
Jurnal Teknik Informatika (JUTIF) DOI: https://doi.org/10.20884/1.jutif.2023.4.1.821
Vol. 4, No. 1, Februari 2023, hlm. 109-115 p-ISSN: 2723-3863
 e-ISSN: 2723-3871

109

IMAGE DETECTION IN THE AIMBOT PROGRAM USING YOLOV4-TINY

Arief Kelik Nugroho*1, Ipung Permadi2, Ahmad Habiballah3

1,2,3Informatika, Fakultas Teknik, Universitas Jenderal Soedirman, Indonesia

Email: 1arief.nugroho@unsoed.ac.id, 2ipung.permadi@unsoed.ac.id, 3ahmad.habiballah@gmail.com

(Naskah masuk: 10 Januari 2023, Revisi : 30 Januari 2023, diterbitkan: 10 Februari 2023)

Abstract

Cheats are a way for players to gain an unfair advantage. The rise of cheats in online games encourages game

producers to increase the security of their games by implementing an anti-cheat system. However, the currently

widely circulated anti-cheat system only monitors incoming and outgoing raw data. With the widespread use of

image detection systems, we can fool most of today's anti-cheat systems. This can be done by capturing the image

that appears on the screen and then processing it through the image detection system. From the process, it can be

seen whether there are opponents that appear on the screen. If there is, the program will move the mouse to the

place where the enemy is and shoot it. This program is built on the core of the YOLOv4-tiny image detection

system.

Keywords: Aimbot, Convolutional Neural Networks, First Person Shooter, Games, Image, Yolo.

DETEKSI CITRA PADA PROGRAM AIMBOT MENGGUNAKAN YOLOV4-TINY

Abstrak

Cheat adalah cara bagi pemain untuk mendapatkan keuntungan yang tidak adil. Maraknya cheat dalam game online

mendorong produsen game untuk meningkatkan keamanan game mereka dengan menerapkan sistem anti-cheat.

Namun, sistem anti-cheat yang beredar luas saat ini hanya memantau data mentah yang masuk dan keluar. Dengan

meluasnya penggunaan sistem deteksi gambar, kita dapat menipu sebagian besar sistem anti-cheat saat ini. Hal ini

dapat dilakukan dengan menangkap gambar yang muncul di layar dan kemudian memprosesnya melalui sistem

image detection. Dari proses tersebut, bisa dilihat apakah ada lawan yang muncul di layar. Jika ada, maka program

akan menggerakkan mouse ke tempat musuh berada dan menembaknya. Program ini dibangun di atas inti dari

sistem deteksi gambar YOLOv4-tiny.

Kata kunci: Aimbot, Citra, Jaringan Saraf Tiruan Konvolusional, Game, Penembak Orang Pertama, Yolo.

1. INTRODUCTION

As technology develops, games are becoming

more and more popular. One of these game genres is

FPS (First Person Shooter). In this game, players are

required to be able to move the mouse quickly,

agilely, and accurately in order to beat other players.

However, not all players can do that well enough.

Some of them even rely on cheats to gain an unfair

advantage over their opponents. There are many

kinds of cheats.

One of the many kinds of cheats that exist is

aimbot. Aimbot is a computer program designed to

help players target their opponents automatically.

Most of the existing cheats make changes to the raw

data that goes in and out when the game in question

is being run by taking advantage of weaknesses in the

game's security system.

Game developers use many ways to quell

existing cheats[1], one of which is by implementing a

system to detect suspicious incoming and outgoing

data flows and strengthen the existing security system

in their games. Players who are found to have used

cheats will be punished according to the provisions

that apply to each game. This anti-cheat system is

complete enough to crush the cheats that roam

around.

Therefore, to find a way to outsmart the current

anti-cheat system, and to encourage the advancement

of security technology in existing games, a cheat is

made that does not change the raw data in the game

in question.

