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A B S T R A C T   

Sulforaphane (SFN) is a naturally occurring molecule present in plants from Brassica family. It becomes bioactive 
after hydrolytic reaction mediated by myrosinase or human gastrointestinal microbiota. Sulforaphane gained 
scientific popularity due to its antioxidant and anti-cancer properties. However, its toxicity profile and potential 
to cause adverse effects remain largely unidentified. Thus, this study aimed to generate SFN-triggered adverse 
outcome pathway (AOP) by looking at the relationship between SFN-chemical structure and its toxicity, as well 
as SFN-gene interactions. Quantitative structure-activity relationship (QSAR) analysis identified 2 toxophores 
(Derek Nexus software) that have the potential to cause chromosomal damage and skin sensitization in mammals 
or mutagenicity in bacteria. Data extracted from Comparative Toxicogenomics Database (CTD) linked SFN with 
previously proposed outcomes via gene interactions. The total of 11 and 146 genes connected SFN with chro
mosomal damage and skin diseases, respectively. However, network analysis (NetworkAnalyst tool) revealed 
that these genes function in wider networks containing 490 and 1986 nodes, respectively. The over- 
representation analysis (ExpressAnalyst tool) pointed out crucial biological pathways regulated by SFN- 
interfering genes. These pathways are uploaded to AOP-helpFinder tool which found the 2321 connections 
between 19 enriched pathways and SFN which were further considered as key events. Two major, interconnected 
AOPs were generated: first starting from disruption of biological pathways involved in cell cycle and cell pro
liferation leading to increased apoptosis, and the second one connecting activated immune system signaling 
pathways to inflammation and apoptosis. In both cases, chromosomal damage and/or skin diseases such as 
dermatitis or psoriasis appear as adverse outcomes.   

1. Introduction 

Sulforaphane (SFN) is a naturally occurring molecule, found in 
plants from Brassica family. It is present in the form of glucoraphanin, a 
precursor that becomes bioactive after hydrolytic reaction mediated by 
plant myrosinase or human gastro-intestinal microbiota [1]. It gained 
popularity in the scientific community at the end of the last century 
when extensive epidemiological cohort and case-control studies 
revealed an inverse association between cancer risk and consumption of 
cabbage, broccoli, cauliflower, and brussels sprouts [2]. Moreover, 

results from clinical studies showed that SFN has potential to improve 
clinical parameters such as blood glucose level and lipid profile as well 
as molecular parameters of oxidative stress [3]. Preliminary evidences 
also indicated that SFN could be used for treatment of mental disorders 
such as autism spectrum disorder, depression and schizophrenia [4]. As 
a small, lipophilic molecule, it has an absolute bioavailability higher 
than other phytochemicals and potential to cross blood-brain barrier 
[5]. Electrophilic isothiocyanate group of SFN provokes the reaction 
with nucleophilic cysteine residues in proteins and has been identified as 
the pharmacophore [6]. SFN is rapidly metabolized by 
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glutathione-S-transferase to SFN-glutathione which then enters the 
pathway of consecutive enzymatic reactions leading to the step-by-step 
hydrolysis and formation of cysteinyl-glycine, cysteine, and N-ace
tylcysteine (NAC) conjugates, which are excreted in urine [7]. 

Sulforaphane is described as an antioxidant compound with the 
ability to inhibit cell proliferation, cause apoptosis and stop cell cycle. 
Here, the most studied underlying mechanisms include induction of NF- 
E2–related factor 2 (Nrf2) transcription factor and suppression of Kelch- 
like ECH-associated protein 1 (Keap1) [2,8]. For example, Keum et al. 
suggested that activation of Nrf2 and antioxidant response element 
(ARE) by SFN is critical for induction of cytoprotective heme 
oxygenase-1 (HO-1) in human hepatoma HepG2 cells [9]. Moreover, 
SFN inhibits cytochrome P450 enzymes and activates phase II enzymes, 
known direct and indirect antioxidants via Nrf2 transcription factor 
pathway, and consequently increase the tissue glutathione (GSH) levels 
[10,11]. Interestingly, in TRAMP C1 prostate cancer cells, SFN treat
ment increased the expression of Nrf2 and NAD(P)H quinone oxidore
ductase 1 (NQO1) by inhibiting DNA methyltransferases and histone 
deacetyltransferases, leading to the cancer cell growth arrest [12]. 
Anti-cancer properties of SFN were also shown in human colon cancer 
cells, where it activated cdc2 kinase and induced G2/M arrest with a 
slight induction of p21 expression. As a result, growth of cancer cells was 
inhibited, and they entered the apoptotic process [13]. However, the 
most recent data indicated that SFN might stimulate hepatocarcino
genesis by interfering with the same transcriptional factor. Zheng et al. 
(2022) reported that, after 3 months of intraperitoneal injection of 25 
mg/kg of SFN to male C57BL/6 mice, significant 
diethylnitrosamine-induced tumor growth and high number of hepa
tomas were seen. These parameters were in correlation with increased 
expression of Nrf2 and NQO1 indicating that once tumor is formed, SFN 
may promote cancer cell growth through activation of Nrf2 pathway 
[14]. Moreover, we previously demonstrated the importance of the 
colon cancer patient’s genome signature in the light of the 
risk-to-benefit profile of SFN therapy. Conducted in silico investigation 
showed that SFN has potential to stimulate immune-suppressive pro
cesses and promote tumor aggressiveness of colon cancer cells [15]. 
Another toxicity study showed that injection of high doses of SFN 
(150–300 mg/kg) in mice produced sedation, hypothermia, impairment 
of motor coordination, decrease in skeletal muscle strength, as well as 
leucopenia [16]. However, to the best of our knowledge, its in-depth 
toxicity profile and potential to cause adverse effects are still unclarified. 

