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† These authors contributed equally to this work.

Abstract: Wilms’ tumor, the most prevalent renal tumor in children, is known for its aggressive
prognosis and recurrence. Treatment of Wilms’ tumor is multimodal, including surgery, chemother-
apy, and occasionally, radiation therapy. Preoperative chemotherapy is used routinely in European
studies and in select indications in North American trials. The objective of this study was to build a
novel computer-aided prediction system for preoperative chemotherapy response in Wilms’ tumors.
A total of 63 patients (age range: 6 months–14 years) were included in this study, after receiving their
guardians’ informed consent. We incorporated contrast-enhanced computed tomography imaging to
extract the texture, shape, and functionality-based features from Wilms’ tumors before chemotherapy.
The proposed system consists of six steps: (i) delineate the tumors’ images across the three contrast
phases; (ii) characterize the texture of the tumors using first- and second-order textural features;
(iii) extract the shape features by applying a parametric spherical harmonics model, sphericity, and
elongation; (iv) capture the intensity changes across the contrast phases to describe the tumors’
functionality; (v) apply features fusion based on the extracted features; and (vi) determine the final
prediction as responsive or non-responsive via a tuned support vector machine classifier. The system
achieved an overall accuracy of 95.24%, with 95.65% sensitivity and 94.12% specificity. Using the
support vector machine along with the integrated features led to superior results compared with
other classification models. This study integrates novel imaging markers with a machine learning
classification model to make early predictions about how a Wilms’ tumor will respond to preoperative
chemotherapy. This can lead to personalized management plans for Wilms’ tumors.

Keywords: features engineering; machine learning; preoperative chemotherapy; Wilms’ tumor

1. Introduction

Wilms’ tumor (WT) is the most common primary renal tumor in children, and it is the
second most prevalent intra-abdominal malignancy in children. It accounts for over 90% of
all kidney tumors in children under the age of 18 years and represents 4% of all childhood
malignancies. The annual incidence of WT in the United States is approximately 500 to
600 children under the age of 15, with a peak incidence between 3 and 4 years of age [1,2].

The initial imaging investigation of a child presenting with an abdominal mass is
usually via an abdominal ultrasound; however, axial imaging with magnetic resonance
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imaging (MRI) or computerized tomography (CT) is key to obtain more detailed anatomic
information that is crucial for diagnosis and treatment planning. For instance, a CT can
give an idea about the extent of the local tumor, the presence of a tumor thrombus, and pos-
sible lymph node involvement. The initial enthusiasm for using CT scans to accurately
stage childhood renal tumors preoperatively waned with subsequent studies showing
inaccuracies in the radiologic staging of WT. The accurate staging of WT is based on data
gained during surgical exploration and histopathologic examinations of nephrectomy
specimens [3–5].