In this program, an aimbot application will be

made without being detected by the existing security

system by creating a program that can take images

that appear on the screen and then process them on an

image detection algorithm that will determine

whether there are enemies in the image. When the

program detects an enemy, the program then sends an

input signal to the computer to move the cursor

https://doi.org/10.20884/1.jutif.2023.4.1.821
mailto:arief.nugroho@unsoed.ac.id
mailto:ipung.permadi@unsoed.ac.id
mailto:ahmad.habiballah@gmail.com

110 Jurnal Teknik Informatika (JUTIF), Vol. 4, No. 1, Februari 2023, hlm. x-y

towards the enemy. Thus, the aimbot program is

created without the need to read and change the raw

data that enters and exits the game in question.

Aimbot is a program that is often used in

multiplayer shooting games where users can target

their opponents automatically[2]. This gives users a

great advantage as they don't have to move the mouse

quickly and precisely to outperform their opponents.

In the development process, Python is the

programming language that is most often used in

machine learning thanks to its developers and

community who have created many useful libraries

for scientific calculations and machine learning[3].

Python was chosen because the YOLO algorithm

used in this program was created using Python.

Python itself has various modules that can be

combined. In this program, the Multiple Screen Shots

(MSS) module is used to capture the screen and

pyautogui to move the mouse. MSS was chosen

because of its fast process and can be integrated with

other modules such as Python Image Library (PIL)

and NumPy. Pyautogui was chosen because it has

various options on mouse movement

You Only Look Once (YOLO) is an algorithm

for detecting an object contained in an image or

video. YOLO itself uses Convolutional Neural

Networks as the main structure[4], [5]. YOLO was

chosen because this neural network architecture

works faster than other detection methods[6]. The

YOLO version used in this application is YOLOv4-

tiny. This version was chosen because the available

hardware is not strong enough to run the YOLOv4

version[7], [8].

2. METHOD

The research method used in this study can be

seen in Figure 1.

Figure 1. Research Method.

2.1. Identification of problems

The main problem with existing cheats is that

the operating methods do not differ much from each

other[9], [10]. This makes the existing security

system in a game can detect it easily. Therefore we

need a new method that cannot be detected by the

security system.

2.2. Data collection

In the data collection process, the default dataset

in YOLOv4-tiny is used. This dataset has been

through a training process so that it can be directly

used in the program to be created. This dataset

contains common objects that are commonly found,

one of which is human objects. This human object

will later be used to detect opponents in the program

to be created.

2.3. Program Development

In the development process, several methods

were found that were suitable to be applied to this

program, namely the MSS module to capture images

on the screen quickly and the PyAutoGUI module to

move the mouse.

Images that have been captured by MSS will be

processed by OpenCV to be cut and compressed. The

image is then processed using the YOLOv4-tiny

neural architecture network. The result of the

processed image will be sent to the python program

to convert it into mouse input using PyAutoGUI.

MSS stands for Multiple Screen Shots and is a

module in python that can capture images that appear

on the screen. MSS is very light and fast compared to

other image capture modules. MSS itself also

integrates well with OpenCV.

PyAutoGUI is a module in python that can

provide input, either keyboard or mouse, to the

computer[8]. This allows the python application that

we create to interact with other applications. in

PyAutoGUI, there is a fail-safe function to pause each

PyAutoGUI call. To ensure the program can send

mouse input quickly and continuously, this fail-safe

feature is disabled at the start of the program.

2.4. Program Testing

This stage is carried out to test whether the

program created can work as expected. Testing is

done by running the program while the game is

running and seeing if the program can detect the

opponent and move the cursor towards the opponent.

The test was carried out on a Lenovo brand

laptop with the IdeaPadS340 model with an AMD

Ryzen 5 3500U Processor with a Radeon Vega

Mobile Gfx 2.10 GHz GPU which has a RAM size of

8 GB.

The game used to be tested is Counter Strike:

Condition Zero. This game was chosen because it is

an old game so it does not require a lot of memory

and computational processes to run, given the

limitations of existing hardware and the need for a

fairly large computational process by the program

created.

