation algorithm CD-Appro.

• Third, we conducted extensive experiments on both real
and synthetic datasets, which verified our theoretical re-
sults and the efficiency of our algorithms.

The rest of this paper is organized as follows. Section 2
defines the problem formally and discusses its hardness.
Sections 3, 4 and 5 present our algorithms. Section 6 gives
the empirical study. Section 7 reviews the related work and
Section 8 concludes the paper.

2 PROBLEM DEFINITION

Let O be a set of geo-textual objects. Each object o ∈ O is
associated with a location denoted by o.λ, a set of keywords
denoted by o.ψ, and some attributes which we convert
to a form of cost denoted by o.w such that a lower cost
is preferred. For example, for an attribute of expense, we
convert it to a cost equal to the expense and for an attribute
of dissatisfaction such as a rating, we convert it to a cost
which is inverse to the attribute. Given two objects o and
o′, we denote by d(o, o′) the Euclidean distance between o.λ
and o′.λ.

The main notations that are used throughout the paper
are summarized in Table 2.

2.1 Problem Definition

We formally define the Cost-Aware and Distance-
Constrained Collective Spatial Keyword Query (CD-
CoSKQ) problem as follows.

TABLE 2
Notation table

Notation Definitions
O a set of geo-textual objects
O(t) a set of geo-textual objects each of which contains the

keyword t
q a query with location q.λ, a set of keywords q.ψ, and a

distance threshold q.B
tinf the query keyword which has the smallest number of

objects containing it
G a (feasible) set of objects
S a candidate set of objects
G
∗ the optimal solution of the query

S
∗ the candidate set that is the superset of G∗

D(q, r) the disk with its center at location of q and its radius r

Problem 1 (CD-CoSKQ). Let O be a set of geo-textual ob-
jects. Given a query q which consists of a query location
q.λ, a set of query keywords q.ψ, and a distance thresh-
old q.B, the CD-CoSKQ problem is to find a set G ⊆ O
of objects such that (1) G covers q.ψ, (2) the distance of
G wrt q, denoted by dist(G, q), is at most q.B, and (3)
the cost of G, denoted by cost(G), is minimized.
Formally, the problem is to find the optimal solution G∗

defined as follows.

G∗
= argminG⊆O cost(G)

s. t. q.ψ ⊆ ∪o∈Go.ψ,
dist(G, q) ≤ q.B,

(1)

We simply write the distance of G as dist(G) and the
distance threshold q.B as B when the context of q is
clear.

Given a query q, an object is said to be relevant if it
contains at least one keyword in q.ψ and a set S of objects is
said to be a feasible set if S covers q.ψ (i.e., q.ψ ⊆ ∪o∈So.ψ).
Thus, the CD-CoSKQ problem is to find a feasible set which
has its distance at most a threshold and its cost as small as
possible. In practice, the value of the distance threshold B
could be a real value (e.g., 1km), or in case that the users do
not have a concrete idea on how to determine the threshold,
one could allow to set a factor n, which is the multiple
that the user can tolerance compared to the result of the
conventional CoSKQ. As shown in our experiment, n = 1.1
is a reasonable value for different datasets.

Cost Functions. In this paper, we consider two cost func-
tions cost(G) as follows.

costMax(G) = max
o∈G

o.w (2)

costSum(G) = ∑
o∈G

o.w (3)

costMax(G) aggregates the costs of the objects in G as the
worst-case cost of an object in G and is suitable for cases
where the costs of the objects correspond to some forms
of dissatisfaction such as those based on ratings and the
worst-case cost reflects the tolerable level of the cost of the
object set. costSum(G) aggregates the costs of the objects in
G using a sum function and suitable for cases where the
costs of the objects correspond to some form of expenses
such as time and money and thus, the cost of an object set
intuitively corresponds to the sum of the costs of the objects.

Distance Functions. We consider two commonly used
functions, namely distMaxSum(G) [4], [3], [21], [8] and
distDia(G) [21], [8], as the distance function in this paper.

distMaxSum(G) = max
o∈G

d(o, q)
+ max
o1,o2∈G

d(o1, o2) (4)

distDia(G) = max
o1,o2∈G∪{q}

d(o1, o2) (5)

Both distMaxSum(G) and distDia(G) define the distance of
G based on two distances, namely the maximum distance
between an object in G and q, and the maximum distance
between two objects in G. distMaxSum(G) uses the sum
of the two distances while distDia(G) uses the maximum
of them. As explained in previous studies [4], [21], these
two distance functions suit different needs. Note that other
distance functions such as those proposed by [4], [8] could
also be used here, and yet due to the page limit, we leave
them for future explorations.
Intractability. We show that the CD-CoSKQ problem is NP-
hard to approximate with any constant factor c (c ≥ 1), i.e.,
there does not exist any polynomial-time algorithm which
can decide whether there exists a solution to the problem
and if so, return a solution with its cost at most c times that
of the optimal one unless P = NP. Note that it immediately
follows that the problem is NP-hard.
Theorem 1. The CD-CoSKQ problem is NP-hard to approxi-

mate with any constant factor c (c ≥ 1).

Proof: The proof could be found in Appendix A, available
online.

2.2 Indexing
Following the existing studies on spatial keyword
queries [3], [21], [8], in this paper, we adopt the IR-tree [11]
for keyword-based nearest neighbour queries and range
queries which are procedures invoked in the algorithms
to be introduced in this paper. The conventional IR tree
augments an R-tree by storing at each node an inverted
list which maintains for each keyword those children nodes
which store an object containing the keyword. To suit our
algorithms better, we augment the standard IR-tree by in-
cluding some extra cost information in each inverted list
which will be used for pruning. Specifically, in each inverted
list of a keyword, we maintain not only the children nodes
which store an object containing the keyword but also the
minimum cost of these objects that are stored in the node
and contain the keyword.

3 EXACT ALGORITHM

In this section, we introduce our exact algorithm CD-Exact.
For the ease of presentation, we focus on the cost function
costMax (Equation 2) and the distance function distMaxSum

(Equation 4) first (in Section 3 and 4) and then discuss how
the algorithms could be used to handle the cost function
costSum (Equation 3) and the distance function distDia
(Equation 5) (in Section 5).

Given a query q and a keyword t, the t-keyword mini-
mum cost neighbor of q, denoted byMN(q, t), is defined to

be the object located withinD(q,B) containing the keyword
t with the minimum cost. We define the minimum cost
neighbor set of q, denoted by M(q), to be the set containing
q’s t-keyword minimum cost neighbor for each t ∈ q.ψ, i.e.,
M(q) = ∪t∈q.ψMN(q, t). Note that M(q) is a feasible set.

Consider the optimal solutionG∗ for a given CD-CoSKQ
query q. By definition, G∗ is a feasible set, i.e., for each
query keyword, G∗ must include an object containing this
keyword. Let t be a query keyword and O(t) be the set of
objects, each of which contains t. We know that G∗ must
include an object in O(t). Motivated by this, we propose to
findG∗ by searching around each object o ∈ O(t), which we
call a seed object. Specifically, to search around an object
o ∈ O(t), we restrict our attention to a set S of relevant
objects that are located close enough to o wrt the query
distance threshold, which we call a candidate set, and then
within S, we find the feasible set G with the smallest cost
among all feasible sets involving o and having the distance
at most B, which we call a local optimal set. At the end,
we return the local optimal set which has the smallest cost
among all local optimal sets found, and it is deemed to be
the optimal solution.

Based on the above discussion, we design an algorithm
called CD-Exact, which involves four steps as follows.

• Step 1 [Seed Object Exploration]: Find an object o from
O(t) that has not been explored as a seed object.

• Step 2 [Candidate Set Construction]: Construct a can-
didate set S of objects based on the seed object o.

• Step 3 [Local Optimal Set Finding]: Find the local
optimal setGwithin S and update the best known local
set, denoted by GcurBest, if necessary.

• Step 4 [Iterative Step]: Repeat Step 1 to Step 3 until
all objects in O(t) have been explored, in which case,
return GcurBest.

In the above algorithm, GcurBest is initialized to be an
empty set ∅ at the beginning. If distMaxSum(M(q)) ≤ B,
we initialize GcurBest to M(q). At the end, if GcurBest
remains to be ∅, it implies that there does not exist a
solution for the query; otherwise, GcurBest corresponds to
the optimal solution (proof will be provided shortly). The
pseudo-code of CD-Exact is presented in Algorithm 1.

Next, we present details of Steps 1-3 (note that Step 4
is straightforward), prove the correctness of the algorithm,
and give the complexity analysis on the algorithm.

Step 1 [Seed Object Exploration]. Seed objects, i.e., those
in O(t), are defined based on a query keyword. Using
different query keywords, we would have different sets of
seed objects. Considering that the number of seed objects
directly implies the number of iterations in the algorithm,
we use the query keyword such that the corresponding set
of seed objects is the smallest. In other words, we use the
query keyword which has its frequency measured by the
number of objects containing it the lowest. We denote this
query keyword by tinf . That is, we explore all objects in
O(tinf) as seed objects. Note that we follow [3] that we
preprocess the dataset to compute the frequency of each
keyword.