Modern care of WT relies heavily on multimodal therapy that combines surgery,
chemotherapy, and occasionally, radiation therapy. This modern multimodal approach has
been refined by the efforts of the Children’s Oncology Group (COG) and the Société inter-
nationale d’oncologie pédiatrique- (SIOP). The COG advocates upfront surgical excision,
whereas the SIOP recommends systematic preoperative chemotherapy protocol, even in the
absence of locally-advanced or metastatic disease. Preoperative chemotherapy results in
reduction of tumor size, facilitates surgical resection, and lower the chance of tumor spillage
during surgery. Nevertheless, preoperative chemotherapy is not without its disadvantages.
In addition to the morbidity of chemotherapeutic agents, preoperative chemotherapy can
lead to the loss of important staging information, such as eradicating neoplastic cells from
lymph nodes with subsequent tumor downstaging. Systematic treatment of solid childhood
renal tumors with preoperative chemotherapy without histopathological confirmation can
expose children with benign renal tumors to undergo unnecessary chemotherapy and ex-
poses those with a different malignant disease to a potentially inappropriate chemotherapy
protocol. Further, tumor progression or rupture may occur while receiving chemother-
apy and waiting for surgery [6]. Taskinen et al. [7] studied the effect of preoperative
chemotherapy in 52 WT patients. The median tumor volume reduction after preoperative
chemotherapy was 68%, but in three cases, tumor volume increased by more than 10% dur-
ing treatment. Similarly, Ora et al. [8] examined WT response to preoperative chemotherapy
and concluded that out of the 1090 patients studied, only 41% responded, whereas 53% had
stable disease and 5% had tumor progression after preoperative chemotherapy. Therefore,
there is a critical unmet demand for a non-invasive modality that can accurately predict
tumor responsiveness to preoperative chemotherapy. If such a modality exists, patients
who are less likely to benefit from preoperative chemotherapy can be offered upfront
surgery and avoid the unnecessary morbidity of preoperative chemotherapy. Recently,
there has been growing interest in the use of AI, machine learning (ML), and the rapid
advances in medical imaging to support clinical decision-making in patients with Wilms’
tumor, as well as other renal tumors. These techniques rely on the extraction of quantitative
information from different imaging sources and combining this information in mathe-
matical algorithms to provide diagnostic or prognostic information [9,10]. For instance,
Xiao-Hui Ma et al. [11] developed a ML model based on contrast-enhanced CTs to preop-
eratively predict Wilms’ tumor stage in 118 patients. In that study, 1781 imaging-based
features were extracted from the region-of-interest (ROI) of each tumor. Their dataset was
split into training and testing sets with an 8:2 ratio. Using the support vector machine
model (SVM), a total of 48 patients were identified as “stage I” and 70 were labeled as
“non-stage I”, with an accuracy of 79%. Misch et al. [12] used pre-therapy FDG-PET to
evaluate WT tumor response to preoperative chemotherapy. The response assessment was
performed by MRI examination of the primary tumor site to assess tumor size reduction. In
a similar perspective, Zheng et al. [13] performed imaging analysis to validate a CT-based
monogram to preoperatively predict clear cell renal cell carcinoma grades. CT images
were taken for 258 patients, and radiomics features were extracted from the arterial phase.
Using the LASSO regression model of a training set of 143 tumors and a validation set of
115 tumors, the ROC and calibration curves were illustrated to determine the performance
of the radiomics nomogram in both sets. A radiomic signature consisting of 20 features
showed promising performance in differentiating between nuclear grades in the training
(AUC = 0.929) and validation (AUC = 0.876) sets. Kim et al. [14] explored the power of ML



Diagnostics 2023, 13, 486 3 of 13

in predicting the late recurrence of renal cell carcinoma that occurs 5 years after surgery.
Conducting the study on eight different ML algorithms to classify 2965 patients as “late
recurrence” or “non-recurrence”, the AdaBoost model reported the top performance with
an accuracy of 79.9%, and an F-1 score of 0.609. Seven markers were selected, namely,
tumor size, histological type, operation type, operative methods, pathological tumor stage,
pathological node stage, and lymphovascular invasion, to show a significant difference
(p < 0.05) between late recurrence and non-recurrence groups.

As far as we know, AI-based systems to predict Wilms’ tumor responses to preopera-
tive chemotherapy have not yet been proposed. In addition, there is no reported system to
consider the textural, functional, and shape features to assess Wilms’ tumor characteris-
tics. To overcome these limitations, we are proposing a new computer-aided prediction
(CAP) system that consists of six steps to predict Wilms’ tumor response to preoperative
chemotherapy, based on contrast-enhanced CT images with three phases: (1) pre-contrast;
(2) portal-venous; and (3) delayed-excretory phase. The proposed system extracts both first-
and second-order textural features, as well as shape and functional features.

2. Materials and Methods

This paper shows a designed CAP system (presented in Figure 1) used to classify the
effect of preoperative chemotherapy on the histologic features of Wilms’ tumor. The pro-
posed framework follows six steps to predict the chemotherapy response: (a) delineate
the tumor images throughout the three contrast phases; (b) extract shape features through
elongation, sphericity, and a new parametric spherical harmonics (SHs) model using the
segmented Wilms’ tumor images; (c) estimate first- and second-order textural features;
(d) calculate the functionality-based features; (e) apply feature integration on the extracted
groups of features; and (f) predict the final decision and calculate the corresponding perfor-
mance metrics based on the optimal classifier. The final prediction can be either responsive
(regression ≥ 30%) or non-responsive (progression or regression < 30%). The main contri-
bution of this study is that it integrates different characteristics of contrast-enhanced CT
images of Wilms’ tumors before preoperative chemotherapy and can predict whether a
patient will respond to the therapy.