3. HASIL DAN PEMBAHASAN

3.1. Network Structure

YOLOv4-tiny uses CSPDarknet53-tiny on its

backbone network using the CSPBlock module found

in the cross stage partial network, replacing the

ResBlock module in the residual network. The

CSPBlock module divides the feature map into two

parts, and combines the two parts with a cross-stage

residual edge. This allows gradient paths to be spread

over two different network paths to increase the

Start
identificati

on of
problems

data
acquisition

Developme
nt

Evaluation

Arief Kelik Nugroho, dkk, Image Detection In The Aimbot Program Using … 111

correlation difference contained in the gradient

information. The CSPBlock module can strengthen

the learning ability of convolutional networks

compared to the ResBlock module by increasing the

calculation time of about 10-20%, this process

increases accuracy. To reduce the number of

calculations that exist, this process eliminates the

computational bottleneck that has a lot of

computations in the CSPBlock module. This

increases the accuracy of the YOLOv4-tiny method

in the case of constant or reduced computations[11],

[12]

YOLOv4-tiny uses the LeakyReLU function as

an activation function on CSPDarknet53-tiny without

using the Mish activation function used in

YOLOv4[13]. The LeakyReLU function can be seen

in equetion 1

 𝑦 = {
 𝑥𝑖 𝑥𝑖 ≥ 0
𝑥𝑖

𝑎𝑖
𝑥𝑖 < 0 (1)

Where : 𝑎𝑖 ∈ (1, +∞) constant parameters.

As part of the feature aggregation, the YOLOv4-

tiny method uses the pyramid network feature to

extract feature maps with different scales to increase

object detection speed, without using spatial pyramid

pooling and path aggregation networks used in the

YOLOv4 method. YOLOv4-tiny itself uses feature

maps with different sizes, namely 13×13 and 26×26

to predict the detection results[13], [14]. If the input

size is 416×416 and the feature classification is

80[15], the YOLOv4-tiny structure can be shown in

Figure 2.

Figure 2. YOLOv4-tiny structure.

3.2. Prediction Process

The prediction process in YOLOv4-tiny is the

same as the method used in YOLOv4[12][13]. All

inputs obtained will be resized to be uniform. Then

the input image will be divided into a grid of S×S size.

on each grid there is a bounding box totaling B which

is used to detect objects. This causes the program to

give an output of S×S×B for each image obtained. If

the center of an object is in a grid, then the bounding

box in the grid will predict the object.

To reduce redundancy in the prediction process,

a confidence threshold is created. If the confidence

value of a bounding box is greater than the confidence

threshold, the bounding box will be saved[16]. If the

confidence value is lower, the bounding box will be

deleted. The formula for calculating the confidence

value of a bounding box can be seen in equetion 2.

𝐶𝑖
𝑗

= 𝑃𝑖,𝑗 ∗ 𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ (2)

Where:

𝐶𝑖
𝑗
 : confidence value of bounding box ke-j grid i.

𝑃𝑖,𝑗: object function value.

If the value the object in the box j is 1 in grid i,

𝑃𝑖,𝑗. otherwise, 𝑃𝑖,𝑗 is 0. 𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ represents the cross

between the existing shading between the predicted

box and the ground truth box. The higher the

objectness value obtained, the closer the predicted

box will be to the ground truth box. The loss function

used in YOLOv4-tiny is the same as in YOLOv4. The

loss function itself consists of three parts which can

be stated in equetion 3.

𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠1 + 𝑙𝑜𝑠𝑠2 + 𝑙𝑜𝑠𝑠3 (3)

With loss1 as the confidence loss function,

loss2 as a classification loss function, and loss3 as a

bounding box regression loss function[17].

The problem that arises when adapting a domain

using a discriminator is that the discriminator assigns

the same importance to different samples. This makes

some parts difficult to transfer and can cause negative

values to appear. To solve this problem, the CDAN

method is used which applies entropy to the network

which can be seen in equetion 4.

𝑙𝑜𝑠𝑠1 = − ∑ ∑ 𝑊𝑖𝑗
𝑜𝑏𝑗

[�̂�𝑖

𝑗
𝑙𝑜𝑔 (𝐶𝑖

𝑗
) + (1 −𝐵

𝑗=0
𝑆2

𝑖=0

�̂�𝑖

𝑗
) 𝑙𝑜𝑔 (1 − 𝐶𝑖

𝑗
)] − 𝜆𝑛𝑜𝑜𝑏𝑗 ∑ ∑ (1 −𝐵

𝑗=0
𝑆2

𝑖=0

𝑊𝑖𝑗
𝑜𝑏𝑗

) [�̂�𝑖

𝑗
𝑙𝑜𝑔 (𝐶𝑖

𝑗
) + (1 − �̂�𝑖

𝑗
) 𝑙𝑜𝑔 (1 − 𝐶𝑖

𝑗
)]

 (4)

Where 𝑆2 is the number of grids in the input

image, B is the number of bounding boxes in a grid,

𝑊𝑖𝑗

𝑜𝑏𝑗
 is a function on the object. If bounding box j in

grid i detect object, then the value 𝑊𝑖𝑗

𝑜𝑏𝑗
 is 1.