Toxicity predictions have significantly advanced in recent years with 
the constant development and enhancement of in silico methods. Soft
ware like Derek Nexus, GenRA or HazardExpert are applying machine- 
learning algorithms to predict the toxicity of a given compound based 
on its toxic fragments [17]. The (quantitative) relationship between the 
structure and activity of molecules ((Q)SAR) analysis in toxicology has 
proven to be useful for predicting genetic toxicity endpoints of phar
maceutical impurities and assessing the mutagenicity of tobacco flavors 
[18] and non-cancerogenic chemicals from the National Toxicology 
Program database [19]. Moreover, Kianpour et al. (2021) showed that it 
was possible to use QSAR model together with molecular descriptors for 
prediction of oral acute toxicity of organophosphate compounds [20]. 
Thus, implementation of QSAR methods in toxicology is not only 
timesaving and cost-effective, but also able to direct further in vivo 
testing and reduce the use of experimental animals. The advantages and 
disadvantages of this method are explained in more details elsewhere 
[21–23]. In addition, due to the constant improvements of the use of 
computational sciences in toxicology it became possible to predict links 
between chemicals and adverse outcomes (AO) that can impact our 
health. Mechanistic studies and systems toxicology approach allow 
generation of pathways that lead to the predicted outcomes called 
adverse outcome pathways (AOPs) [24]. The concept of AOPs stands for 
structured linear connection between molecular initiating event (MIE) 
to an adverse outcome (AO) via different key events (KEs) through key 
event relationships (KERs) [25]. As KEs represent biological events that 

can be measured, causal relationship between them can be extracted 
from biological networks, making an AOP a subnetwork of the cascade 
biological events [26]. The development of online resources which 
collect the formerly detected relationships between chemical exposures 
and changes in gene expressions that are able to induce variations in 
biological parameters (e.g. contribute to pathogenesis of various dis
eases) can be used for data-mining, analysis and discussion of observed 
links [27]. Further application of these data has been proven useful in 
identification of mechanisms of toxicity. Moreover, AOP framework can 
help in guiding researchers toward key toxic events and assays, thus 
reducing the number of animal experiments [28]. This concept found 
great application in regulatory toxicity testing of chemicals but also in 
drug discovery and drug toxicity testing due to improved mechanistic 
understanding of human disease pathways that often cannot be inves
tigated in animal models [29]. 

Therefore, this study aimed to generate SFN-triggered AOP by 
looking at the relationship between SFN-chemical structure and its 
toxicity, as well as SFN-gene interactions in healthy human cells. 
Moreover, the study objective was to predict KEs and KERs that can lead 
to the proposed AOs. 

2. Methodology 

2.1. Predicting toxic potential of sulforaphane 

2.1.1. Structure-related toxicity prediction 
Derek Nexus (Deductive Estimation of Risk from Existing Knowl

edge) is commercial software that can be used to qualitatively predict 
the toxicity of the test substance based on QSAR. These toxic effects 
prediction program uses rules based on hypotheses derived from the 
sources of published toxicological and chemical data. The Derek Nexus 
software database contains a range of information which link a partic
ular chemical structure and toxic effect and thus covers a wide range of 
toxicological effects. The main advantage of this database lies in the 
areas of mutagenicity, carcinogenicity and skin sensitization [30,31]. 

The program has a graphical interface for input of the previously 
prepared or created chemical structures that will be analyzed. It is 
automatically checked whether the structure is chemically correct (e.g. 
that there is no incorrect valence of the compound). Based on the 
database, the system recognizes parts of the structure that can interact 
with biological systems and lead to toxic effects, called the warning 
structures or toxophores. Each identified toxophore is accompanied by 
the summary of the data, indicating the hazard that was identified, as 
well as the list of all the references stating the potential toxicity [19,30]. 

SMILES formula D, L-sulforaphane - CS (= O) CCCCN = C = S, taken 
from the PubChem website, was uploaded into the Derek Nexus software 
for in silico toxicity predictions [32]. 

2.1.2. Chemical read-across toxicity prediction 
Next, the generalized read-across (GenRA) approach was used to 

check the prediction of SFN-induced toxicities/adverse outcomes. The 
GenRA uses information about how a chemical with known data be
haves to make a prediction about the behavior of another chemical that 
is “similar” but does not have as much data available in the literature 
[33]. In other words, GenRA assists in identifying source analogues and 
making predictions of in vivo toxicity effects for a target substance. 
Moreover, it is implemented in the U.S. Environmental Protection 
Agency’s (EPA) CompTox Chemicals Dashboard to provide public access 
to a GenRA module structured as a read-across workflow [34]. The 
similarity can be annotated as c (for chemistry/structural similarity) or b 
(for bioactivity) depending on the similarity context selected as calcu
lated by the Jaccard index (ranges from 0 to 1; 0 indicating dissimilarity 
and 1 showing identical chemicals). This software automatically filters 
analogues by the availability of in vivo toxicity data. Analogues may be 
identified by using chemical or bioactivity descriptors. There are 3 
different types of chemical descriptors included - Morgan fingerprints, 
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torsion fingerprints and chemotype ToxPrints. The predictions are bi
nary outcomes of the presence or absence of toxicity with quantitative 
measures of uncertainty (AUC and p-value) [34]. For the purpose of this 
investigation analogues were chosen by ToxPrints chemotype similarity 
and filtered by ToxRef data. 

2.2. Data-mining for chemical-gene/protein-disease linkage 

Comparative Toxicogenomics Database (CTD; http://ctdbase.org/) 
was used for identification and extraction of the chemical-gene/protein- 
disease interactions between SFN and proposed toxic (adverse) out
comes. CTD is a publicly available resource with scientifically relevant 
information that enables integration of data towards the better under
standing of the relationships between chemicals, genes/proteins, phe
notypes, diseases, organisms, and exposure data [35,36]. The analysis 
reported here was based on the data downloaded in June 2022. 