Figure 1. Graphical presentation of the suggested framework.

2.1. Data

The proposed CAP system was verified and validated using data from the Urology
and Nephrology Center of Mansoura University, Egypt. The study included 63 patients,
where 17 were “non-responsive” and 46 were “responsive”. Patients ranged from 6 months
to 14 years of age (4.31± 2.82 years). The guardian of each patient gave their informed
consent for participation in this study. Each patient had undergone contrast-enhanced
CT with three phases (i.e., a pre-contrast phase, a portal-venous phase, and a delayed-
contrast phase). A Brilliance CT 64-multislice scanner (Philips Medical Systems, Best, The
Netherlands) was used for scanning. An antecubital vein was injected with 120 mL of a
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contrast agent using a mechanical injector at a rate of 4.0 mL/s. The performed acquisition
was performed using the following parameters: (1) rotation time = 0.75 s; (2) pitch = 0.984;
and (3) slice thickness = 2.5 mm. The left portion in Figure 2 shows random samples
from the dataset. There were three stages for each category (i.e., “non-responsive” and
“responsive”). The three stages were pre-contrast, portal-venous, and delayed-contrast.
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Figure 2. Samples from the dataset and their corresponding segmentations.

2.2. Methods

A manual delineation process was performed on the Wilms’ tumors images (from
the three phases) by radiologists using in-house software, resulting in the construction of
Wilms’ tumors’ ROIs. Samples from the dataset and their corresponding segmentations are
presented in Figure 2.

Feature extraction
The outcomes of the machine learning model heavily rely on the extracted features [15,16].

This study used three groups of features: shape, functionality, and textural features. Shape
features describe the morphological complexity of Wilms’ tumors based on spherical
harmonics, descriptive elongation, and sphericity. Functionality-based features quantify
the enhancement characteristics among the three contrast phases. Lastly, textural features
capture the variant texture patterns within Wilms’ tumor through 1st-order histogram
features and rotation invariant 2nd-order features based on (1) gray-level co-occurrence
matrix (GLCM) and (2) gray-level run-length matrix (GLRLM). These features’ groups are
described in the following section.

Shape features are used to describe the complexity of the identified WT within the
kidney to enhance the sensitivity and specificity results of the response prediction [17,18].
As tumors with high growth rates and varying complex shapes have a high probability
of being non-responsive to preoperative chemotherapy, usage of these features illustrates
the complexity of the tumors, and accordingly, the response tendency. Utilization of
shape descriptions will improve the capabilities of the automated predictions. However,
it is critical to achieve accurate modeling for such an enhancement. For this project,
extracting morphological features was crucial to diagnose Wilms’ tumors using descriptive
shape features (namely, sphericity and elongation) and parametric state-of-the-art spectral
analyses, employing SHs [19–21].

To start with the spherical harmonics approach, select an internal point in the Wilms’
tumor to be the spherical coordinate system origin. The tumor’s surface serves as a
polar and azimuthal angle function represented by a linear combination of the Hτβ basis
functions that are defined on the unit sphere. A triangulated mesh is constructed by
spherical harmonics (SHs) to approximate the surface of the tumor, then apply unit sphere
mapping. It provides accurate modeling using the attraction–repulsion method, as it holds
the origin unit distance and every re-mapped node while retaining the distances between
neighboring nodes [22]. Let the coordinates be Sα,n, with ‖S(α,n)‖ = 1, with an n node,
and the iteration of the attraction–repulsion algorithm be α, where n ∈ 1, . . . , N. In addition,
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let the displacement from node n to node m be denoted as dα,mn = Sα,m − Sα,n, so that
the Euclidean distance between the two nodes is d̄α,mn = ‖dα,mn‖. Finally, let Mn be the
set of index neighbors of node N in the triangulated mesh. Hence, the position for every
node is updated through the attraction step to preserve it, centered with the corresponding
neighbors, as shown in Equation (1) where Sa,1 and Sa,2 are attraction factor parameters of
the algorithm.