Moreover, since the goal is to find the optimal solution
G∗, whose distance is bounded by the distance threshold B,
we can safely ignore those seed objects o whose distances

Algorithm 1 CD-Exact
Input: An object set O, a query q with a location q.λ, a set of

keywords q.ψ, and a distance threshold q.B
Output: A feasible set with the smallest cost and having the

distance at most q.B
1: GcurBest ← ∅; curCost←∞
2: if distMaxSum(M(q)) ≤ q.B then
3: GcurBest ←M(q); custCost← costMax(M(q))
4: // Step 1 [Seed Object Exploration]
5: tinf ← the most infrequent keyword in q.ψ
6: for each object o in D(q, q.B) and contains tinf do
7: // Step 2 [Candidate Set Construction]
8: R(o) ← D(o, q.B − d(o, q))
9: S ← the set of all relevant objects o′ in R(o) with o

′
.w <

curCost
10: // Step 3 [Local Optimal Set Finding]
11: ψ ← q.ψ \ o.ψ
12: if S does not cover ψ then
13: continue
14: else if ψ = ∅ then
15: G← {o}
16: else
17: G← localOptimalSetFinding(o, S, ψ)
18: if G ≠ ∅ and costMax(G) ≤ curCost then
19: GcurBest ← G; curCost← costMax(G)
20: // Step 4 [Iterative Step]
21: return GcurBest

Fig. 2. A candidate set region in
CD-Exact

Fig. 3. A candidate set region in
CD-Appro

from q are greater than B since their corresponding local
optimal sets (which includes o) have their distance greater
than B and thus they cannot be the optimal solution. In
summary, we only need to consider those objects that (1)
contain tinf and (2) are located in D(q,B) as seed objects
(Lines 3 - 4 in Algorithm 1).

Step 2 [Candidate Set Construction]. Consider a seed object
o containing tinf . The purpose of this step is to construct
a local region near o, denoted by R(o), such that the local
optimal setG based on o is inside the region. Let d1 = d(o, q)
and d2 = B − d1. We construct the region R(o) as D(o, d2),
i.e., the disk with its center as o and its radius as d2 as shown
in the gray region in Figure 2. Then, the set of relevant
objects inside the region R(o) corresponds to a candidate
set S. With R(o) constructed in this way, we guarantee that
the local optimal setG based on o is insideR(o) (i.e.,G ⊆ S).

Lemma 1. The local optimal setG based on o is insideR(o) =
D(o,B − d(o, q)).

Proof: We prove by contradiction. Suppose G includes
an object o′ which is outside the range R(o). Then,
distMaxSum(G) = maxo′′∈G d(o′′, q)+maxo1,o2∈G d(o1, o2) >
d(o, q) + d2 = B, which contradicts to the fact that G has its
distance at most B.

Algorithm 2 localOptimalSetFinding(o, S, ψ)
Input: A seed object o, the candidate set S based on o, and the

set ψ containing those query keywords that are not covered
by o

Output: The local optimal set G based on o if any and ∅
otherwise

1: bestG← ∅; bestGCost←∞
2: for each subset G′ of S, which covers ψ do
3: G← G

′ ∪ {o}
4: if distMaxSum(G) ≤ B then
5: if costMax(G) < bestGCost then
6: bestGCost← costMax(G); bestG← G
7: return bestG

Furthermore, we can refine the candidate S by dropping
all those objects with the cost greater than curCost since a
set of objects including any of these objects would have the
cost at least that of the current best one and thus, it could
be safely pruned. In summary, we construct the candidate
set S based on o to be the set including all relevant objects
which are in R(o) and have the cost smaller than curCost
(Lines 6 - 7 in Algorithm 1).

Step 3 [Local Optimal Set Finding]. By definition, the local
optimal set G within the candidate set S (if it exists) should
include o and some other objects in S. Thus, we aim to
find G by exploring all subsets of S and augmenting each
of them with the object o as a candidate of G. Instead of
enumerating all subsets of S, we only consider those which
cover the query keywords that have not been covered by
object o since any other subsets when augmented with object
o cannot cover all query keywords meaning that it cannot be
G. Specifically, we maintain the set of the query keywords
that are not covered by o in ψ, i.e., ψ = q.ψ\o.ψ. There are
three cases. First, S as a whole does not cover ψ. In this case,
we can safely conclude that the local optimal set for o does
not exist and proceed to the next iteration. Second, ψ is an
empty set, i.e., o covers all query keywords. In this case, we
can safely returnG = {o} as the local optimal set for o. Third,
it corresponds to all other cases (which are hard ones). We
then invoke a procedure called “localOptimalSetFinding”
(presented in Algorithm 2) which enumerates all subsets
of S that cover ψ and for each one, (1) augments it with
the object o; (2) checks whether the augmented set has the
distance at most B and if so, (3) updates the best known
augmented set bestG when necessary and returns bestG at
the end. We then update the current best solution GcurBest
when necessary. These steps are presented in Lines 9 -17 of
Algorithm 1.

Moreover, to utilize the characteristics of the costMax

function, we develop a few pruning techniques for the
process of enumerating the subsets of S. Enhanced by these
pruning techniques, CD-Exact runs significantly faster than
baseline methods.

One technique is to enumerate the objects in S in an
ascending order of the objects’ costs, which would make
it possible to terminate the search process early since the
process at a later stage would only find sets of objects with
the costs larger than the best known cost and thus they
could be pruned. In particular, we consider the objects in
S in ascending order of their costs. Let S = {o1, o2, . . . , on}
where oi.w ≤ oi+1.w for all 1 ≤ i ≤ n − 1. For each iteration

i ∈ {1, 2, . . . , n}, we only consider the combinations of the
objects in the set S ′i where S ′i = {o1, o2, . . . , oi}. To enu-
merate the objects in S ′i efficiently, we utilize the inverted
lists. In each level, we only need to consider objects in the
lists that contain keywords that are not covered yet. The
advantage of this search strategy is that we can terminate
the search immediately once we found any feasible solution
G within distance threshold, since the remaining objects
(which has higher costs than the objects we have processed
according to the ascending order) in S cannot contribute to
a better solution. In more details, let’s consider an example.
Suppose that we find a feasible solution soli in S ′i and
another feasible solution solj in S ′j with i < j. Based on
the order in S, we clearly know that soli has smaller cost
than solj . In other words, once we can get a feasible solution
with S ′i, we do not need to consider any cases with S ′j where
j ≥ i.

Another pruning technique is that we may start finding
the local optimal solution from S ′j = {o1, o2, . . . , oj} for
some j > 1 instead of j = 1. In particular, we impose the
following two lower bounds on costMax(G), which implies
that we can start the finding on S ′i where i is the smallest
index such that costMax(G) ≥ oi.w. First, since the seed
object o must be included in the constructed set G according
to CD-Exact, we know that costMax(G) ≥ o.w. Second, we
can utilize the following lemma.
Lemma 2. costMax(G∗) ≥ maxt∈q.ψmino∣t∈o.ψ o.w.

Proof: Each keyword in q.ψ must be covered by at least one
object. Suppose that omax is the object with the maximum
weight in G∗ and omax contains some keyword tmax. It
is clear that we have omax.w ≥ mino∣tmax∈o.ψ o.w which
implies the statement of the lemma.

Based on the above lower bounds on costMax(G∗), we
can start the searching on S ′i where i is the smallest index
such that costMax(G) ≥ max{o.w,maxt∈q.ψmino∣t∈o.ψ o.w}.
Correctness. There are two cases. First, no feasible solutions
exist for the query, e.g., due to a strict constraint on the
distance. In this case, each time we try to search for the local
optimal set for a seed object, we would obtain an empty
set, and as a result, the CD-Exact algorithm would return
an empty set at the end, indicating that no feasible solution
exists. Second, there exist some feasible solutions, i.e., G∗

exists. In this case, G∗ includes an object that covers the
query keyword tinf , says o, which would be explored by
the CD-Exact algorithm as a seed object. In the iteration of
exploring o, the local optimal set, which corresponds to G∗

(based on Lemma 1), would be found.
Time complexity. Let O′ be the set of objects that contain
tinf in D(q,B). Note that ∣O′∣ << ∣O∣. For each object o ∈
O′, we perform a range query which cost O(log ∣O∣ + ∣S∣),
where ∣S∣ << ∣O∣ corresponds to the number of objects
returned by the range query. Thus, the time complexity
of CD-Exact is O(∣O′∣ ⋅ (log ∣O∣ + ∣S∣∣q.ψ∣)), where ∣S∣∣q.ψ∣

is the time cost of the “localOptimalSetFinding” procedure
(Algorithm 2).

4 BI-CRITERIA APPROXIMATION ALGORITHM

As we proved in Theorem 1, the CD-CoSKQ problem cannot
be approximated within any constant factor in polynomial

Algorithm 3 MaxGreedy(S,ψ)
Input: A candidate set S for some seed object, and the set ψ

containing those query keywords that are not covered by
the seed object

Output: A feasible object set G if any and ∅ otherwise
1: G← S
2: if G does not cover ψ then
3: return ∅
4: for object o′ ∈ G in descending order by their costs do
5: if G \ {o′} covers ψ then
6: G← G \ {o′}
7: return G

time unless P = NP . In this section, we present our bi-
criteria approximation algorithm CD-Appro. The high-level
idea is that the algorithm would output a solution G with
dist(G) ≤ βB and the cost is at most α times that of the
optimal solution G∗, where dist(G∗) ≤ B. Formally, the
definition of a bi-criteria approximation algorithm is shown
as follows.

Definition 1. For real values α, β ≥ 1, an (α, β) bi-criteria ap-
proximation algorithm for CD-CoSKQ returns in polyno-
mial time a feasible object set G such that (1) cost(G) ≤
α ⋅ cost(G∗) and (2) dist(G) ≤ β ⋅ dist(G∗) ≤ β ⋅B.

We use the terms cost ratio and distance ratio to represent the
approximation ratios α and β, respectively. For both ratios,
the smaller the value is, the better an algorithm performs.