2.3. Protein-protein interaction network 

Protein-protein interaction (PPI) network is a crucial step in tox
icogenomic analysis as it helps in generating information about the in
terconnections between genes/proteins in the investigated set. 
Moreover, identification of the first-order interacting proteins enables 
in-depth understanding of protein complexes that function in groups 
[37]. NetworkAnalyst 3.0 (https://www.networkanalyst.ca/) is a web 
tool for network mapping and analyses of genes sets extracted from the 
CTD database. STRING interactome was set as the background data with 
the confidence cutoff score of 900 [38]. 

2.4. Over-representation analysis 

Extracted gene sets from the generated networks were further 
analyzed with the REACTOME pathways-based database (https://react 
ome.org/) to identify as much as possible information about the 
enriched pathways/biological processes related to the gene/protein 
complexes linked to SFN. Captured pathways could be proposed as key 
events related to detected toxic/adverse outcomes. 

Enrichment analysis was performed via the ExperssAnalyst tool 
(https://www.expressanalyst.ca/) that uses ExpressAnalystR, the un
derlying R package synchronized with ExpressAnalyst web server. The 
over-representation analysis (ORA) statistical method was applied 
aiming to determine in which biological pathways pre-defined in the 
REACTOME database, gene subsets from our data are present more than 
would be expected (over-represented). A significance level of 0.05 (p- 
value < 0.05) was used to select the most relevant associations. 
Recognized pathways were further used as potential key events related 
to SFN and detected adverse outcomes. 

2.5. Prioritization of the molecular pathways 

The AOP-helpFinder tool was used to rank the linkage between SFN 
and biological pathways detected in the ORA that can lead to proposed 
AOs. AOP-helpFinder (http://aop-helpfinder.u-paris-sciences.fr/index. 
php) is a web text-mining tool that uses graph theory to calculate the 
scores aiming to prioritize the findings about the stressor – biological 
event connection [24]. It assists in rapid evaluation of existing knowl
edge from PubMed database, currently screening more than 30 million 
available abstracts [39]. The text mining part is used to gather infor
mation about co-mentioned words (for example, SFN and a biological 
event) in an abstract from the scientific literature, while the graph 
theory allows systematization of the findings via calculated position 
score. This score determines the position of the co-occurred terms in an 
abstract [40]. In order to capture the links between SFN and enriched 
molecular pathways, as fully as possible, the existing information 
related to SFN synonyms and chemical terms were retrieved using the 
PubChem database (NIH) (Table S1). 

Next, NaviGO web-tool (https://kiharalab.org/web/navigo/views/ 
goset.php) was used to calculate the functional similarity and associa
tions between detected biological pathways. 

In this study, we applied relevance semantic similarity score (simRel) 
for computing functional similarity of a pair of GO terms/biological 
pathways, c1 and c2: 

simRel(c1, c2) = c ∈ S(c1, c2)
max

(
2⋅ log p(c)

log p(c1) + log p(c2)
⋅(1 − (c))

)

The first term considers the relative depth of the common ancestor c 
to the depth of the two terms c1 and c2, while the second term takes into 
account how rare it is to identify the common ancestor c by chance [41]. 

Finally, to decipher the type of interactions between SFN and 
detected pathways, CTD Chemical–Phenotype Interaction Query tool 
was used, which retrieves both increased and decreased linkages be
tween the tested chemical and phenotype of interest. 

The workflow of the present investigation is shown in the Fig. 1. 

3. Results 

3.1. Structure-related toxicity prediction 

The chemical structure of D, L-sulforaphane was uploaded into the 
Derek Nexus software in the SMILES format (CS(=O)CCCCN=C=S) and 
3 potential toxic effects were retrieved: chromosomal damage in vitro in 
mammal, mutagenicity in vitro in bacterium, and skin sensitization in 
mammal. Two toxophores (structural alerts) were recognized: isocya
nate and isothiocyante that might be responsible for predicted toxic 
effects with plausible evidences, meaning that these findings are likely 
to be true and valid. Details about SFN chemical characteristics recog
nized by the software are shown in the supplementary material (Fig S1). 
To further investigate the structure-related toxicity, GenRA approach 
was applied, but no statistically significant data were found (Fig S2). 
Thus, in order to investigate how SFN could contribute to the chromo
somal damage, mutagenicity or skin sensitization mechanistical analysis 
were performed. 

These analyses directed further in silico investigation which aimed to 
describe the AOP network linked to SFN using a systems toxicology 
approach. 

3.2. The relationship between SFN and toxic effects 

For comprehensive mechanistic studies, available databases were 
screened aiming to collect as much as possible information about the 
molecular targets, biological pathways, and potential AO/toxic effects 
triggered by SFN at different levels of the biological organization. As 
MIE occurs at the molecular level and initiates the SFN interaction with 
the organism, CTD could be useful for detection of the first contact be
tween SFN and human organism by exploring SFN-interacting genes. 

Moreover, CTD database was used to identify the linkage between 
SFN and reported toxic effects on the gene/protein level. Batch Query 
tool extracted all curated and inferred associations between SFN and 
predicted toxic effects – adverse outcomes. Inferred (predicted) associ
ations are based on the data from published literature which separately 
describes the connections between chemicals and genes and, on the 
other hand, genes and diseases. In this case, these interactions are based 
on the assumption that if SFN interacts with gene A, and gene A is 
associated with disease B, then SFN has an association with the disease 
B. The database retrieved 6 chromosome-related pathology processes 
affected by SFN, namely Chromosome 17 Deletion, Chromosome 1q21.1 
Deletion Syndrome, 1.35-Mb, Chromosome 20q11-q12 Deletion Syn
drome, Chromosomal Aberrations, Chromosomal Breakage, and Chro
mosomal Deletion, while no SFN-mutagenicity associations were found. 
Moreover, the link between SFN and skin diseases was obtained and 44 
conditions were identified. Table 1 shows detailed list of SFN – toxic 
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effects associations along with interfering genes and interference score. 
As expected, the highest interference score was obtained for contact 