S
′
α+1,n = Sα,n + Sa,1 ∑

mεMn

(
dα,mn × d̄2

α,mn + Sa,2 ×
dα,mn

d̄α,mn

)
(1)

Subsequently, the repulsion step inflates all the mesh to prevent its degeneration,
similarly to the attraction step, which allows the nodes to be closer to each other. This is
shown in Equation (2), where Sr is the repulsion factor parameter of the algorithm.

S
′′
α+1,n = S

′
α+1,n +

Sr

2N

N

∑
m=1;m 6=n

1
d̄α,mn

(2)

Then, the unit sphere back projection is applied to the points, as shown in Equation (3).

Sα+1,n =
S
′′
α+1,n

||S′′α+1,n||
(3)

During the attraction–repulsion algorithm terminal iteration αt, the kidney nodule
surface is considered in one-to-one correspondence with the unit sphere. Each node
of the original mesh Sn = (xn,yn,zn) is mapped with the corresponding point Sαt ,n =
(sin(θn)× cos(ϕn), sin(θn)× sin(ϕn), cos(θn), with a polar angle θn ∈ [0, π] and azimuthal
angle ϕn ∈ [0, 2 × π). Later, there is a chance to explain the nodule using spherical
harmonics series. With this performance, the lower-order harmonics give the nodule a
rough depiction, whereas the higher-order harmonics give the surface finer details. Solving
the isotropic heat equation for the surface of the nodule generates the SHs that are a function
of the unit sphere. The Hτβ spherical harmonics with a degree of τ and an order of β is
shown in Equation (4), where the SH factor is sτβ and the associated Legendre polynomial

is L|β|τ , with a degree τ and an order of β.

Hτβ =


sτβL|β|τ × sin(|β|ϕ)× cos (θ) −τ ≤ β ≤ −1
sτβ√

2
L|β|τ × cos (θ) β = 0

sτβL|β|τ × cos(|β|ϕ)× cos (θ) 1 ≤ β ≤ τ

(4)

Finally, using Equation (4), the Wilms’ tumor object is approximated through SHs.
The higher-order combination SHs represent the tumors’ complexity. Thus, the total
number of markers that quantify the identified tumor’s morphological complexity is the
number of SHs used to approximate the original tumor, which was 50 for this work to
modify the reconstruction of the tumors. After choosing a sufficient number, calculate the
reconstruction error for each approximation between the approximated shape and original
mesh. The original mesh of Wilms’ tumor is inherently aligned with the approximated
shape mesh resulting from the unit sphere mapping for each approximation. Then, the sum
of Euclidean distances between the corresponding nodes results in the total error between
the two mesh models. By calculating the 50 approximations for each tumor, obtaining the
reconstruction errors is essential to describe the morphology of Wilms’ tumors. Samples
from the constructed SHs are presented in Figure 3.

(1) Initialization Process:

– Triangulate the nodule surface.
– Apply the Laplacian filtering to smooth the triangulated mesh.
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– The spherical parameterization is initialized using an arbitrary topology-preserving
map onto the unit sphere.

– Fix the Sa,1, Sa,2, Sr, and threshold T values.

(2) Attraction-repulsion Process:

– For every α = 0, 1, . . .

* For n = 1, . . . , N

· Determine S′α+1,n using Equation (1)

* For every n = 1, . . . , N

· Determine S′′α+1,n using Equation (2)
· Let Sα+1,n = S′′α+1,n/‖S′′α+1,n‖

* If maxn ‖Sα+1,n − Sα,n‖ ≤ T, Then let αt = α + 1 and Terminate.

Original 1 SH 10 SH 40 SH 50 SH
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Figure 3. Samples from the constructed SHs.