CD-Appro follows CD-Exact with the following adap-
tions. First, it uses the set of all relevant objects in
Disk(q,B) as the set of seed objects (in Step 1). Second,
it constructs a candidate set S for a seed object o dif-
ferently as the set containing all relevant objects in the
region D(o, d2) ∩ D(q, d1), as shown in the gray region of
Figure 3, where d1 = d(o, q) and d2 = B − d1 (in Step 2).
We abuse the notation R(o) by using it to represent the
region D(o, d2) ∩D(q, d1). Third, different from CD-Exact,
which performs an enumeration procedure, i.e., “localOp-
timalSetFinding” in Step 3, which is expensive, CD-Appro
performs a greedy procedure which finds an approximate
feasible set which might violate the distance constraint
but has both its cost and distance from those of the one
founded by “localOptimalSetFinding” bounded and runs
much faster. Specifically, CD-Appro replaces the “localOp-
timalSetFinding” procedure with the “MaxGreedy” proce-
dure (as shown in Algorithm 3), which finds a feasible set
greedily. Given a candidate set S for some seed object and
a set of query keywords ψ that are not covered by the seed
object, MaxGreedy returns a set G ⊆ S of objects, such that
it covers ψ and costMax(G) is minimized. Specifically, it
checks each object o′ in S in ascending order of their costs.
It removes the current one if the removal would not make
the set fail to cover ψ.

The intuition of CD-Appro is to construct the candidate
set in a smaller region (i.e., the intersection of two disks)
compared to CD-Exact, and the maximum distance between
objects in the candidate set is bounded by the region. Thus,
CD-Appro can enjoy a tight distance ratio without having
an exhaustive search.

Note that not all relevant objects have a feasible candi-
date set and we can safely prune some relevant objects as

Algorithm 4 SumGreedy(S,ψ)
Input: A candidate set S for some seed object, and the set ψ

containing those query keywords that are not covered by
the seed object

Output: A feasible object set G if any and ∅ otherwise
1: G← ∅
2: while ψ /= ∅ do
3: o

′
← argmaxo∈S

∣o.ψ∩ψ∣
o.w

4: G← G ∪ {o′}
5: ψ ← ψ \ o.ψ
6: return G

follows. Given a query q, we find the nearest neighbors of
q containing each keyword in q.ψ. Let of be the farthest
object in this set of nearest neighbor objects. There exists a
keyword tf ∈ of .ψ ∩ q.ψ that is not contained by any object
that is closer to q that of by definition. Given a relevant
object o, we know that the corresponding candidate set S is
not feasible if d(o, q) < d(of , q) since Disk(q, d(o, q)) does
not have any object contain tf . Thus, we do not need to
check the seed object o if d(o, q) < d(of , q).

Approximation Ratios. We consider the cost ratio and the
distance ratio separately.

Lemma 3. CD-Appro gives a cost ratio α of 1.

Proof: Let G be the solution returned by CD-Appro. By
Lemma 1, there exists an iteration in CD-Appro such that
we process a set S∗ that is a superset of G∗. Let G′ denotes
the set processed from S∗ by MaxGreedy. Since CD-Appro
returns the feasible set with the minimum cost, we know
that costMax(G) ≤ costMax(G′). The remaining part of the
proof shows that costMax(G′) ≤ costMax(G∗).

It is easy to see that G′ covers the keywords in q.ψ. Let
o′ ∈ G′ be the object with the highest cost in G′. There exist
at least one keyword in o′ that contain a keyword t that is
not covered by other object in G′. Consider the object ot ∈
G∗ that contain t. We know that costMax(G∗) ≥ ot.cost.
According to the way CD-Appro process the objects, o′ is
the one that has the smallest cost among all objects contain
t in S∗ (since otherwise G′ \ {o′} is feasible and o′ is not in
G′). Thus, costMax(G′) = o′.cost < ot.cost ≤ costMax(G∗).

Lemma 4. CD-Appro gives a distance ratio β of 1.375.

Proof: Consider a candidate set S for a seed object o.
By Theorem 2 of [21], we know that maxo∈S d(o, q) +
maxo1,o2∈S d(o1, o2) ≤ 1.375 ⋅ (d1 + d2). Thus, we have
distMaxSum(S) ≤ 1.375 ⋅ B. Since the set G returned by
CD-Appro (if any) is a subset of a candidate set S, we know
distMaxSum(G) ≤ distMaxSum(S) ≤ 1.375 ⋅B.

Time Complexity. Let O′′ be the set of all relevant objects
that contain at least one keyword in q.ψ in D(q,B). Note
that ∣O′′∣ << ∣O∣. The time complexity of CD-Appro is
O(∣O′′∣ ⋅(log ∣O∣+ ∣S∣ log ∣S∣+∑o∈S ∣o.ψ∣)), where the part
of ∣S∣ log ∣S∣ + ∑o∈S ∣o.ψ∣ is the time complexity of the
“MaxGreedy” procedure.

5 EXTENSIONS

5.1 Extension to the cost function costSum
The algorithms for the cost function costMax as described
in Sections 3 and 4 remain applicable except that we need
to modify the initialization (i.e., lines 2-3 of Algorithm 1
and Step 3 (i.e., the local optimal set finding step), in
the algorithmic framework. The detailed modifications are
shown as follows.

5.1.1 CD-Exact

In the initialization step, instead of using M(q) as GcurBest
if its cost is at most B, we find a feasible set by algo-
rithm SumGreedy (to be introduced later) using the rele-
vant objects in D(q,B) and all keywords in q.ψ. In Step
3, the only part that need to be adapted are that of the
pruning techniques. Specifically, for costSum, we terminate
the search only if the current subset G′ with an additional
object argmino∈{S\G′} o.w has larger cost than curCost in
the “localFeasibleSetFinding” procedure. We can also do
some additional pruning procedures. For example, given an
object o, if the cost of G′∪{o} exceed costSum(GcurBest), we
do not need to add o into G′. This is because that, for any
group G generated from G′ ∪ {o}, we have costSum(G) >
costSum(GcurBest).

It is easy to see that these changes in the algorithm do
not impair the correctness and time complexity.

5.1.2 CD-Appro

Since the cost function is changed to costSum, apparently
we need to design a new algorithm for finding a fairly good
feasible set in Step 3 given a candidate set. Instead of calling
MaxGreedy (Algorithm 3), CD-Appro invokes another algo-
rithm, called SumGreedy (Algorithm 4), to find a feasible set
greedily. Given a set S and a set of keywords ψ, SumGreedy
makes use of the idea of the classic greedy algorithm for
the weighted set cover where an element corresponds to a
keyword, a set corresponds to an object o and the set weight
corresponds to o.w.

It is easy to see that the distance ratio β of CD-Appro is
not affected, since its Steps 1 and 2 are not changed. The cost
ratios α and time complexity would be changed as follows.

Lemma 5. CD-Appro gives a cost ratio α of O(log ∣q.ψ∣) for
CD-CoSKQ with the cost function costSum.

Proof: Let G be the solution return by CD-Appro.. There
exists an iteration in CD-Appro such that we process a
set S∗ that is a superset of G∗. Let G′ denotes the set
processed from S∗ by SumGreedy. Since the algorithm
returns the feasible set with the minimum cost, we know
that costSum(G) ≤ costSum(G′). The remaining part of the
proof shows that costSum(G′) ≤ O(log ∣q.ψ∣)⋅costSum(G∗).

It is easy to see that G′ covers the required key-
words in q.ψ. By the well-known greedy heuristic for the
weighted set cover problem [28], we know that cost(G′) ≤
O(log ∣q.ψ∣) ⋅ cost(G̃) where G̃ is the optimal solution op-
timizing costSum (without considering any distance func-
tion). Since costSum(G∗) is the optimal solution optimizing
costSum with considering a threshold B on the distance
function, we have costSum(G̃) ≤ costSum(G∗). Thus we

TABLE 3
Summaries of CD-Appro

Time Complexity
Appro. Ratio
α β

costMax
distMaxSum O(∣O′′∣ ⋅ (log ∣O∣+

∣S∣ log ∣S∣ +∑o∈S ∣o.ψ∣))
1

1.375
distDia

√
3

costSum
distMaxSum O(∣O′′∣ ⋅ (log ∣O∣

+∣ψ∣2∣S∣))
O(log ∣q.ψ∣) 1.375

distDia

√
3

have costSum(G′) ≤ O(log ∣q.ψ∣) ⋅ w(G̃) ≤ O(log ∣q.ψ∣) ⋅
w(G∗) and the proof is complete.

Time Complexity. The time cost of CD-Appro is O(∣O′′∣ ⋅
(log ∣O∣+ ∣ψ∣2∣S∣)) where ∣ψ∣2∣S∣ is the time complexity of
SumGreedy.

5.2 Extension to the distance function distDia
For distDia, the algorithms in Sections 3 and 4 can still
be applied except that we need to change Step 2, i.e., the
candidate set construction step, as follows.

5.2.1 CD-Exact
We set d1 = d(o, q) and d2 = B for distDia. The intuition
of this change is that we do not want to miss any feasible
candidate sets for distDia. A candidate set wrt the given
seed object o is defined as the set of relevant objects in the
region D(o, d2). The other parts remain the same. We can
observe that the time complexity remains the same since we
only change the region D(o, d2).

5.2.2 CD-Appro
We set d1 = d(o, q) and d2 = B for distDia. Then a candidate
set with regard to a given seed object o is defined as the set
of relevant objects in the region D(o, d2) ∩ D(q, d1). The
other parts remain the same. Again, it is easy to observe
that the time complexity for the algorithm remains the same
as we only modify the values of d1 and d2.
Lemma 6. CD-Appro gives a distance ratio β of

√
3.

Proof: Consider a candidate set S constructed
from o. By Theorem 2 of [21], we know
that max{maxo∈S d(o, q),maxo1,o2∈S d(o1, o2)} ≤√
3max{d1, d2}. Thus, we have distDia(S) ≤

√
3 ⋅ B.

Since the set G returned by CD-Appro (if any)
corresponds to a subset of a candidate set S, we know
distDia(G) ≤ distDia(S) ≤

√
3 ⋅B.

5.3 Summaries
Table 3 shows the time complexities and the approximation
ratios of CD-Appro under different settings of cost functions
and distance functions.