Otherwise 𝑊𝑖𝑗

𝑜𝑏𝑗
 is 0. 𝐶𝑖

𝑗 is a confidence score in the

predicted box dan �̂�𝑖

𝑗
 is confidence score in the truth

box. Whereas for𝜆𝑛𝑜𝑜𝑏𝑗 is a weight value.

112 Jurnal Teknik Informatika (JUTIF), Vol. 4, No. 1, Februari 2023, hlm. x-y

The classification loss function itself can be

seen in equetion 5

𝑙𝑜𝑠𝑠2 =

− ∑ ∑ 𝑊𝑖𝑗
𝑜𝑏𝑗

∑ [�̂�
𝑖

𝑗
(𝑐) 𝑙𝑜𝑔 (𝑝

𝑖
𝑗(𝑐)) −𝑐

𝑐=1
𝐵
𝑗=0

𝑆2

𝑖=0

 (1 − �̂�
𝑖

𝑗
(𝑐)) 𝑙𝑜𝑔 (1 − 𝑝

𝑖
𝑗(𝑐))] (5)

Where 𝑝𝑖

𝑗(𝑐) as the predictive probability and

�̂�𝑖

𝑗(𝑐) sas the probability of the truth of the objects

included in the c classification that are in the

bounding box j and grid i.

For the bounding box regression loss function,

it can be seen in equetion 6.

𝑙𝑜𝑠𝑠3 = 1 − 𝐼𝑂𝑈 +
𝜌2(𝑏,𝑏

𝑔𝑡
)

𝑐2 +

16

𝜋4

(𝑎𝑟𝑐𝑡𝑎𝑛𝑤𝑔𝑡

ℎ𝑔𝑡 −𝑎𝑟𝑐𝑡𝑎𝑛𝑤
ℎ)

4

1−𝐼𝑂𝑈+ 4

𝜋2(𝑎𝑟𝑐𝑡𝑎𝑛𝑤𝑔𝑡

ℎ𝑔𝑡 −𝑎𝑟𝑐𝑡𝑎𝑛𝑤
ℎ)

2 (6)

Where:

 𝐼𝑂𝑈 as shading above the unit between the

predicted bounding box and the truth bounding box.

𝑤𝑔𝑡 and ℎ𝑔𝑡 as the width and height of the truth

bounding box.

𝑤 and ℎ as width and height predicted bounding

box.

𝜌2(𝑏, 𝑏𝑔𝑡) shows the Euclidean distance

between the midpoints of the predicted bounding box

and the truth bounding box.

C as the minimum diagonal distance between a

box that can contain a predicted bounding box and a

truth bounding box.

The first step that needs to be done in

implementing this application is to prepare the

dataset. The dataset used is the default YOLOv4-tiny

dataset that has gone through the training process.

Once the dataset is ready, the program can be run.

When the program is running, a small screen will

appear to monitor the ongoing detection. On this

screen, a bounding box will appear showing what and

where the detected object is. In addition, the program

detection speed in frames per second will also appear

on the terminal. The display screen along with the

terminal can be seen in Figure 3.

After the program runs, the game you want to

play can be run. The program will capture the image

that appears in the center of the screen. This captured

image will be processed by a program which will

produce output in the form of movement and mouse

input.

Figure 3. Screenshot and terminal

3.3. Evaluation

After testing the program on the game Counter

Strike: Condition Zero, it is known that the program

can run smoothly with speeds ranging from 18-20 fps.

The program can also detect enemies that appear and

shoot them automatically. The average percentage of

detection success obtained from 5 different maps is

50.56%. This value is obtained by calculating the

average number of times the opponent is detected by

the program manually within 5 minutes on each map.