Sphericity is a measure of the tumor region’s roundness in relation to a sphere. It is
an arbitrary measurement that is not affected by scale or direction. This measure ranges
from 0 to 1 with a 0-value indicating the roughest shape and a 1-value referring to a smooth
sphere. It is worth mentioning that compared with other solids, a sphere has the least
surface area for a given volume. It is calculated using Equation (5), where A and V denote
the surface area and volume of the tumor.

sphericity =
3
√

36× π ×V2

A
(5)

The ROI shape’s elongation reveals the link between the two biggest major compo-
nents. It is calculated using Equation (6), where λ1 and λ2 refer to the second-largest and
the largest axes, respectively. The values fall into a range of 0 to 1, with a 0-value indicat-
ing that the object is maximally elongated and a 1-value indicating that the cross-section
between the first and second biggest primary moments is circular.

elongation =

√
λ1

λ2
(6)
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Functionality-based features: the purpose of using intensity enhancement is to quan-
tify Wilms’ tumors’ functionality. They are computed using changes in gray-level intensity
across the contrast phases to extract 3 features to the enhancement changes between the
3 phases. The slopes are known as the change in gray-level intensity rate time for each
phase. The non-responsive tumors showed more rapid slopes (i.e., higher absolute values)
than those of the responsive ones.

Textural features are used to improve the specificity and sensitivity results of the
prediction of Wilms’ tumor chemotherapy response. Textural analysis was applied using
1st- and 2nd-order textural features to express the heterogeneity/homogeneity of the
extracted tumors from 3 different phases: delayed-contrast, pre-contrast, and portal-venous
phase. The purpose of using these features was motivated from the knowledge that tumors
with a heterogenous shape have a high probability of being non-responsive to preoperative
chemotherapy. A normalized histogram shows the approximation of all the first-order
texture characteristics. Second-order textural features were also used (i.e., GLCM and
GLRLM) due to first-order texture being sensitive to noise [19,23,24]. The main reason for
using both types was to detect the inhomogeneity in WTs.

GLCM clarifies how frequently the values of a pair of gray-level intensities appear
adjacently within the object. It is a matrix that takes into account the spatial relationships
between a neighborhood block’s reference and surrounding voxels. It determines the
frequencies of each pair of gray levels based on the range of the target object’s gray levels.
Construction for the GLCM begins by specifying the gray-level range of Wilms’ tumor
objects and normalizing the observed values of the gray level to the aimed range. Later,
every possibility of each pair is determined and illustrated in rows and columns of the
matrix (every element in the matrix is related to two values of gray levels representing the
element row and column). Lastly, we compute the value of each element by examining the
difference between each voxel and its neighbors. The neighborhood block is determined by
a distance <

√
2 that leads to the calculations of the rotation invariant. During the analysis

phase, the gray-level values were normalized to a range of [0, 255], resulting in a GLCM of
256× 256. After constructing GLCM, we normalize a matrix by summing all elements = 1
to extract the distinct textural features. The extracted six features were correlation, energy,
second angular moment, dissimilarity, contrast, and homogeneity.

GLRLM examines the voxel runs to measure the voxel connectivity. It counts how
many times a row of voxels containing a certain gray-level value has occurred. The gray-
level range is represented by the number of rows in this matrix, whereas the highest run
and greatest object dimension are represented by the number of columns. As a result,
the frequency of a certain gray-level value is shown by each member in the matrix for a
given consecutive voxel run length. Every structure has a matrix of 256 rows (gray-level
normalized range), and the number of columns varies among the objects. In this case,
the main concern is the runs that have consecutive horizontal voxels in the XY-plane (of the
same layer), and the vertical voxel runs are examined in the Z-axis (among several layers).
Finally, the different computed measures of GLRLM are used to describe the textures of
the structures. The following 16 features that are extracted from the GLRLM quantify
the gray level run: Long and Short Run Emphasis (shortly, LRE and SRE), Gray Level
Non-Uniformity (GLN), Run Length Non-Uniformity (RLN), Gray-Level Variance (GLV),
Run Percentage (RP), Run Entropy and Variance (RE and RV), High and Low Gray Level
Run Emphasis (HGLRE and LGLRE), Short Run High and Low Gray Level Emphasis
(SRHGLE and SRLGLE), and Long Run High and Low Gray Level Emphasis (LRHGLE
and LRLGLE). Figure 4 presents a graphical comparison between the GLCM and GLRLM.
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GLRLM
3D Section

GLCM
3D Section

Figure 4. Graphical comparison between the GLCM and GLRLM.