6 EMPIRICAL STUDIES

6.1 Experimental Set-up
Datasets. We used three real datasets in our experiments,
namely Yelp, Hotel and GN. Dataset Yelp was extracted
from Yelp Academic Data Set1 and was used in [13], where

1. https://www.yelp.com/dataset/challenge

TABLE 4
Datasets used in the experiments

Yelp Hotel GN

of objects 192,609 20,790 1,868,821
of unique words 2,468 602 222,409

of words 788,841 80,645 18,374,228

each POI (i.e., object) has a location and belongs to a set
of categories (e.g., Dim Sum, Dry Cleaning, and Pubs). We
use the set of categories as the keywords of an object. Each
object is rated by a 5-star scale (with a 0.5 interval), and we
converted it to the range [1, 10].

Datasets Hotel and GN were used in [4], [21], [3],
[7], [8]. Dataset Hotel contains a set of hotels in the U.S.
(www.allstays.com), each of which has a spatial location
and a set of words that describe the hotel (e.g., restaurant
and pool). Dataset GN was collected from the U.S. Board
on Geographic Names (geonames.usgs.gov), where each
object has a location and also a set of descriptive keywords
(e.g., a geographic name such as valley). Following [13], we
generated the object weights in the range [1, 10] following
a normal distribution with mean 5 and standard deviation
1. Table 4 shows the statistics of the three datasets.

Query Generation. Let O be a dataset of objects. Given an
integer k, we generated a query q with k query keywords
similarly as [4], [21], [7], [8] did. Specifically, to generate q.λ,
we randomly picked a location from the MBR of the objects
in O, and to generate q.ψ, we first ranked all the keywords
that are associated with objects in O in descending order
of their frequencies and then randomly picked k keywords
in the percentile range of [10, 40]. In this way, each query
keyword has a relatively high frequency.

Algorithms. We studied our CD-Exact and CD-Appro. For
comparison, we have the following algorithms.

• Combi-Exact. It is a baseline algorithm which searches
over all combinations of objects from those inverted lists
corresponding to those query keywords in q.ψ (note that
all these combinations are feasible sets) and then finds
the one which satisfies the distance threshold and has the
smallest cost.

• Cao-Appro. It is MAXMAX-Appro2 proposed in [3] which
is an approximation algorithm for the CoSKQ problem.
Since the algorithm was not designed for finding a fea-
sible set with the smallest cost (but a feasible set with
the smallest distance), we adapt it as follows. Instead of
finding a feasible set in each iteration and returning the
one with the smallest distance as the solution, it returns
the one with the smallest cost. The procedure within each
iteration remains the same.

• Long-Appro. It is the approximation algorithm MaxSum-
Appro proposed in [21] for the CoSKQ problem. We adapt
it in a way similar to that of Cao-Appro to return the
feasible set with the smallest cost among all processed
object sets.

All experiments were conducted on a Linux platform
with a 2.66GHz machine and 32GB RAM. The augmented
IR-tree mentioned in Section 2.2 is used in the algorithms
and the index structure is memory resident.

6.2 Experimental Result
Following the existing studies [4], [21], [3], [7], [8], we
measured the running time and the approximation ratios,
i.e., the cost ratio and the distance ratio, (for approximation
algorithms only). For each experimental setting, we gener-
ated 50 queries and reported the average results.

6.2.1 Setting the default distance threshold B
We first find the default value of B. It is important to find
a suitable value of B, since setting an extremely small value
of B will give no result for the query, while setting B to
a large value the solution would not be desirable to a user
since he/she needs to traverse a long distance. So, we want
to find a value of B such that a result could be found and
the value is as small as possible. Specifically, we estimate
the value of B as follows. We first run the approximation
algorithm [21] for the CoSKQ problem, and use the distance
of the solution as a lower bound on the distance threshold,
denoted by distLB . We then set B = distLB × n, where n is
a user parameter, and vary n from 1.0 to 1.5.

The results could be found in Appendix B, available
online, due to page limit. According to the results, the
average costs of the solutions decrease when B increases.
Still, the rate of decrease is very small when n > 1.1. Thus,
we set the default value of B to 1.1 times distLB .

6.2.2 Effect of ∣q.ψ∣
Following the existing studies [4], [21], [7], [8], we vary the
number of query keywords from {3, 6, 9, 12, 15}.

Dataset Yelp. The results with costMax and distMaxSum are
presented in Figure 4. According to Figure 4(a), the running
times of the exact algorithms increase when ∣q.ψ∣ increases.
Our exact algorithm CD-Exact runs consistently faster than
the Combi-Exact. This is because that the pruning strategies
in CD-Exact can reduce the search space effectively.

According to Figure 4(b), our CD-Appro runs faster than
Cao-Appro and Long-Appro. It is because CD-Appro has
cost-related pruning techniques, which can help to reduce
the number of iterations in the algorithm. Besides, CD-
Appro can achieve the cost ratio α very close to 1 (and
smaller than 1 in some cases), while that of Cao-Appro and
Long-Appro are much larger, especially when ∣q.ψ∣ is large
(e.g., when ∣q.ψ∣ ≥ 9, the cost ratios of Cao-Appro and
Long-Appro are at least 1.4). Note that it is possible that
α < 1 because the relaxed distance threshold provide the
flexibility to find a solution with cost lower than the optimal
solution. The distance ratio β of CD-Appro is close to 1, and
that of the Cao-Appro and Long-Appro are slightly smaller.
This is probably because both Cao-Appro and Long-Appro
were originally designed for the CoSKQ problem, which
target at minimizing the distance function. In fact, while
the distance constraint may be violated in CD-Appro, in 204
out of 250 cases (50 queries × 5 query sizes), the distance
ratio is less than 1.1 and in 167 out of 250 cases, the distance
ratio is satisfied, i.e., the distance constraint is satisfied. In
case the user insists on satisfying the distance constraint, the
CD-Exact algorithm can be adopted. Besides, we have CD-
Appro runs an average of 36% faster than CD-Exact, since
CD-Appro adopts the MaxGreedy which finds a feasible
set greedily.

The results with costSum and distMaxSum on the dataset
Yelp are presented in Figure 5, where the results for Combi-
Exact with ∣q.ψ∣ ≥ 9 are not shown because it runs for
more than 10 hours. (This applies to most of the following
results.) According to Figure 5(a), our CD-Exact runs faster
than Combi-Exact by orders of magnitude. According to
Figure 5(b), our CD-Appro runs faster than Cao-Appro and
Long-Appro. The cost ratio α of CD-Appro is very close
to 1, while that of Cao-Appro and Long-Appro are at least
1.39 and 1.58, respectively. All approximation algorithms
can achieve the distance ratios close to 1, though that of
CD-Appro is slightly larger than the competitors. It is
noteworthy that CD-Appro runs faster than CD-Exact by
an order of magnitude, due to the fact that CD-Appro uses
a greedy procedure instead of an expensive enumeration.

The results with costMax (costSum) and distDia are
presented in Figure 6 (Figure 7), which are similar to those
for distMaxSum, i.e., our exact algorithm CD-Exact runs
faster than Combi-Exact, our approximation algorithm CD-
Appro runs quite fast, achieves cost ratios α very close to 1
(while that of the competitors are not) and distance ratios β
smaller than 1 in practice.
Datasets Hotel and GN. Due to page limit, the results are
presented in Appendix C, available online.

6.2.3 Effect of B
We also studied the effect of distance threshold B by setting
B = distLB × n, where distLB is the distance cost of the
solution found by the approximation algorithm [21] for the
CoSKQ problem. We vary n from {1.0, 1.05, 1.1, 1.15, 1.20}.
The default value of ∣q.ψ∣ = 6. The results on running times
and approximation ratios can be found in Appendix D,
available online.

Figure 8 reports the average candidate set size, which
shows that, for both distMaxSum and distDia, the set size
increases when B increases, and the set size of CD-Appro
is always smaller than that of CD-Exact, which is due
to the fact that the candidate set region of CD-Appro is
much smaller. Moreover, the candidate set size of distDia
is consistently larger than that of distMaxSum, which is also
related to the size of the candidate set region, that distDia
has a larger region.

6.2.4 Scalability Test
Following the existing studies [4], [21], [3], [7], [8], we
generated 5 synthetic datasets for the experiments of scal-
ability test, in which the numbers of objects used are
{2M, 4M, 6M, 8M, 10M} where M represents million. The
datasets were generated as follows. We generated a syn-
thetic dataset by augmenting the GN dataset. Each time, we
created a new object o with o.λ set to be a random location
from GN dataset by following the distribution and o.ψ set
to be a random document from GN and then add it into
the GN dataset. We followed [21], [7] and used the default
setting of ∣q.ψ∣ = 6.