The percentage of detection success on 5 different

maps can be seen in Figures 4, 5, and 6

Figure 4. The number of enemies that appear on the screen for

each map

Figure 5. Number of enemies detected by the program on each

map

203 199
215 211

159

0

50

100

150

200

250

Dust_2 Inferno Nuke Quarry Train

120
106

72

154

54

0

20

40

60

80

100

120

140

160

180

Dust_2 Inferno Nuke Quarry Train

Arief Kelik Nugroho, dkk, Image Detection In The Aimbot Program Using … 113

Figure 6. Percentage of program detection on each map

From the data obtained, it can be concluded that

the Quarry map has the largest detection percentage,

while the Nuke map has the smallest detection

percentage. This is influenced by the existing texture

on the map. Some places on certain maps have a

texture that resembles the texture of the opponent so

that the program is difficult to distinguish between the

two. as can be seen in Figure 4.

Figure 4. The program cannot detect the opponent because the

texture is similar to the texture of the walls and floors

In addition to similar textures, in certain places

on the map there are places that have minimal

lighting. This also greatly affects the detection as can

be seen in Figure 5.

Figure 5. The program cannot detect the opponent due to the lack

of lighting in that place

Another problem that arises in this program is

that the program has difficulty recognizing enemies

that are at a distance. This is because the program

compresses the captured image which causes the

enemy's image to become blurred so that the

YOLOv4-tiny algorithm cannot recognize the enemy

as shown in Figure 6.

Figure 6. The program cannot detect an opponent who is at a

considerable distance

Another problem that arises is that the program

sometimes detects objects incorrectly. An object that

is not an opponent is sometimes detected as an

opponent. This results in players sometimes shooting

at the ground or walls that are considered enemies.

The program also often makes players shoot their

own friends because they too are detected as humans.

This can be seen in Figure 7 and Figure 8.

Figure 7. The program detects his own rifle as a player

59,113
53,266

33,488

72,985

33,962

0

20

40

60

80

Dust_2 Inferno Nuke Quarry Train

114 Jurnal Teknik Informatika (JUTIF), Vol. 4, No. 1, Februari 2023, hlm. x-y

Figure 8. The program can't tell the difference between friends

and foes, so it shoots its own comrades

Another problem that arises is that the program

prioritizes detecting other objects that are not

opponents. This happens because the dataset is still

general and has not been specific to human-shaped

objects. This causes a drastic decrease in accuracy on

maps that have a lot of common objects as happened

on the Train map as can be seen in Figure 9.

(a)

(b)

Figure 9. a) The program detects objects other than the opponent

and tends to prioritize those objects b) Decreased FPS when law

In addition, the program also experienced a

significant decrease in performance when detecting

more than 1 opponent. This is because the non-

maximal suppression (NMS) process used when the

program detects an object really drains a lot of

computer performance, which results in decreased

detection speed [9].

4. CONCLUSION

The problems that arise as well as heavy

hardware requirements make this program can not be

used smoothly on common devices. In the future,

further development is needed to perfect this program

to increase the speed and accuracy of detection. The

testing process is better by using more adequate

hardware to increase the possibility of enemy

detection without sacrificing detection speed. For

further development in the future, optimization can be

done by creating its own dataset specifically for

detecting human objects. This is necessary so that the

program can recognize character objects more

optimally and to reduce errors when the program

performs the detection process. In addition, a more

effective method can be found in applying the non-

maximum suppression process to speed up the image

processing when an enemy is detected and create a

system to distinguish friend and foe so that incidents

of shooting teammates can be avoided.

REFERENCES

[1] S. Laato, S. Rauti, L. Koivunen, and J. Smed,

“Technical cheating prevention in location-

based games,” in ACM International

Conference Proceeding Series, 2021. doi:

10.1145/3472410.3472449.

[2] S. Raschka and V. Mirjalili, Python Machine

Learning: Machine Learning & Deep

Learning with Python, Scikit-Learn and

TensorFlow 2, Third Edition, no. January

2010. 2019.

[3] J. Redmon and A. Angelova, “Real-time

grasp detection using convolutional neural

networks,” in Proceedings - IEEE

International Conference on Robotics and

Automation, 2015, vol. 2015-June, no. June.

doi: 10.1109/ICRA.2015.7139361.