Classification and Optimization
The extracted features characterizing the tumors are integrated using fusion to predict

their response to preoperative chemotherapy. These integrated sets of features are then fed
to an ML-based SVM classification model. Each algorithm has its own hyperparameters,
and hence, grid search (GS) is used to compute the optimum values of the different
hyperparameters. The optimal hyperparameters of the classification model were found
to be the quadratic kernel, tolerance = 0.001, maximum iterations = unlimited, γ = 0.001,
degree = 3, decision function shape “ovr” (i.e., one-vs-rest), cache size = 200, no tie breaking,
and regularization parameter = 1 [25].

To assess the model’s predictive ability, different performance metrics are estimated.
Accuracy, sensitivity, specificity, and f1-scores are examples of these performance metrics.
They all belong to so-called overlap-based metrics. They are based on the basic cardinalities
of the confusion matrix (i.e., TP, FP, FN, and TN) between the predicted and actual value.
Accuracy is the proportion of correct predictions to the total input samples. The sensitivity
(i.e., recall or true positive rate (TPR)) is the metric that measures the model’s capability
to produce true positive predictions of each available category. In other words, it is the
ratio of positive points that are correctly classified as positive out of all positive points.
Similarly, specificity (i.e., true negative rate (TNR)) assesses the model’s capability to
produce true negative predictions of each available category. In other words, it is the ratio
of negative points that are correctly classified as negative out of all negative points. The F1
score (i.e., dice coefficient or overlap index) is the harmonic mean between precision and
recall, and it ranges from 0 to 1. It indicates how many instances were correctly classified
(i.e., how precise the classifier is), along with ensuring that it does not ignore a large portion
of samples. A graphical summarization of the confusion matrix is presented in Figure 5.

Cross-validation is referred to as out-of-sample testing. Its overall aim is to assess
ML algorithms by training them on different subsets derived from the input dataset.
Additionally, it can be applied to detect overfitting, which implies that the model is not
generalizing patterns effectively in unseen data. K-fold cross-validation refers to a case
when the dataset is split into a K number of folds. K indicates the number of sets the original
dataset is split into. Thus, each fold is utilized as a testing set at one point in the process.
Using K-fold cross-validation allows all data parts to be represented in both training and
testing data, leading to better evaluations of the performance of our model. Additionally,
using k-fold cross-validation, more models will be producing more results. For instance,
if the k-value is set to 4, 4 different models will be trained, and hence, 4 different results
will be available to be used for evaluation of the performance of the model. In this study,
we used 3 different cross-validation approaches, namely, leave-one-subject-out (LOSO),
4-fold, and 10-fold.
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Figure 5. Graphical summarization of the confusion matrix.

3. Experiments and Results

To highlight the added value of this system, as discussed earlier, the current study
suggests a CAP system that predicts the response of childhood solid renal tumors to preop-
erative chemotherapy based on tumor imaging characteristics extracted from preoperative
contrast-enhanced CT scans, as shown in Figure 1. The CAP utilizes the CT images across
three phases. It extracts first- and second-order textural features, as well as shape and
functionality-based features, as shown in Table 1.

Table 1. The number of entries for each group of extracted features and the phase they are ex-
tracted from.