dermatitis (37.65), psoriasis (20.86), and chloracne (15.63), followed by 
skin neoplasms (15.11) and allergic contact dermatitis (14.85). To 
decipher how SFN could lead to toxic skin-related effects, reported 
interfering genes were downloaded and further analyzed. The total of 11 
genes/proteins involved in the chromosome-related pathology processes 
and 146 genes/proteins reported as SFN – skin diseases interfering genes 
were extracted from CTD and further used in this in silico study 
(Table S2). Binary interactions observed between SFN and collected 
genes are presented in Table S3, along with the doses which provided 
these effects. As shown, SFN was able to increase and decrease gene 
expression in different cell types, including both normal and tumor cells. 
The effect of SFN on AKT1, C3, CXCL8, CYP1A1, GCLC, GSR, IL1B, 
KEAP1, NQO1, TNF, TNFAIP3, TXNRD1, and UGT1A1 genes/proteins 
was hormetic, or in other words, dose and time-dependent or cell type 
specific. Although some interactions were observed in mouse or rat cells, 
CTD database collects chemical-gene relations only if they are also 
relevant for humans. Statistically significant change in gene mRNA 
expression was usually seen after 24 h of cell exposure to SFN. However, 
only 6 h were enough to increase GCLC and NFE2L2 expression in 
human keratinocytes. On the contrary, melanoma cells were exposed to 
SFN for 48 h and 24 h before decreased AKT1 phosphorylation and TYR 
expression, respectively, were captured. Moreover, SFN-mediated dys
regulation of genes listed in the Table S3 might trigger biological 
pathways that lead to proposed adverse effects in healthy human cells 
(chromosomal pathology processes or skin diseases). 

3.3. Protein-protein interaction network 

Comprehensive gene expression profiling and network analytics 
were simultaneously performed in NetworkAnalyst for group of genes/ 
proteins linked to chromosomal pathology processes and skin diseases. 
For 11 and 146 previously detected genes/proteins, first-order inter
acting genes/proteins or, in other words, all genes/proteins directly 
connected to the uploaded set of genes, were pinpointed. Identification 
of the first-order protein partners is an important step for better un
derstanding of complex human protein interactome [42] and further 
explains the proposed MIE defined as SFN-gene interaction. Thus, 11 
unique (seed) genes/proteins connected to chromosomal pathology 
processes generated a network of 490 proteins mutually connected with 

612 edges while 146 unique (seed) skin disease-related genes/proteins 
retrieved a network with 1986 proteins and 3625 edges (connections) 
(Figs. 2 and 3). Genes/proteins detected in created networks are then 
extracted for further investigation. 

3.4. Over-representation analysis and pathways prioritization 

To propose potential key events that can lead to the predicted 
adverse outcomes, ORA was performed with previously downloaded sets 
of genes/proteins. For both groups, 120 molecular pathways from 
REACTOME database were retrieved (p-value < 0.05). From detected 
pathways, 72 were common for chromosomal-related and skin diseases, 
among which „disease“ and „immune-system“ were identified. These 2 
pathways were excluded from further analyses due to their non- 
specificity. NaviGO tool was used to calculate the sematic similarity 
between the detected pathways. The distance between the nodes (bio
logical pathways) is based on the functional similarity of GO terms in 
clusters. Fig. 4 shows that shared pathways cluster in 2 groups: immune 
system [26] and cell cycle regulation [10], while others [34] do not 
show significant similarity to each other (Fig. 4A). Additionally, in each 
group (SFN-chromosomal pathology processes and SFN-skin diseases) 
ORA recognized 48 unique pathways were detected. Similarly, pathways 
related to chromosomal pathology processes grouped into 3 clusters, one 
related to DNA damage repair [30] and 2 other related to cell maturation 
[11] and division [7] (Fig. 4B), while those linked to skin diseases did 
not show significant functional similarity between each other (Fig. 4C). 

To prioritize biological pathways triggered by SFN and related to 
chromosomal pathological processes and skin diseases AOP-helpFinder 
was used. The total of 2321 connections between 19 enriched path
ways and SFN identified in the available literature are listed in the  
Table 2. Detected pathways/potential key events were then manually 
clustered based on the biological processes they are involved in (data 
retrieved from REACTOME). Moreover, no connection between SFN and 
unique pathways was found in the mined scientific publications. 

According to the CTD Chemical–Phenotype Interaction Query tool, 
SFN inhibits cell division by stimulating the negative regulation of 
mitotic phase of the cell cycle and decreasing cell population prolifer
ation. Moreover, SFN stimulates the apoptotic process. Finally, curated 
interactions from CTD revealed that SFN can stimulate inflammatory 
response in both Homo sapiens and Mus musculus and positively regulate 
signal transduction in human cell lines. 

Fig. 1. Study workflow: Generating SFN-induced AOP. Step1: Identification of potential structure-related adverse outcomes; Step2: Data mining for chemical 
interfering genes/proteins and generation of first-order gene/protein networks; Step3: Identification of biological pathways – potential key events; Step 4: Priori
tization of obtained key events and generation of adverse outcome pathway. 
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Table 1 
Associations between SFN and suggested toxic effects along with the interfering 
genes and interference score (CTD Batch Query Tool).  