The scalability test results with costMax and distMaxSum

are presented in Figure 9. According to Figure 9(a), the run-
ning times of the algorithms increase when the number of
objects in the datasets increases, and CD-Exact and Combi-
Exact have similar running times. According to Figure 9(b),
our CD-Appro is scalable to large datasets, e.g., they ran

CD-Exact Combi-Exact

0.1

1

10

3 6 9 12 15

R
u
n
n
in

g
 t
im

e
 (

m
s
)

Query size

CD-Appro Cao-Appro Long-Appro

0.1

1

10

3 6 9 12 15

R
u
n
n
in

g
 t
im

e
 (

m
s
)

Query size

 1

 1.2

 1.4

 1.6

 1.8

3 6 9 12 15

C
o
s
t
ra

ti
o
 α

Query size

 0.8

 0.9

 1

 1.1

 1.2

3 6 9 12 15

D
is

ta
n
c
e
 r

a
ti
o
 β

Query size

(a) Exact Algorithms (b) Approximation Algorithms
Fig. 4. Effect of Query Size (i.e., ∣q.ψ∣) (costMax, distMaxSum, Yelp)

CD-Exact Combi-Exact

1

100

10000

3 6 9 12 15

R
u
n
n
in

g
 t
im

e
 (

m
s
)

Query size

CD-Appro Cao-Appro Long-Appro

0.1

1

10

100

3 6 9 12 15

R
u
n
n
in

g
 t
im

e
 (

m
s
)

Query size

 1

 1.5

 2

 2.5

3 6 9 12 15

C
o
s
t
ra

ti
o
 α

Query size

 0.8

 0.9

 1

 1.1

3 6 9 12 15

D
is

ta
n
c
e
 r

a
ti
o
 β

Query size

(a) Exact Algorithms (b) Approximation Algorithms
Fig. 5. Effect of Query Size (i.e., ∣q.ψ∣) (costSum, distMaxSum, Yelp)

CD-Exact Combi-Exact

0.01

0.1

1

10

3 6 9 12 15

R
u
n
n
in

g
 t
im

e
 (

m
s
)

Query size

CD-Appro Cao-Appro Long-Appro

0

0.1

0.2

0.3

0.4

0.5

3 6 9 12 15

R
u
n
n
in

g
 t
im

e
 (

m
s
)

Query size

 1

 1.03

 1.06

 1.09

3 6 9 12 15

C
o
s
t
ra

ti
o
 α

Query size

 0.8

 0.9

 1

 1.1

3 6 9 12 15

D
is

ta
n
c
e
 r

a
ti
o
 β

Query size

(a) Exact Algorithms (b) Approximation Algorithms
Fig. 6. Effect of Query Size (i.e., ∣q.ψ∣) (costMax, distDia, Yelp)

CD-Exact Combi-Exact

1

100

10000

3 6 9 12 15

R
u
n
n
in

g
 t
im

e
 (

m
s
)

Query size

CD-Appro Cao-Appro Long-Appro

0

2

4

6

8

3 6 9 12 15

R
u
n
n
in

g
 t
im

e
 (

m
s
)

Query size

 1

 1.5

 2

 2.5

 3

3 6 9 12 15

C
o
s
t
ra

ti
o
 α

Query size

 0.8

 0.85

 0.9

 0.95

 1

3 6 9 12 15

D
is

ta
n
c
e
 r

a
ti
o
 β

Query size

(a) Exact Algorithms (b) Approximation Algorithms
Fig. 7. Effect of Query Size (i.e., ∣q.ψ∣) (costSum, distDia, Yelp)

CD-Exact CD-Appro

 0

 100

 200

 300

 400

 500

1.00 1.05 1.10 1.15 1.20

C
a

n
d

id
a

te
 s

e
t

s
iz

e

Distance threshold (× distLB)

CD-Exact CD-Appro

 0

 200

 400

 600

 800

1.00 1.05 1.10 1.15 1.20

C
a

n
d

id
a

te
 s

e
t

s
iz

e

Distance threshold (× distLB)

(a) distMaxSum (b) distDia

Fig. 8. Effect of candidate set size on B (Yelp)

within 1s on a dataset with 10M objects. The cost ratio α
of CD-Appro is always smaller than 1, and is much smaller
than that of Cao-Appro and Long-Appro. The distance ratio
β of CD-Appro is larger than Cao-Appro and Long-Appro.
It is because when the number objects in the datasets in-
creases, the number of objects in the candidate sets increases
which result in a feasible set with larger cost is found.

The results on other settings are presented in Ap-
pendix E, available online.

6.2.5 Case Studies
To evaluate the quality of the results, we compare the
results of traditional CoSKQ (i.e., MaxSum-CoSKQ and Dia-

TABLE 5
Case studies on dataset Yelp

CoSKQ CD-CoSKQ
dist cost dist cost

distMaxSum
costMax 30.404 7.500 32.093 2.680
costSum 28.520 31.962 12.760

distDia
costMax 30.342 7.500 31.887 2.620
costSum 29.240 31.953 12.400

CoSKQ) with our CD-CoSKQ. Table 5 shows the result of
optimal solution. According to Table 5, our CD-CoSKQ is
able to find a solution that has a much lower cost, with a
slightly larger distance compared to those that minimize
distances. In particular, with less than 10% increases in
distances, we can reduce the cost of the solution by more
than a half, for both costMax and costSum.

7 RELATED WORKS

Many existing studies on spatial keyword queries focus
on retrieving a single object that is close to the query loca-
tion and relevant to the query keywords. A boolean kNN
query [16], [6], [31], [38], [35] finds a list of k objects each
covering all specified query keywords. The objects in the
list are ranked based on their spatial proximity to the query
location. A top-k kNN query [11], [23], [20], [24], [25], [12],

CD-Exact Combi-Exact

 0.01

 0.1

 1

2M 4M 6M 8M 10M

R
u

n
n

in
g

 t
im

e
 (

s
)

Number of objects

CD-Appro Cao-Appro Long-Appro

 0.01

 0.1

 1

 10

2M 4M 6M 8M 10M

R
u

n
n

in
g

 t
im

e
 (

s
)

Number of objects

 0.9

 1

 1.1

 1.2

 1.3

2M 4M 6M 8M 10M

C
o

s
t

ra
ti
o

 α

Number of objects

 0.8

 1

 1.2

 1.4

2M 4M 6M 8M 10M

D
is

ta
n

c
e

 r
a

ti
o

 β

Number of objects

(a) Exact Algorithms (b) Approximation Algorithms
Fig. 9. Scalability Test (costMax, distMaxSum)

[32] adopts the ranking function considering both the spatial
proximity and the textual relevance of the objects and re-
turns top-k objects based on the ranking function. This type
of queries has been studied on Euclidean space [11], [23],
[20], road network databases [24], trajectory databases [25],
[12], and moving object databases [32]. Usually, the methods
for this kind of queries adopt an index structure called the
IR-tree [11], [30] capturing both the spatial proximity and the
textual information of the objects to speed up the keyword-
based nearest neighbor (NN) queries and range queries. In
this paper, we also adopt the IR-tree for keyword-based NN
queries and range queries.

Some other studies on spatial keyword queries focus
on finding an object set as a solution. Among them, there
exist works [4], [21], [3], [7], [8], [26] studying the collective
spatial keyword queries (CoSKQ). Cao et al. [4], [3] studied
the CoSKQ problem and proposed exact and approximation
algorithms for several distance functions, e.g., distMaxSum.
Besides, they studied two variations of CoSKQ, namely
the top-k CoSKQ and the weighted CoSKQ, in [3]. Long
et al. [21] proposed exact and approximation algorithms
with improved performance for the CoSKQ problem with
the distance function distMaxSum and also that with a
new distance function distDia. Chan et al. [8] studied a
generalized distance function, which unifies some of the
previous distance functions (e.g., distMaxSum and distDia).
They also proposed a generalized framework for the exact
and approximate solutions. Xu et al. [33] studied the moving
CoSKQ problem and proposed both exact and approxima-
tion algorithms for the problem. Song et al. [26] studied
CoSKQ problem on activity trajectories and proposed an
index structure and a search algorithm for the problem.

There are existing studies which take into account not
only the geospatial information but also some attribute
information (such as popularity and expenses of objects) for
defining spatial keyword queries [7], [39]. Chan et al. [7]
define a cost-aware collective spatial keyword query to find
a set of objects such that the objects cover all the query
keywords and the set has the smallest product of its cost
and distance. As mentioned in Section 1, this query does not
provide users the flexibility to express their finer grained
preferences. Zhao et al. [39] studied the popularity-aware
CoSKQ on road networks, which define a query to find
a region consisting of POIs such that the POIs cover the
query keywords, the diameter of the region is at most some
threshold, the maximum traveling distance from a POI to
a query location is at most another threshold, and the set
has the sum of the popularities of the POIs the largest.

This study is similar to ours in that it uses some form of
distance based on geospatial information as constraints and
the popularity as the objective, but they differ in that this
study is based on road networks while ours on Euclidean
space, this study considers only one cost function while ours
consider multiple cost functions and distance functions,
and the approximation algorithms in this study provide
no guarantees while our approximation algorithms provide
provable guarantees.

Another query that is similar to the CoSKQ problem is
the m-Closest Keywords (mCK) Query [36], [37], [18] which
takes a set of m keywords as input and finds a set of objects
with the minimum diameter that cover the m keywords
specified in the query. Guo et al. [18] gave the state-of-
the-art exact and approximation algorithms. There are some
variants of the mCK query, including the SK-COVER [9],
[10] and the BKC query [13]. These queries are similar to
the CoSKQ problem in that they also return an object set
that covers the query keywords, but they only take a set of
keywords as input (without a query location). In contrast,
the CD-CoSKQ problem studied in this paper takes both a
set of keywords and a spatial location as inputs.

There are also some studies [17], [27], [39] on spatial key-
word queries which find an object set in the road network,
e.g., [5], [14] find a region as a solution and [2], [34], [19],
[29], [40] find a route as a solution.

8 CONCLUSION

In this paper, we proposed a new type of query called CD-
CoSKQ, which aims to find an object set with the smallest
cost subject to a distance constraint. We proved that the
CD-CoSKQ problem is NP-hard to approximate with any
constant factor. We developed one exact algorithm and
one approximation algorithm with provable guarantees for
the problem. Extensive experiments were conducted which
verified our theoretical findings.

There are several interesting future research directions.
One direction is to explore other distance functions, e.g.,
distSum, distMinMax, for the distance constraint. Another
direction is to extend CD-CoSKQ problem to other dis-
tance metrics such as road network. Besides, it would be
interesting to consider multiple attributes in the objects and
integrate them into one single cost function.

Acknowledgments: We thank anonymous reviewers for
their helpful comments. This research is supported by the
Nanyang Technological University Start-Up Grant from the
College of Engineering under Grant M4082302 and by

the Ministry of Education, Singapore, under its Academic
Research Fund Tier 1 (RG20/19 (S)). The research of the
HKUST side is supported by IRS17EG25.