Features Contrast-Phase Number of Features

Texture Features

Histogram-based (first-order) Venous 26

GLCM (second-order) Pre + venous + delayed 18 (6 per phase)

GLRLM (second-order) Pre + venous + delayed 36 (12 per phase)

Shape Features

Spherical harmonics Venous 50

Descriptive Venous 2

Functionality-Based Features

Enhancement slopes Pre + venous + delayed 2

All

Integrated Pre + venous + delayed 134

Using a tuned SVM classifier, the performance of the suggested CAP system was
evaluated utilizing these extracted features. To highlight the effectiveness of integrating the
individual markers, the performance of these individual models was compared with the
diagnostic abilities of a model utilizing the integrated group of features. As shown in Table 2,
utilizing the integrated features with the CAP system outperformed using individual
groups of features in terms of all evaluation metrics. This featural integration fused
different characteristics of the tumors to get a defining value of each group, which led to
improved diagnostic performance. For the individual groups of features, the second-order
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textural features achieved the highest accuracy (92.06%) among all groups. The GLCM had
the highest sensitivity (95.65%), and the spherical harmonics outperformed other groups
in terms of specificity (94.14%). The highest F1-score was 0.95, which was reported by the
GLCM and GLRLM groups. The texture feature groups reported better results than the
other groups. By integrating all features, the accuracy improved to 95.24% and the F1-score
improved to 0.97. The sensitivity and specificity remained 95.65% and 94.12%, respectively.

Table 2. Comparison of the suggested CAP system’s diagnostic performance using the individual
features with a tuned SVM classifier, looking at accuracy, specificity, sensitivity, and F1-scores.

Features Accuracy % Sensitivity % Specificity % F1-Score

Texture Features

Histogram
(first-order) 87.30 89.13 82.35 0.91

GLCM
(second-order) 92.06 95.65 82.35 0.95

GLRLM
(second-order) 92.06 93.48 88.24 0.95

Shape Features

Spherical
harmonics 90.84 89.13 94.12 0.93

Descriptive 90.84 91.30 88.24 0.93

Functionality-Based Features

Enhancement
slopes 88.89 89.13 88.24 0.92

All

Integrated 95.24 95.65 94.12 0.97

To highlight the robustness and reproducibility of the suggested approach, the ex-
periments were performed using stratified 4-fold, 10-fold, and LOSO cross-validation
approaches. For each validation, different ML classifiers, namely, K-Nearest Neighbor
(KNN), Decision Tree (DT), Random Forest (RF), Logistic Regression (LR), Multi-Layer
Perceptron (MLP), and SVM, were trained on the integrated group of extracted features
and tuned using the GS to select the optimal hyperparameters. It is worth mentioning that
for both 10-fold and 4-fold approaches, the experiments were repeated 10 times, and the
evaluation metrics were reported in terms of means and standard deviations. For the
LOSO (reported in Table 3), with an accuracy, sensitivity, specificity, and F1-score of 95.24%,
95.65%, 94.12%, and 0.97, respectively, the SVM outperformed all other ML classifiers. It
achieved at least 5% higher specificity than other models.All accuracy, F1-score, and sensi-
tivity results were above 90%. The results of the 10-fold approach are tabulated in Table 4.
All the utilized classifiers achieved inferior results compared with those obtained by the
SVM. Aside from the SVM, the RF classifier outperformed other classifiers in both accuracy
and sensitivity, but was limited by its relatively low specificity. The SVM and LR models
reported the lowest standard deviations, which were 0%. The highest accuracy was 93.65%
by the SVM model, the highest sensitivity was 9565% by the SVM model, the highest
specificity was 88.24% by the SVM, LR, and KNN models, and the highest F1-score was
0.96 by the SVM model.

For the 4-fold approach (Table 5), the SVM also achieved the highest diagnostic
performance. Both KNN and LR showed high specificity, but their accuracy and sensitivity
were almost the lowest among the incorporated classifiers.
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Table 3. The evaluation metrics of different ML classifiers using LOSO cross-validation approach,
along with the integrated group of extracted features.

Classifier Accuracy % Sensitivity % Specificity % F1-Score

DT 90.48 93.48 82.35 0.93

KNN 92.06 93.48 88.24 0.95

LR 90.48 91.30 88.24 0.93

MLP 92.06 93.48 88.24 0.95

RF 92.06 95.65 82.35 0.95

SVM 95.24 95.65 94.12 0.97

Table 4. The evaluation metrics (reported in mean ± standard deviation after 10 repetitions) of
different ML classifiers using stratified 10-fold cross-validation approach, along with the integrated
group of extracted features.