Disease name Disease 
category 

Interfering genes Interference 
score 

Chromosomal 
Aberrations 

Pathology 
process 

CDK6, GSTM1, GSTP1, 
GSTT1 

2.04 

Chromosomal Breakage Pathology 
process 

CAT, GSTM1, MYC, 
NFE2L2 

2.10 

Chromosomal Deletion Pathology 
process 

CDKN2A 3.88 

Chromosome 1q21.1 
Deletion Syndrome, 
1.35-Mb 

Pathology 
process 

GJA5 4.51 

Chromosome 17 
Deletion 

Pathology 
process 

TP53 3.08 

Chromosome 20q11- 
q12 Deletion 
Syndrome 

Pathology 
process 

EPB41L1 4.75 

Acanthosis Nigricans Skin 
disease 

AHR 3.43 

Alopecia Skin 
disease 

AHR, ABCC2, AR, HR, 
PARP1, TNFRSF10A 

4.48 

Arthritis, Psoriatic Skin 
disease 

BMP4, CD68, CXCL8, 
HLA-C, IL12B, NOS2, 
TNF 

13.1 

Atrichia with Papular 
Lesions 

Skin 
disease 

HR 4.81 

Blister Skin 
disease 

ADAM17 3.32 

Chloracne Skin 
disease 

BTG2, CDK6, CYCS, 
GADD45A, GSTM1, 
GSTM3, ITGB2, 
KRT17, TGM1 

15.63 

Crouzon Syndrome with 
Acanthosis Nigricans 

Skin 
disease 

FGFR3 4.49 

Dermatitis Skin 
disease 

HLA-B, ITGB2, PARP1, 
VCAM1 

2.69 

Dermatitis, Irritant Skin 
disease 

HLA-DPA1, HLA-DPB1 3.56 

Dermatitis, 
Occupational 

Skin 
disease 

ALDH2, BDKRB2, HLA- 
DMA, KNG1 

6.42 

Dermatitis, Atopic Skin 
disease 

AHR, CCDC80, CCL11, 
CCL5, CYP1A1, IFNG, 
IL1B, IL33, IL6, 
MAPK8, S100A8 

8.48 

Dermatitis, Allergic 
Contact 

Skin 
disease 

BCL2, CASP8, CCR2, 
CYP1A1, ETS2, F13A1, 
FGL2, HSD11B1, IFI30, 
IFNG, IL2, IL32, 
IPCEF1, ITGAM, 
MEOX1, MXD1, 
NFE2L2, PLAT, QPCT, 
SAT1, SLC2A3, SPP1, 
TNF, UPP1 

14.85 

Dermatitis, Contact Skin 
disease 

AHR, AKR1B10, 
AKR1C2, BCL2, CCN2, 
CYP1A1, CYP1B1, 
DDIT3, FABP4, FTH1, 
G6PD, GCLC, GSR, 
GSTP1, HLA-DMA, 
HMOX1, HSP90AA1, 
KRT4, NQO1, NQO2, 
NRG1, PIR, S100A8, 
SAA1, SLC7A11, SOD1, 
TLR4, TXN, TXNRD1, 
UGT1A1 

37.65 

Dermatomyositis Skin 
disease 

HLA-B, IL1B, TNF 3.89 

Drug Eruptions Skin 
disease 

CYP1A1, CYP2E1, 
HLA-B, HLA-DPB1, 
IFNG, IL2, KNG1, 
RELA, TNF 

2.49 

Drug Hypersensitivity 
Syndrome 

Skin 
disease 

LRG1, ORM1 4.34 

Eczema Skin 
disease 

CD14 2.98  

Table 1 (continued ) 

Disease name Disease 
category 

Interfering genes Interference 
score 

Exanthema Skin 
disease 

HLA-B, MVK 4.39 

Hair Diseases Skin 
disease 

EIF2AK4 3.89 

Hyperpigmentation Skin 
disease 

AHR 2.41 

Hypotrichosis simplex Skin 
disease 

APCDD1 4.51 

Keratoacanthoma 
familial 

Skin 
disease 

TGFBR1 4.44 

Keratosis Skin 
disease 

AHR, CAT, KEAP1, 
NFE2L2, TP53 

9.32 

Lichenoid Eruptions Skin 
disease 

CXCL8, IL6 4.89 

Marie Unna congenital 
hypotrichosis 

Skin 
disease 

HR 4.84 

Melanoma, Cutaneous 
Malignant 

Skin 
disease 

BAP1, CDKN2A, TERT 5.62 

Melanosis Skin 
disease 

ALDH2 3.13 

Nail Diseases Skin 
disease 

LAMA3 3.54 

Nephrogenic Fibrosing 
Dermopathy 

Skin 
disease 

ACTA2, COL1A1 5.0 

Pemphigoid, Benign 
Mucous Membrane 

Skin 
disease 

PTGER3 4.0 

Pemphigoid, Bullous Skin 
disease 

CXCL8 2.49 

Pemphigus Skin 
disease 

C3 3.16 

Pruritus Skin 
disease 

AHR 3.96 

Psoriasis Skin 
disease 

CAT, CSF2, HLA-C, 
IFIH1, IL12B, IL1B, 
IL6, NFKBIA, NOS2, 
PCNA, PPARG, PTTG1, 
REL, RIGI, SOD2, 
STAT3, TNF, TNFAIP3, 
TP53 

20.86 

Pyogenic arthritis, 
pyoderma 
gangrenosum, and 
acne 

Skin 
disease 

IL1B 3.10 

Scleroderma Skin 
disease 

ACTA2, CCN2, CNR2, 
HDAC5, RHOB, S1PR5, 
SIRT1, TGFBR1, TNF 

8.24 

Skin Abnormalities Skin 
disease 

SOD2 2.41 

Skin Fragility-Woolly 
Hair Syndrome 

Skin 
disease 

DSP 4.67 

Skin Neoplasms Skin 
disease 

AKT1, AQP3, CASP8, 
EPHX1, GSTT1, HIF1A, 
KRT17, NFE2L2, 
NOTCH1, NOTCH3, 
NOTCH4, NPPA, 
PTGS2, PTK2B, RELA, 
SOD2, TGFB1, 
TGFBR1, TP53, TRP53, 
TYR 

15.11 

Skin Ulcer Skin 
disease 

ITGB2, LAMA3, NGF 4.14 

Steatocystoma 
Multiplex 

Skin 
disease 

KRT17 4.64 

Stevens-Johnson 
Syndrome 

Skin 
disease 

ALB, CFP, EP300, HLA- 
B, HLA-C, IFNG, LRG1, 
NOS2, ORM1, PARP1, 
PTGER3, RB1, VCP 

3.70 

Urticaria Skin 
disease 

ALB, GSTM1, HLA- 
DPB1, ICAM1, IL1B, 
TGFB1, TNF, VCAM1 

2.32 

Vitiligo Skin 
disease 

CASP7, IFIH1, NFE2L2, 
TNF 

5.63  
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Finally, results obtained in this in silico investigation and expert 
opinion developed based on the data available in the literature and AOP- 
Wiki database (https://aopwiki.org/) facilitated the generation of SFN- 
triggered AOP shown in Fig. 5. Increased apoptosis, cell cycle disruption, 
decreased cell proliferation, and immune system inflammation were 

defined in AOP-Wiki database as KEs with IDs: KE:1365, KE:1505, 
KE:1812, and KE:1225, respectively. 