REFERENCES

[1] A. Aggarwal, A. Deshpande, and R. Kannan. Adaptive sampling
for k-means clustering. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, pages 15–28.
Springer, 2009.

[2] X. Cao, L. Chen, G. Cong, and X. Xiao. Keyword-aware optimal
route search. PVLDB, 5(11):1136–1147, 2012.

[3] X. Cao, G. Cong, T. Guo, C. S. Jensen, and B. C. Ooi. Efficient
processing of spatial group keyword queries. TODS, 40(2):13,
2015.

[4] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Collective spatial
keyword querying. In SIGMOD, pages 373–384. ACM, 2011.

[5] X. Cao, G. Cong, C. S. Jensen, and M. L. Yiu. Retrieving regions of
intersect for user exploration. PVLDB, 7(9), 2014.

[6] A. Cary, O. Wolfson, and N. Rishe. Efficient and scalable method
for processing top-k spatial boolean queries. In SSDBM, pages
87–95. Springer, 2010.

[7] H. K.-H. Chan, C. Long, and R. C.-W. Wong. Inherent-cost aware
collective spatial keyword queries. In SSTD, 2017.

[8] H. K.-H. Chan, C. Long, and R. C.-W. Wong. On generalizing
collective spatial keyword queries. TKDE, 30(9):1712–1726, 2018.

[9] D.-W. Choi, J. Pei, and X. Lin. Finding the minimum spatial
keyword cover. In ICDE, pages 685–696. IEEE, 2016.

[10] D.-W. Choi, J. Pei, and X. Lin. On spatial keyword covering.
Knowledge and Information Systems, pages 1–36, 2020.

[11] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k
most relevant spatial web objects. PVLDB, 2(1):337–348, 2009.

[12] G. Cong, H. Lu, B. C. Ooi, D. Zhang, and M. Zhang. Efficient
spatial keyword search in trajectory databases. arXiv:1205.2880,
2012.

[13] K. Deng, X. Li, J. Lu, and X. Zhou. Best keyword cover search.
TKDE, 27(1):61–73, 2015.

[14] J. Fan, G. Li, L. Z. S. Chen, and J. Hu. Seal: Spatio-textual similarity
search. PVLDB, 5(9):824–835, 2012.

[15] D. Feldman, A. Fiat, M. Sharir, and D. Segev. Bi-criteria linear-
time approximations for generalized k-mean/median/center. In
Proceedings of the twenty-third annual symposium on Computational
geometry, pages 19–26, 2007.

[16] I. D. Felipe, V. Hristidis, and N. Rishe. Keyword search on spatial
databases. In ICDE, pages 656–665. IEEE, 2008.

[17] Y. Gao, J. Zhao, B. Zheng, and G. Chen. Efficient collective spatial
keyword query processing on road networks. ITS, 17(2):469–480,
2016.

[18] T. Guo, X. Cao, and G. Cong. Efficient algorithms for answering
the m-closest keywords query. In SIGMOD. ACM, 2015.

[19] W. Li, J. Cao, J. Guan, M. L. Yiu, and S. Zhou. Efficient retrieval of
bounded-cost informative routes. TKDE, 29(10):2182–2196, 2017.

[20] Z. Li, K. Lee, B. Zheng, W. Lee, D. Lee, and X. Wang. Ir-tree: An
efficient index for geographic document search. TKDE, 23(4):585–
599, 2011.

[21] C. Long, R. C.-W. Wong, K. Wang, and A. W.-C. Fu. Collective
spatial keyword queries:a distance owner-driven approach. In
SIGMOD, pages 689–700. ACM, 2013.

[22] K. Makarychev, Y. Makarychev, M. Sviridenko, and J. Ward. A
bi-criteria approximation algorithm for k means. arXiv preprint
arXiv:1507.04227, 2015.

[23] J. Rocha, O. Gkorgkas, S. Jonassen, and K. Nørvåg. Efficient
processing of top-k spatial keyword queries. In SSTD, pages 205–
222. Springer, 2011.

[24] J. B. Rocha-Junior and K. Nørvåg. Top-k spatial keyword queries
on road networks. In EDBT, pages 168–179. ACM, 2012.

[25] S. Shang, R. Ding, B. Yuan, K. Xie, K. Zheng, and P. Kalnis. User
oriented trajectory search for trip recommendation. In EDBT,
pages 156–167. ACM, 2012.

[26] X. Song, J. Xu, R. Zhou, C. Liu, K. Zheng, P. Zhao, and N. Falkner.
Collective spatial keyword search on activity trajectories. GeoIn-
formatica, 24(1):61–84, 2020.

[27] S. Su, S. Zhao, X. Cheng, R. Bi, X. Cao, and J. Wang. Group-
based collective keyword querying in road networks. Information
Processing Letters, 118:83–90, 2017.

[28] V. V. Vazirani. Approximation algorithms. Springer, 2013.

[29] Y.-T. Wen, J. Yeo, W.-C. Peng, and S.-W. Hwang. Efficient keyword-
aware representative travel route recommendation. TKDE,
29(8):1639–1652, 2017.

[30] D. Wu, G. Cong, and C. Jensen. A framework for efficient spatial
web object retrieval. VLDBJ, 21(6):797–822, 2012.

[31] D. Wu, M. Yiu, G. Cong, and C. Jensen. Joint top-k spatial keyword
query processing. TKDE, 24(10):1889–1903, 2012.

[32] D. Wu, M. L. Yiu, C. S. Jensen, and G. Cong. Efficient continuously
moving top-k spatial keyword query processing. In ICDE, pages
541–552. IEEE, 2011.

[33] H. Xu, Y. Gu, Y. Sun, J. Qi, G. Yu, and R. Zhang. Efficient
processing of moving collective spatial keyword queries. VLDBJ,
29(4):841–865, 2020.

[34] Y. Zeng, X. Chen, X. Cao, S. Qin, M. Cavazza, and Y. Xiang.
Optimal route search with the coverage of users’ preferences. In
IJCAI, pages 2118–2124, 2015.

[35] C. Zhang, Y. Zhang, W. Zhang, and X. Lin. Inverted linear
quadtree: Efficient top k spatial keyword search. In ICDE, pages
901–912. IEEE, 2013.

[36] D. Zhang, Y. M. Chee, A. Mondal, A. Tung, and M. Kitsuregawa.
Keyword search in spatial databases: Towards searching by docu-
ment. In ICDE, pages 688–699. IEEE, 2009.

[37] D. Zhang, B. C. Ooi, and A. K. H. Tung. Locating mapped
resources in web 2.0. In ICDE, pages 521–532. IEEE, 2010.

[38] D. Zhang, K.-L. Tan, and A. K. H. Tung. Scalable top-k spatial
keyword search. EDBT/ICDT, pages 359–370. ACM, 2013.

[39] S. Zhao, X. Cheng, S. Su, and K. Shuang. Popularity-aware collec-
tive keyword queries in road networks. Geoinformatica, 21(3):485–
518, 2017.

[40] S. Zhao, L. Zhao, S. Su, X. Cheng, and L. Xiong. Group-based
keyword-aware route querying in road networks. Information
Sciences, 450:343–360, 2018.

Harry Kai-Ho Chan is currently a Post-Doctoral
Researcher at Department of People and Tech-
nology, Roskilde University, Denmark. He re-
ceived the BEng, MPhil and PhD degrees in
computer science and engineering from the
Hong Kong University of Science and Technol-
ogy (HKUST) in 2013, 2015 and 2019, respec-
tively. His research interests include database,
data mining and indoor location-based services.

Shengxin Liu is currently an Assistant Profes-
sor at School of Computer Science and Tech-
nology, Harbin Institute of Technology, Shen-
zhen, China. He received the Ph.D. degree from
the Department of Computer Science, the City
University of Hong Kong, China, and worked
as a Post-Doctoral Research Fellow with the
School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore.
His research interests include computational so-
cial choice, data structures and algorithms, and

algorithmic databases. He is the recipient of Outstanding Student Paper
Award at AAAI 2020 and Best Paper Award at FAW 2020.

Cheng Long (S’11-M’15) is currently an Assis-
tant Professor at the School of Computer Sci-
ence and Engineering, Nanyang Technological
University. He received his PhD degree from the
Hong Kong University of Science and Technol-
ogy, Hong Kong, in 2015, and his BEng de-
gree from South China University of Technol-
ogy, China, in 2010. His research interests are
broadly in data management, data mining and
big data analytics.

Raymond Chi-Wing Wong received the BSc,
MPhil and PhD degrees in computer science
and engineering from the Chinese University of
Hong Kong (CUHK) in 2002, 2004, and 2008,
respectively. He is a professor of the Department
of Computer Science and Engineering, the Hong
Kong University of Science and Technology. His
research interests include database and data
mining.