[4] Z. Jiang, L. Zhao, L. I. Shuaiyang, and J. I. A.

Yanfei, “Real-time object detection method

for embedded devices,” ArXiv, vol. 3, 2020.

[5] P. Ren, L. Wang, W. Fang, S. Song, and S.

Djahel, “A novel squeeze YOLO-based real-

time people counting approach,”

International Journal of Bio-Inspired

Computation, vol. 16, no. 2, 2020, doi:

10.1504/ijbic.2020.109674.

[6] W. He, Z. Huang, Z. Wei, C. Li, and B. Guo,

“TF-YOLO: An improved incremental

network for real-time object detection,”

Arief Kelik Nugroho, dkk, Image Detection In The Aimbot Program Using … 115

Applied Sciences (Switzerland), vol. 9, no.

16, 2019, doi: 10.3390/app9163225.

[7] L. v. Yingli et al., “A comparative study of

different machine learning algorithms in

predicting the content of ilmenite in titanium

placer,” Applied Sciences (Switzerland), vol.

10, no. 2, 2020, doi: 10.3390/app10020635.

[8] D. Xu and Y. Wu, “Improved YOLO-V3 with

densenet for multi-scale remote sensing

target detection,” Sensors (Switzerland), vol.

20, no. 15, 2020, doi: 10.3390/s20154276.

[9] I. Permadi, A. K. Nugroho, and M. R.

Rachmat, “PREDICTION OF THE

AMOUNT OF PEPPER HARVEST BY

USING FUZZY ASSOCIATIVE

MEMORY,” Jurnal Teknik Informatika

(Jutif), vol. 3, no. 1, pp. 177–182, 2022.

[10] Q. Oktiriani, A. K. Nugroho, and E.

Maryanto, “FRONTEND DEVELOPMENT

IN THE FINAL STUDY MANAGEMENT

SYSTEM (SIPEDA) AT THE

ENGINEERING FACULTY OF

JENDERAL SOEDIRMAN

UNIVERSITY,” Jurnal Teknik Informatika

(Jutif), vol. 3, no. 2, pp. 321–329, 2022.

[11] X. Zhang, Y. Zhang, B. He, and G. Li,

“Research on remote sensing image aircraft

target detection techonlogy based on

YOLOv4-tiny,” Guangxue Jishu/Optical

Technique, vol. 47, no. 3, 2021.

[12] X. Liu, Y. Zhang, F. Bao, K. Shao, Z. Sun,

and C. Zhang, “Kernel-blending connection

approximated by a neural network for image

classification,” Comput Vis Media (Beijing),

vol. 6, no. 4, 2020, doi: 10.1007/s41095-020-

0181-9.

[13] X. Hou, J. Ma, and S. Zang, “Airborne

infrared aircraft target detection algorithm

based on YOLOv4-Tiny,” in Journal of

Physics: Conference Series, 2021, vol. 1865,

no. 4. doi: 10.1088/1742-

6596/1865/4/042007.

[14] T. Jiang and J. Cheng, “Target Recognition

Based on CNN with LeakyReLU and PReLU

Activation Functions,” in Proceedings - 2019

International Conference on Sensing,

Diagnostics, Prognostics, and Control,

SDPC 2019, 2019. doi:

10.1109/SDPC.2019.00136.

[15] W. Fang, L. Wang, and P. Ren, “Tinier-

YOLO: A Real-Time Object Detection

Method for Constrained Environments,”

IEEE Access, vol. 8, 2020, doi:

10.1109/ACCESS.2019.2961959.

[16] Y. Chen, Q. Guo, X. Liang, J. Wang, and Y.

Qian, “Environmental sound classification

with dilated convolutions,” Applied

Acoustics, vol. 148, 2019, doi:

10.1016/j.apacoust.2018.12.019.

[17] Y. Ji, H. Zhang, Z. Zhang, and M. Liu,

“CNN-based encoder-decoder networks for

salient object detection: A comprehensive

review and recent advances,” Inf Sci (N Y),

vol. 546, 2021, doi:

10.1016/j.ins.2020.09.003.