4. Discussion 

The QSAR analysis with Derek Nexus software, detected 2 toxoph
ores of SFN, isocyanate and isothiocyante that could potentially induce 
chromosomal damage or skin sensitization. To further decipher and 
understand the link between SFN and predicted AOs, additional in silico 
tests/mechanistic studies were performed. 

4.1. Sulforaphane predicted adverse outcomes 

The CTD database found a connection between SFN and 6 chromo
some related pathology processes through 11 genes/proteins that 
function in the PPI network of 490 proteins. In other words, even though 
SFN interacted with only 11 genes, network analysis showed that it 
could indirectly affect large number of genes/proteins involved in the 
regulation of biological processes. According to ORA, these genes/pro
teins controlled 120 molecular pathways related to cell cycle, immune 
system and signal transduction. Similarly, toxicogenomics data extrac
ted from the CTD pointed out direct interactions between SFN and 146 
genes/proteins leading to 44 skin diseases. This set of genes generated a 
PPI network of 1986 proteins mutually connected with 3625 edges. 
Interestingly, conducted ORA resulted in 120 molecular pathways 
among which 72 were common to pathways related to SFN- 
chromosomal pathology processes. Finally, by screening previously 
published data, AOP-helpFinder was able to capture the link between 
SFN and only 19 out of 120 molecular pathways (Table 2). The highest 
number of connections was extracted for SFN and apoptosis (1581), 
followed by the cell cycle (487) and regulation of mitotic cell cycle 
(110). Each of the detected pathway might represent KE in the network 
of SFN-induced AOs. However, in order to answer the question about 
KER between them and better understand the possible SFN-triggered 
AOPs, data available in the literature and AOP-Wiki database was 
analyzed by our experts. AOPwiki is a primary repository for all the 
generated AOPs developed by the Organization for Economic Co- 
operation and Development (OECD) as one of the tools from the AOP 
Knowledge Base (AOP-KB) [43]. 

Fig. 2. The first-order gene network for SFN-chromosomal pathology processes 
related genes where red and orange nodes represent seed genes. Generated with 
NetworkAnalyst; STRING confidence score 900. 

Fig. 3. The first-order gene network for SFN-skin diseases related genes with pin-pointed seed genes. Generated with NetworkAnalyst; STRING confidence score 900.  
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4.2. Sulforaphane – genes interactions 

Supplementary Table 3 shows the potential of SFN to induce or 
inhibit expression of genes linked to chromosomal pathology processes 
or skin diseases in different cell types, including normal and tumor cells. 
Although, only 4 interactions (reduced AKT1 phosphorylation, 
increased GCLC and NFE2L2 expression, and decreased TYR expression) 
were detected in skin cells, this type of analysis allowed the prediction of 
more human-relevant chemical-gene interactions based on the available 
data. For example, it was noted than SFN increases the expression of 
CD14, which is known marker of atopic dermatitis [44]. Moreover, 
CD14 expression correlates with the progression of skin diseases such as 
skin fibrosis in patients with early diffuse cutaneous systemic sclerosis 
[45]. Similarly, SFN was identified as an inducer of CASP8 gene, a 
caspase which increased activation in vitiligo and psoriatic skin cells 
leads to pyroptosis [46], a newly discovered type of a highly inflam
matory form of lytic programmed cell death [47]. Aberrant NOTCH 
signaling has been linked to the development of psoriasis and skin 
cancers [48]. Oto et al. (2014) explained that NOTCH molecules local
ized in epidermis of normal skin direct the expression of proliferating 

basal cells synthesize keratin 14 (K14) and suprabasal cells express 
keratin 10 (K10), proteins whose irregular expression and synthesis 
leads to anomalies of epidermis in psoriatic skin [49]. Knowing that SFN 
modifies NOTCH3 and NOTCH4 signaling might suggest that SFN 
should be used with caution in patients with psoriasis. Moreover, it was 
reported that IFN-γ induces regenerative epidermal phenotype of pso
riasis through IL-1 activation [50]. As seen in the Table 2, SFN could 
reduce IFN-γ protein activity inhibiting previously mentioned psoriasis 
regenerative mechanism. Another example is SFN-HIF1A inhibitory 
interaction. The loss of HIF1A and HIF2A in mice model causes dry flaky 
skin, impaired permeability barrier, and enhanced sensitivity to cuta
neous allergens via suppression of filaggrin production in primary ker
atinocytes [51]. 

4.3. Grouping molecular pathways into clusters 

Detected molecular pathways were grouped into 4 clusters: 
Apoptosis, Cell Cycle, Cell proliferation, and Signal Transduction, while 
CTD Chemical–Phenotype Interaction Query tool was used for identifi
cation of types of interactions between SFN and defined clusters. 