Classifier Accuracy % Sensitivity % Specificity % F1-Score

DT 89.95 ± 1.98 92.03 ± 3.69 84.31 ± 2.77 0.93 ± 0.02

KNN 89.42 ± 0.75 89.86 ± 2.71 88.24 ± 4.80 0.93 ± 0.01

LR 88.89 ± 0.00 89.13 ± 0.00 88.24 ± 0.00 0.92 ± 0.00

MLP 89.95 ± 0.75 92.03 ± 3.69 84.31 ± 7.34 0.93 ± 0.01

RF 91.01 ± 0.75 94.20 ± 2.71 82.35 ± 4.80 0.94 ± 0.01

SVM 93.65 ± 0.00 95.65 ± 0.00 88.24 ± 0.00 0.96 ± 0.00

Table 5. The evaluation metrics (reported in mean ± standard deviation after 10 repetitions) of
different ML classifiers using stratified 4-fold cross-validation approach, along with the integrated
group of extracted features.

Classifier Accuracy % Sensitivity % Specificity % F1-Score

DT 85.71 ± 2.24 89.13 ± 3.07 76.47 ± 8.32 0.90 ± 0.02

KNN 86.77 ± 2.70 86.96 ± 4.70 86.27 ± 7.34 0.91 ± 0.02

LR 84.66 ± 2.70 85.51 ± 2.71 82.35 ± 4.80 0.89 ± 0.02

MLP 85.71 ± 1.30 89.13 ± 3.07 76.47 ± 9.61 0.90 ± 0.01

RF 88.36 ± 1.50 91.30 ± 3.07 80.39 ± 7.34 0.92 ± 0.01

SVM 91.01 ± 1.98 91.30 ± 1.77 90.20 ± 2.77 0.94 ± 0.01

4. Discussion

Following discussions with the medical team, we were motivated by the fact that
non-responsive tumors to preoperative chemotherapy showed a heterogenous appearance,
complex shapes, and rapid enhancement across the three contrast phases. Hence, we
decided on characterizing Wilms’ tumors before chemotherapy by extracting shape, texture,
and functionality-based features. Textural features were used to evaluate the inhomogeneity
of tumor lesions. Textural analysis incorporated mathematical equations to evaluate the
gray-level spatial variation in images to provide a quantitative analysis of the tumor’s
texture. Textural analysis was incorporated within our study in the form of first- and
second-order (i.e., GLCM and GLRLM) features. Moreover, parametric spectral analysis
employing spherical harmonics was used, along with other shape features, to capture
multiple aspects of the histological formation of the tumors. To validate performance,
different cross-validation approaches were used in the experiments. Multiple tuned ML-
based classification models were utilized on the retrieved groups of features. Firstly, each
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individual group of features was used, along with the classification models, to reach the
final decision. The features were then integrated together, and the final prediction was
made utilizing these integrated features. Various performance measures were incorporated
to report on the overall performance. The SVM classifier, along with the integrated group
of features, outperformed other ML models.

5. Limitations

The current study limitations included: (1) the limited size of the dataset; (2) the focus
on only machine learning algorithms; and (3) classifying the cases into only two categories.
We suggest that these limitations be addressed in future work.

6. Conclusions and Future Work

The developed CAP system integrated texture, shape, and functionality-based fea-
tures, which led to an impressive predictive performance (accuracy = 95.24%) using an
SVM classification model. The obtained experimental results demonstrate the viability
of integrating different significant features representing diverse characteristics of Wilms’
tumors to make early predictions on tumor response to preoperative chemotherapy.

In future work, we aim to use a larger dataset. The classification of the preoperative
response into more categories (i.e, static, regressive, and progressive) is another area to
be addressed. Moreover, deep learning methods could be utilized with the help of convo-
lution neural networks (CNNs) and data augmentation techniques to perform automatic
segmentation of Wilms’ tumors [26,27].
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