Cost-Aware and Distance-Constrained
Collective Spatial Keyword Query (Appendix)

distMaxSum distDia

 2

 4

 6

1.0 1.1 1.2 1.3 1.4 1.5

A
v
e

ra
g

e
 C

o
s
t

Distance threshold (× distLB)

distMaxSum distDia

 10

 15

 20

 25

1.0 1.1 1.2 1.3 1.4 1.5

A
v
e

ra
g

e
 C

o
s
t

Distance threshold (× distLB)

(a) costMax (b) costSum

Fig. 10. Effect of average cost on B (Yelp)

distMaxSum distDia

5.2

5.4

5.6

5.8

6.0

1.0 1.1 1.2 1.3 1.4 1.5

A
v
e

ra
g

e
 C

o
s
t

Distance threshold (× distLB)

distMaxSum distDia

26.0

26.5

27.0

27.5

28.0

28.5

1.0 1.1 1.2 1.3 1.4 1.5

A
v
e

ra
g

e
 C

o
s
t

Distance threshold (× distLB)

(a) costMax (b) costSum

Fig. 11. Effect of average cost on B (Hotel)

distMaxSum distDia

5.4

5.6

5.8

6.0

1.0 1.1 1.2 1.3 1.4 1.5

A
v
e

ra
g

e
 C

o
s
t

Distance threshold (× distLB)

distMaxSum distDia

25.5

26.0

26.5

27.0

27.5

28.0

1.0 1.1 1.2 1.3 1.4 1.5

A
v
e

ra
g

e
 C

o
s
t

Distance threshold (× distLB)

(a) costMax (b) costSum

Fig. 12. Effect of average cost on B (GN)

APPENDIX A
PROOF OF THE NP-HARDNESS OF APPROXIMATION

Proof: We prove this theorem by a reduction from the col-
lective spatial keyword query (CoSKQ) problem [21]. Given
a query q with a location q.λ and a set of keywords q.ψ, the
CoSKQ problem is to find a set of objects G such that (1)
they cover all the query keywords and (2) the distance of G,
dist(G), is minimized. The decision problem of the CoSKQ
problem is that given a problem instance of CoSKQ and a
value C , it checks whether there exists a set of objects G
such that G covers q.ψ and dist(G) < C . It has been shown
in [21] that the CoSKQ problem with both the distDia(G)
function and the distMaxSum(G) function is NP-hard.

We prove by contradiction. Suppose that we have a
polynomial-time c-approximation algorithm A for the CD-
CoSKQ problem with c ≥ 1. In other words, in the case that
the problem instance of CD-CoSKQ has feasible solutions, A
would return a feasible solution with its cost at most c times

the cost of the optimal solution; and it returns an empty set
otherwise. It follows that this algorithm could be used solve
the decision problem of the CoSKQ problem as follows.

Given the decision problem of a CoSKQ instance, we
run A with the query location and query keywords the
same as those of the CoSKQ problem and the distance
threshold B as C . Then, if A returns a non-empty solution,
we conclude that the answer to the decision problem is yes;
and otherwise, no. Thus, this leads to a contradiction which
finishes the proof.

APPENDIX B
SETTING THE DEFAULT DISTANCE THRESHOLD B

The results for the dataset Yelp are shown in Figure 10.
According to the results, the average costs of the solutions
decrease when the distance threshold B increases. Still, the
rate of decrease is very small when n > 1.1. Thus, we set the
default value of B to 1.1 times distLB .

The results for the dataset Hotel and GN with different
distance threshold give similar clues and are shown in
Figure 11 and Figure 12, respectively.

APPENDIX C
EFFECT OF QUERY SIZE

Dataset Hotel. The results with costMax and distMaxSum

are presented in Figure 13. According to Figure 13(a), the
running times of the algorithm increase when ∣q.ψ∣ increase,
and our CD-Exact runs faster than Combi-Exact. According
to Figure 13(b), our CD-Appro runs faster than Cao-Appro
and Long-Appro, and it can always achieve cost ratio α
smaller than 1. Besides, the distance ratio β of CD-Appro
is slightly larger than Cao-Appro and Long-Appro, but is
close to 1.

The results with costSum and distMaxSum are presented
in Figure 14. According to Figure 14(a), our CD-Exact runs
faster than Combi-Exact, and their difference increases with
the query size. According to Figure 14(b), the approximation
algorithms have similar running times. CD-Appro achieve
better cost ratios than Cao-Appro and Long-Appro consis-
tently, while CD-Appro has the distance ratios close to 1.

The results with costMax and distDia for dataset Hotel
are similar and are presented in Figure 15. The results with
costSum and distDia for dataset Hotel are presented in
Figure 16.
Dataset GN. The results with costSum and distMaxSum

are presented in Figure 18. According to Figure 18(a), our
CD-Exact runs faster than Combi-Exact, especially when
query size is large. According to Figure 18(b), CD-Appro
and Cao-Appro have similar running times, while Long-
Appro is much slower. Besides, CD-Appro always achieve
the cost ratio close to 1, and outperform Cao-Appro and

Long-Appro. All of them have distance ratios close to 0.9
and smaller than 1.

The results with costMax and distDia for dataset GN
are presented in Figure 19. The results with costSum and
distDia for dataset GN are presented in Figure 20.

APPENDIX D
EFFECT OF B

We set the distance threshold B = distLB × n, where
distLB is the distance cost of the solution found by the
approximation algorithm [21] for the CoSKQ problem. We
vary n from {1.0, 1.05, 1.1, 1.15, 1.20}. The default value of
∣q.ψ∣ = 6.

The results with costMax and distMaxSum on the dataset
Yelp are shown in Figure 21. According to Figure 21(a), the
running times of both CD-Exact and Combi-Exact do not
change much when B increases, and CD-Exact is much
faster than Combi-Exact. It is probably because when B
increases, the number of relevant objects increases, but at
the same time it would be easier to find the feasible set with
minimum cost in an iteration since the budget is relaxed.

According to Figure 21(b), the running times of the
approximation algorithms do not change much when B
increases, and both CD-Appro runs much faster than Cao-
Appro and Long-Appro. For CD-Appro, it is probably be-
cause when B increases, the number of objects processed
increases with the number of key objects. But on the other
hand, a better solution could possibly be found within
each iteration, and reducing the total number of iterations
needed. Thus, the overall running times remain similar.
Besides, the cost ratios α of the approximation algorithms

increase when B increases, while that of CD-Appro remains
close to 1. The reason is that a larger B could allow a
smaller cost in the optimal solution, but Cao-Appro and
Long-Appro cannot fully utilize this advantage, while our
CD-Appro is able to explore possible better solutions. Be-
sides, the distance ratio β of the approximation algorithms
decrease when B increases. This is simply because B is the
denominator in calculating the distance ratios.

The results with costSum and distMaxSum on the dataset
Yelp are shown in Figure 22. According to Figure 22(a), the
running times of both CD-Exact and Combi-Exact increase
whenB increases, and CD-Exact is much faster than Combi-
Exact. According to Figure 22(b), CD-Appro runs faster
than Cao-Appro and Long-Appro, and only increase slightly
when B increases.

The results on distDia provide similar clues and are
presented in Figure 23 and Figure 24.

APPENDIX E
SCALABILITY TEST

The scalability test results with costSum and distMaxSum

are presented in Figure 25. According to Figure 25(a), our
CD-Exact is scalable wrt to the number of objects in the
datasets, e.g., it ran within 10s on a dataset with 10M objects.
Besides, according to Figure 25(b), our CD-Appro is scalable
to large datasets, e.g., they ran within 2s on a dataset with
10M objects. The cost ratio α of CD-Appro is always smaller
than 1, while its distance ratio β is slightly larger than 1.

The results with costMax with distDia are similar and
are presented in Figure 26. The results with costSum with
distDia are presented in Figure 27.

CD-Exact Combi-Exact

0.001

0.01

0.1

3 6 9 12 15

R
u

n
n

in
g

 t
im

e
 (

m
s
)

Query size

CD-Appro Cao-Appro Long-Appro

0.001

0.01

0.1

3 6 9 12 15

R
u

n
n

in
g

 t
im

e
 (

m
s
)

Query size

 0.96

 0.98

 1

 1.02

 1.04

 1.06

3 6 9 12 15

C
o

s
t

ra
ti
o

 α

Query size

 0.85

 0.9

 0.95

 1

 1.05

 1.1

3 6 9 12 15

D
is

ta
n

c
e

 r
a

ti
o

 β

Query size

(a) Exact Algorithms (b) Approximation Algorithms
Fig. 13. Effect of Query Size (i.e., ∣q.ψ∣) (costMax, distMaxSum, Hotel)

CD-Exact Combi-Exact

0.001

0.01

0.1

1

10

100

3 6 9 12 15

R
u

n
n

in
g

 t
im

e
 (

m
s
)

Query size

CD-Appro Cao-Appro Long-Appro

0.001

0.01

0.1

3 6 9 12 15

R
u

n
n

in
g

 t
im

e
 (

m
s
)

Query size

 0.95

 1

 1.05

 1.1

 1.15

3 6 9 12 15

C
o

s
t

ra
ti
o

 α

Query size

 0.85

 0.9

 0.95

 1

 1.05

 1.1

3 6 9 12 15

D
is

ta
n

c
e

 r
a

ti
o

 β

Query size

(a) Exact Algorithms (b) Approximation Algorithms
Fig. 14. Effect of Query Size (i.e., ∣q.ψ∣) (costSum, distMaxSum, Hotel)

CD-Exact Combi-Exact

0.001

0.01

0.1

3 6 9 12 15

R
u
n
n
in

g
 t
im

e
 (

m
s
)

Query size

CD-Appro Cao-Appro Long-Appro

0.001

0.01

0.1

3 6 9 12 15

R
u

n
n

in
g

 t
im

e
 (

m
s
)

Query size

 0.99

 1

 1.01

 1.02

3 6 9 12 15

C
o

s
t

ra
ti
o

 α

Query size

 0.85

 0.9

 0.95

 1

3 6 9 12 15

D
is

ta
n

c
e

 r
a

ti
o

 β

Query size

(a) Exact Algorithms (b) Approximation Algorithms
Fig. 15. Effect of Query Size (i.e., ∣q.ψ∣) (costMax, distDia, Hotel)

CD-Exact Combi-Exact

0.001

0.01

0.1

1

10

100

3 6 9 12 15

R
u
n
n
in

g
 t
im

e
 (

m
s
)

Query size

CD-Appro Cao-Appro Long-Appro

0.001

0.01

0.1

3 6 9 12 15

R
u

n
n

in
g

 t
im

e
 (

m
s
)