Fig. 4. (A) Clustering biological pathways common to chromosomal pathology processes and skin-diseases based on relevance semantic similarity score (RSS): red 
circle – biological pathways related to immune system; yellow - biological pathways related to cell cycle. (B) Clustering biological pathways related to chromosomal 
pathology processes: red circle – biological pathways related to mitotic phase of cell division; blue circle – biological pathways related to cell maturation; orange 
circle – biological pathways related to DNA damage repair. (C) Clustering biological pathways related to skin-diseases. Two-dimensional graph was made in NaviGo 
web-tool. 
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4.3.1. Sulforaphane – cell cycle – cell proliferation – apoptosis linkage 
Positive apoptotic anti-cancer potential of SFN and its ability to 

cause cell cycle disruption are documented in pancreatic, prostate, 
breast, lung, cervical, and colorectal cancers [52]. The underlying 
mechanisms are well-developed and includes activation of caspase 9 
[53] and caspases 3/7 [54]. Caspase 9 is one of the initiator caspases 
that activates caspase 3, the most important of the executioner caspases 
in the intrinsic apoptotic pathways [55]. Moreover, in combination with 
carboplatin, SFN was able to arrest cell cycle of cancer cells in the G0/G1 
phase and consecutively upregulated the expression of Bax, cytochrome 
C, apoptosis-inducing factor, caspase-9 and -3, and cleaved poly ADP 
ribose polymerase. As a result, SFN-carboplatin mixture promoted 
apoptosis and inhibited proliferation of lung cancer cells [56]. More
over, when lung cancer cells were treated with 30 µM of SFN, an 
increased G2/M phase population, along with a decreased polyploid 
fraction of cells were seen, which suggested a functional G2/M arrest. 
However, in this case, the major mode of cell death was necrosis, while 
the percentage of apoptotic cells were lower [57]. Apoptotic and anti
proliferative effect of SFN was also seen in colorectal cancer cell lines 
where combinational treatment of SFN and salinomycin inhibited the 

PI3K/Akt pathway and increased the Bax/Bcl-2 ratio [58]. Another 
proposed mechanism of SFN-cell proliferation suppression is the inhi
bition of IL-6/ΔNp63α/Notch axis [59] or PI3K/Akt pathway [60]. 
Consistently, the CTD revealed that SFN could increase apoptosis in 
human cell lines. Notably, increased apoptosis is defined in the AOPwiki 
database as KE:1365, while disrupted cell cycle can be found under 
KE:1505. Moreover, there is a moderate level of evidence that disrupted 
cell cycle leads to apoptosis. In addition, decreased cell proliferation is 
defined as KE:1821 which leads to growth decrease (KE:1521) with 
moderate level of evidence [61]. 

Furthermore, even though the impact of SFN on cell growth, prolif
eration and death was already described, the association between these 
KE and chromosomal pathology processes and/or skin diseases required 
further explanations. For example, contact dermatitis represent a poly
morphic inflammation of the skin which lead to keratinocyte apoptosis 
when it becomes chronic condition [62]. Moreover, in case of allergic 
contact dermatitis, the over-activation of immune system in the dermis 
results in enhanced secretion of proinflammatory cytokines and che
mokines which ultimately activate cytotoxic effector T cells that induce 
keratinocytes apoptosis [63]. Thus, it might be suggested that SFN has 
potential to augment the acute reaction of skin barrier to the irrita
nts/allergens and speed up the transition from acute to chronic phase. 
Another skin disease associated with increased keratinocytes apoptosis 
is the histologic manifestation of sunburned skin. Proposed mechanisms 
involve the direct activation of death receptor by cytokines or direct 
contact with intraepidermal lymphocytes, via TNF and Fas receptors, 
respectively [64]. In addition, sun lights can induce direct DNA-damage 
and upregulate the expression of p53 protein, which activates Bax/Bak 
complex, subsequently leading to apoptosis by stimulating the activa
tion of apoptotic induction of protease-activating factor (Apaf-1), 
caspase-9, and caspase-3 [65]. In other words, SFN might contribute to 
photosensitivity by inducing programed skin cells death. However, there 
are conflicting results in the published literature. For example, Wu et al. 
(2019) detected therapeutic effect of SFN in a murine model of atopic 
dermatitis through the activation of the Nrf2/HO‑1 axis and suppression 
of Janus kinase 1/STAT3 signaling pathway [66]. Similarly, when 
human HaCaT keratinocytes were treated with SFN and phenylethyl 
isothiocyanate increased expression of Nrf2-dependent genes, γGCS, 
HO-1, NQO1, was seen 6 h after 5 μM of SFN and 10 μM of phenylethyl 
isothiocyanate were added to the cell medium. Subsequent activation of 
antioxidant pathways could protect human skin against UVR-induced 
skin apoptosis [67]. In the same experimental settings, SFN alone was 
able to induce Nrf2 transcription factor, phase-2 and antioxidant en
zymes [68]. Notably, Arcidiacono et al. demonstrated that in higher 
doses (5 µg/mL which is equivalent to 28 μM), SFN has the ability to 
induce apoptosis of human epidermal melanocytes [69], indicating 

Table 2 
Prioritized pathways related to SFN, chromosomal pathological processes and 
skin diseases detected with AOP-helpFinder tool.  

Pathway Connections Cluster 

Apoptosis 1581 Apoptosis 
Intrinsic Pathway for Apoptosis 4 Apoptosis 
APC/C-mediated degradation of cell 

cycle proteins 
3 Cell Cycle 

Cell Cycle 487 Cell Cycle 
Cell Cycle Checkpoints 14 Cell Cycle 
G1/S DNA Damage Checkpoints 15 Cell Cycle 
G1/S Transition 1 Cell Cycle 
Regulation of mitotic cell cycle 110 Cell Cycle 
S Phase 32 Cell Cycle 
Downstream signaling of activated 

FGFR 
3 Cell proliferation 

PI3K/AKT activation 12 Cell proliferation 
PIP3 activates AKT signaling 21 Cell proliferation 
Signaling by NOTCH 18 Cell proliferation 
Signaling by EGFR 3 Cell proliferation 
Innate Immune System 4 Immune System 

inflammation 
Signaling by Interleukins 1 Immune System 

inflammation 
Constitutive PI3K/AKT Signaling in 

Cancer 
9 Signal Transduction 

PI3K/AKT Signaling in Cancer 1 Signal Transduction 
Signaling by NGF 2 Signal Transduction  

Fig. 5. Proposed SFN-induced adverse outcome pathway leading from genes dysregulation (MIE) to chromosomal pathology process and/or skin disease (AOs) 
through cell cycle disruption (KE1), decreased cell proliferation (KE2), increased apoptosis (KE3), or immune system inflammation (KE4). Blue lines represent 
evidence-based KER, red lines are predicted KER. 