Query size

 1

 1.1

 1.2

3 6 9 12 15

C
o

s
t

ra
ti
o

 α

Query size

 0.85

 0.9

 0.95

 1

3 6 9 12 15

D
is

ta
n

c
e

 r
a

ti
o

 β

Query size

(a) Exact Algorithms (b) Approximation Algorithms
Fig. 16. Effect of Query Size (i.e., ∣q.ψ∣) (costSum, distDia, Hotel)

CD-Exact Combi-Exact

 0.001

 0.01

 0.1

 1

3 6 9 12 15

R
u

n
n

in
g

 t
im

e
 (

s
)

Query size

CD-Appro Cao-Appro Long-Appro

 0

 0.03

 0.06

 0.09

 0.12

3 6 9 12 15

R
u

n
n

in
g

 t
im

e
 (

s
)

Query size

 0.95

 1

 1.05

3 6 9 12 15

C
o

s
t

ra
ti
o

 α

Query size

 0.8

 0.9

 1

 1.1

3 6 9 12 15

D
is

ta
n

c
e

 r
a

ti
o

 β

Query size

(a) Exact Algorithms (b) Approximation Algorithms
Fig. 17. Effect of Query Size (i.e., ∣q.ψ∣) (costMax, distMaxSum, GN)

CD-Exact Combi-Exact

 0.01

 0.1

 1

 10

 100

3 6 9 12 15

R
u

n
n

in
g

 t
im

e
 (

s
)

Query size

CD-Appro Cao-Appro Long-Appro

 0.01

 0.1

 1

3 6 9 12 15

R
u

n
n

in
g

 t
im

e
 (

s
)

Query size

 0.9

 0.95

 1

 1.05

 1.1

 1.15

3 6 9 12 15

C
o

s
t

ra
ti
o

 α

Query size

 0.8

 0.9

 1

 1.1

3 6 9 12 15

D
is

ta
n

c
e

 r
a

ti
o

 β

Query size

(a) Exact Algorithms (b) Approximation Algorithms
Fig. 18. Effect of Query Size (i.e., ∣q.ψ∣) (costSum, distMaxSum, GN)

CD-Exact Combi-Exact

 0.001

 0.01

 0.1

 1

3 6 9 12 15

R
u
n
n
in

g
 t
im

e
 (

s
)

Query size

CD-Appro Cao-Appro Long-Appro

 0

 0.03

 0.06

 0.09

 0.12

3 6 9 12 15

R
u

n
n

in
g

 t
im

e
 (

s
)

Query size

 1

 1.002

 1.004

 1.006

 1.008

 1.01

3 6 9 12 15

C
o

s
t

ra
ti
o

 α

Query size

 0.85

 0.9

 0.95

 1

3 6 9 12 15

D
is

ta
n

c
e

 r
a

ti
o

 β

Query size

(a) Exact Algorithms (b) Approximation Algorithms
Fig. 19. Effect of Query Size (i.e., ∣q.ψ∣) (costMax, distDia, GN)

CD-Exact Combi-Exact

 0.01

 0.1

 1

 10

 100

3 6 9 12 15

R
u
n
n
in

g
 t
im

e
 (

s
)

Query size

CD-Appro Cao-Appro Long-Appro

 0

 0.05

 0.1

 0.15

 0.2

3 6 9 12 15

R
u

n
n

in
g

 t
im

e
 (

s
)

Query size

 1

 1.05

 1.1

 1.15

 1.2

3 6 9 12 15

C
o

s
t

ra
ti
o

 α

Query size

 0.85

 0.9

 0.95

 1

3 6 9 12 15

D
is

ta
n

c
e

 r
a

ti
o

 β

Query size

(a) Exact Algorithms (b) Approximation Algorithms
Fig. 20. Effect of Query Size (i.e., ∣q.ψ∣) (costSum, distDia, GN)

CD-Exact Combi-Exact

0.1

1

10

1.00 1.05 1.10 1.15 1.20

R
u

n
n

in
g

 t
im

e
 (

m
s
)

Distance threshold (× distLB)

CD-Appro Cao-Appro Long-Appro

0.1

1

10

1.00 1.05 1.10 1.15 1.20

R
u

n
n

in
g

 t
im

e
 (

m
s
)

Distance threshold (× distLB)

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1.00 1.05 1.10 1.15 1.20

C
o

s
t

ra
ti
o

 α

Distance threshold (× distLB)

 0.8

 0.9

 1

 1.1

1.00 1.05 1.10 1.15 1.20

D
is

ta
n

c
e

 r
a

ti
o

 β

Distance threshold (× distLB)

(a) Exact Algorithms (b) Approximation Algorithms
Fig. 21. Effect of B (costMax, distMaxSum, Yelp)

CD-Exact Combi-Exact

1

100

10000

1.00 1.05 1.10 1.15 1.20

R
u

n
n

in
g

 t
im

e
 (

m
s
)

Distance threshold (× distLB)

CD-Appro Cao-Appro Long-Appro

0.1

1

10

1.00 1.05 1.10 1.15 1.20

R
u

n
n

in
g

 t
im

e
 (

m
s
)

Distance threshold (× distLB)

 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

1.00 1.05 1.10 1.15 1.20

C
o

s
t

ra
ti
o

 α

Distance threshold (× distLB)

 0.8

 0.9

 1

 1.1

1.00 1.05 1.10 1.15 1.20

D
is

ta
n

c
e

 r
a

ti
o

 β

Distance threshold (× distLB)

(a) Exact Algorithms (b) Approximation Algorithms
Fig. 22. Effect of B (costSum, distMaxSum, Yelp)

CD-Exact Combi-Exact

0.1

1

10

1.00 1.05 1.10 1.15 1.20

R
u

n
n

in
g

 t
im

e
 (

m
s
)

Distance threshold (× distLB)

CD-Appro Cao-Appro Long-Appro

0

0.1

0.2

0.3

1.00 1.05 1.10 1.15 1.20

R
u

n
n

in
g

 t
im

e
 (

m
s
)

Distance threshold (× distLB)

 1

 1.005

 1.01

 1.015

 1.02

1.00 1.05 1.10 1.15 1.20

C
o

s
t

ra
ti
o

 α

Distance threshold (× distLB)

 0.8

 0.85

 0.9

 0.95

 1

 1.05

1.00 1.05 1.10 1.15 1.20

D
is

ta
n

c
e

 r
a

ti
o

 β

Distance threshold (× distLB)

(a) Exact Algorithms (b) Approximation Algorithms
Fig. 23. Effect of B (costMax, distDia, Yelp)

CD-Exact Combi-Exact

1

100

10000

1.00 1.05 1.10 1.15 1.20

R
u

n
n

in
g

 t
im

e
 (

m
s
)

Distance threshold (× distLB)

CD-Appro Cao-Appro Long-Appro

0

1

2

3

4

5

1.00 1.05 1.10 1.15 1.20

R
u

n
n

in
g

 t
im

e
 (

m
s
)

Distance threshold (× distLB)

 1

 1.5

 2

 2.5

1.00 1.05 1.10 1.15 1.20

C
o

s
t

ra
ti
o

 α

Distance threshold (× distLB)

 0.8

 0.85

 0.9

 0.95

 1

 1.05

1.00 1.05 1.10 1.15 1.20

D
is

ta
n

c
e

 r
a

ti
o

 β

Distance threshold (× distLB)

(a) Exact Algorithms (b) Approximation Algorithms
Fig. 24. Effect of B (costSum, distDia, Yelp)

CD-Exact Combi-Exact

 0.01

 0.1

 1

 10

 100

 1000

2M 4M 6M 8M 10M

R
u

n
n

in
g

 t
im

e
 (

s
)

Number of objects

CD-Appro Cao-Appro Long-Appro

 0.01

 0.1

 1

 10

 100

2M 4M 6M 8M 10M

R
u

n
n

in
g

 t
im

e
 (

s
)

Number of objects

 0.9

 1

 1.1

 1.2

 1.3

2M 4M 6M 8M 10M

C
o

s
t

ra
ti
o

 α

Number of objects

 0.8

 1

 1.2

 1.4

2M 4M 6M 8M 10M

D
is

ta
n

c
e

 r
a

ti
o

 β

Number of objects

(a) Exact Algorithms (b) Approximation Algorithms
Fig. 25. Scalability Test (costSum, distMaxSum)

CD-Exact Combi-Exact

 0.01

 0.1

 1

2M 4M 6M 8M 10M

R
u
n
n
in

g
 t
im

e
 (

s
)

Number of objects

CD-Appro Cao-Appro Long-Appro

 0.01

 0.1

 1

2M 4M 6M 8M 10M

R
u

n
n

in
g

 t
im

e
 (

s
)

Number of objects

 0.98

 1

 1.02

 1.04

 1.06

2M 4M 6M 8M 10M

C
o

s
t

ra
ti
o

 α

Number of objects

 0.9

 0.95

 1

 1.05

 1.1

2M 4M 6M 8M 10M

D
is

ta
n

c
e

 r
a

ti
o

 β
Number of objects

(a) Exact Algorithms (b) Approximation Algorithms
Fig. 26. Scalability Test (costMax, distDia)

CD-Exact Combi-Exact

 0.01

 0.1

 1

 10

 100

 1000

2M 4M 6M 8M 10M

R
u
n
n
in

g
 t
im

e
 (

s
)

Number of objects

CD-Appro Cao-Appro Long-Appro

 0.01

 0.1

 1

 10

2M 4M 6M 8M 10M

R
u

n
n

in
g

 t
im

e
 (

s
)

Number of objects

 1

 1.1

 1.2

 1.3

 1.4

2M 4M 6M 8M 10M

C
o

s
t

ra
ti
o

 α

Number of objects

 0.8

 0.9

 1

 1.1

2M 4M 6M 8M 10M

D
is

ta
n

c
e

 r
a

ti
o

 β

Number of objects

(a) Exact Algorithms (b) Approximation Algorithms
Fig. 27. Scalability Test (costSum, distDia)