D. Bozic et al.                                                                                                                                                                                                                                   



Biomedicine & Pharmacotherapy 160 (2023) 114316

9

dose-dependent beneficial effects of SFN on human skin. Moreover, 
8 µM of SFN induced CASP8 gene expression in human cancer cells after 
24 h of exposure [70], suggesting that apoptotic characteristics of SFN 
could also be time-dependent. Sulforaphane-mediated activation of 
Nrf2-pathways has also been proposed as a mechanism which amelio
rates skin aging in male mice [71], as well as in normal human kerati
nocytes when treated with the combination of patented extract 
Fernblock® XP, obtained from Polypodium leucotomos and SFN [72]. 
Thus, SFN dose and treatment duration should be carefully selected to 
ensure the best risk-to-benefit ratio. 

Acquired chromosomal abnormalities affect a single line of cells with 
restricted distribution and might be involved in different pathogenesis, 
including cancer [73]. The basis of both direct and indirect DNA damage 
is the activation of molecular pathways that lead to growth arrest and 
apoptosis. If cells fail to activate repair mechanisms, the high expression 
of chromosomal instability occurs [74]. Therefore, it might be hypoth
esis that chromosomal pathology processes are in tight connection with 
SFN-induced skin diseases. The SFN-mediated DNA damage and 
apoptosis induction could precede the chromosomal instability in ker
atinocytes and thus, skin diseases. 

4.3.2. Sulforaphane – signal transduction – immune system, inflammation 
linkage 

Sulforaphane is recognized as immunomodulator, and thus, it is not 
surprising that Chemical–Phenotype Interaction Query CTD tool pre
dicted SFN-mediated stimulation of immune system potentially leading 
to inflammation. Additionally, the immune system inflammation was 
recognized by AOPwiki as KE:1225. 

The effects of SFN on immune cells have been extensively studied. 
The induction of Nrf2 and inhibition of NFkβ leads to activation of HO-1, 
glutathione and phase II enzymes secretion, while phase I enzymes and 
histone deacetylase remain inhibited. Consequently, SFN exerts chemo 
preventive properties by maintaining redox balance, cellular homeo
stasis and stimulating immune response [75]. Shen et al. (2021) re
ported that SFN improves the cytotoxicity of CAR-T cells by modulating 
the PD-1/PD-L1 pathway and stimulating the secretion of proin
flammatory cytokines [76]. Moreover, some data indicate that SFN 
effectively inhibited the spread of metastatic tumor cells through stim
ulation of cell-mediated immune response by upregulation of IL-2 and 
IFN-gamma, and downregulation of proinflammatory cytokines 
IL-1beta, IL-6, TNF-alpha, and GM-CSF [77]. Interestingly, Lee et al. 
(2012) showed that SFN-stimulated generation of reactive oxygen spe
cies and activation of PI3K/Akt signaling regulate cell survival in human 
mesothelioma cells [78]. 

The dysregulation of the crosstalk between immune and skin cells 
contributes to the pathogenesis of inflammatory skin diseases such as 
psoriasis. Moreover, it was suggested that keratinocyte necroptosis plays 
a critical role in triggering skin inflammation [79]. Another well-known 
immune-mediated skin condition is psoriasis, where Th17/IL-17 axis has 
been identified as a key factor. The main sources of IL-17 are CD4+ T 
helper cells, named Th17, which initiate the binding of IL-17 to its re
ceptor in keratinocytes, leading to their proliferation and release of in
flammatory mediators and chemokines [80,81]. Similarly, IL-17 and 
IL-22 are reported to contribute to skin barrier dysfunction and the 
development of atopic dermatitis, another common inflammatory skin 
disease [82]. Thus, SFN-immune response interaction could alter the 
homeostasis between immunity and skin and contribute to the devel
opment of inflammatory skin diseases. 

5. Conclusion 

The safety profile of SFN and its potential to cause AOs has not been 
extensively studied. Moreover, our recent work suggested that SFN 
should be carefully applied in cancer patients, in whom expression of 
TIMP1, CCL20, SPP1, AURKA, CEP55, NEK2, SOX9 and CDK1 was found 
increased, and expression of CRYAB, PLCE1, MMP28, BMP2 and PLAC8 

was found decreased [15]. Thus, this investigation aimed to further 
elucidate the potential of SFN to cause AOs and untie the underlying 
mechanisms by generating an AOP via combining bioinformatics anal
ysis and systems toxicology approach. The QSAR analysis revealed that 
SFN contains 2 toxophores that could induce chromosomal damage 
and/or skin sensitization. However, available literature contains con
flicting data about the impact of SFN on skin cells, suggesting that its 
beneficial effects are dose and time-dependent. Furthermore, 
data-mining for SFN-gene interactions and subsequential network 
analysis showed that SFN might stimulate or inhibit 490 and 1986 
genes/proteins involved in pathogenesis of chromosomal damage or 
skin diseases, respectively. Interactions on the gene level are defined as 
MIE, which leads to a series of KEs, mutually linked via KERs, ultimately 
forming AOP. Thus, it might be hypothesized that SFN stimulates 
apoptosis-related genes such as CASP7 and CASP8 leading to the 
disruption of biological pathways involved in the cell cycle and 
increased apoptosis, as well as triggers inflammatory genes (CXCL8, 
TNF) connecting activated immune system signaling pathways to 
inflammation and apoptosis. Finally, chromosomal pathology processes 
and/or skin diseases such as dermatitis or psoriasis appear as potential 
SFN-induced AOs. Proposed framework could be used for predicting 
adverse/side effects of any chemical with limited toxicology data and 
further direct toxicology research. 
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