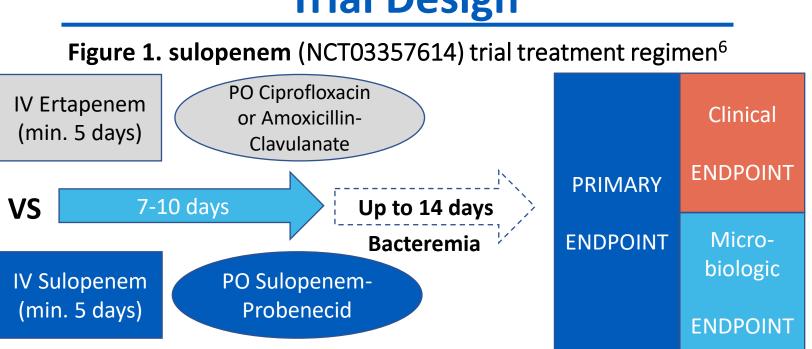
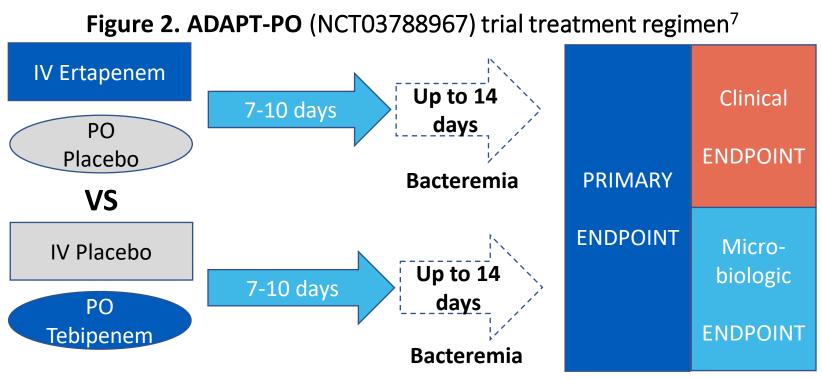
Oral Sulopenem and Tebipenem for Complicated Urinary Tract Infection and Pyelonephritis in patients with Extended-Spectrum Beta-Lactamase (ESBL)-producing Gram Negative, Susceptible Bacteria

Development of Oral Carbapenems


Carbapenems Use in Current Standard's of Care

- Carbapenems are the drug of choice for ESBL-producing gram negative Enterobacteria, such as *E. coli* and *Klebsiella spp*¹
- Infectious Diseases Society of America (IDSA) guidelines recommend carbapenems, ciprofloxacin, levofloxacin, and trimethoprim-sulfamethoxazole (TMP-SMX) as treatment options for pyelonephritis and complicated UTI²


Oral Carbapenems

- Increased incidence in ESBL-producing gram-negative Enterobacteria isolates that produce less favorable treatment outcomes in 3rd and 4th generation cephalosporins, including ceftriaxone and cefepime¹
- Also, increased incidence in fluoroquinolone non-susceptible strains, as well as TMP-SMX-resistant strains¹
- Carbapenems are a crucial alternative for multi-drug resistant ESBL strains. However, carbapenems are only available in the U.S. as IV formulation²
- Development of oral carbapenems could produce favorable clinical and microbiologic outcomes
- The clinical trials for the oral carbapenems such as tebipenem and sulopenem are reviewed here

Table 1. In vitro minimum inhibitory concentration of selected gram-negative organisms3-5						
	Sulopenem			Tebipenem		
	Range	MIC50	MIC90	Range	MIC50	MIC90
E. Coli	≤0.008-4	0.03	0.06	≤0.015 to 0.12	0.03	0.06
K. pneumoniae	0.03 to >8	0.06	0.12	0.03 to >32	0.03	>32
P. Aeruginosa	≤8 to >128	32	>64	4 to >32	>32	>32
P. Mirabilis	≤0.008-1	0.25	0.5	NR	NR	0.39
E. Cloacae	≤0.016-8	0.12	0.5	NR	NR	NR
S. Marcescens	0.06 to >128	1	16	NR	NR	25
M. Morganii	0.03-4	0.5	1	NR	NR	NR
P. Rettgeri	≤0.008 to >8	0.25	0.5	NR	NR	NR
P. Stuartii	0.03-1	0.12	0.5	NR	NR	NR

Ertapenem 1g q24 h; Ciprofloxacin 500 mg Q12H, Amoxicillin-Clavulanate 875-125 mg Q12H Sulopenem IV 1 g daily, Sulopenem PO and Probenecid 500 mg Q12H

Ertapenem 1g q24 h; tebipenem 600 mg TID

Subject Baseline Characteristics

Table 2. General baseline characteristics of both sulopenem and tebipenem trial ^{6,7}				
	NCT03357614 (Sulopenem)	ADAPT-PO (Tebipenem)		
Central/Eastern Europe	96%	99%		
Females	59%	58%		
Age (Mean)	58 years	58 years		
Caucasian Race	99%	99%		
Creatinine clearance >30	95%	NR		
Pyelonephritis	59%	49%		
Complicated UTI	41%	51%		
Common Pathogens	E. coli, K. pneumoniae (88%)	E. coli, K. pneumoniae (90%)		
ESBL-Producing strains	26%	24%		
FQ-NON-susceptible	39%	39%		
TMP/SMX-NON- susceptible	36%	43%		

References

1. Centers for Disease Control and Prevention. November 22, 2019. https://www.idsociety.org/practice-guideline/amr-guidance/#Extended-Spectrum%CE%B2-Lactamase-ProducingEnterobacterales. Accessed february 2, 2023. 2. Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, et al. IDSA; 2022. https://www.idsociety.org/practice-guideline/amr-guidance/#Extended-Spectrum%CE%B2-Lactamase-ProducingEnterobacterales. Accessed february 2, 2023. 2. Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, et al. IDSA; 2022. https://www.idsociety.org/practice-guideline/amr-guidance/#Extended-Spectrum%CE%B2-Lactamase-ProducingEnterobacterales. Accessed february 2, 2023. 2. Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, et al. IDSA; 2022. https://www.idsociety.org/practice-guideline/amr-guidance/#Extended-Spectrum%CE%B2-Lactamase-ProducingEnterobacterales. Accessed february 2, 2023. 2. Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, et al. IDSA; 2022. https://www.idsociety.org/practice-guideline/amr-guidance/#Extended-Spectrum%CE%B2-Lactamase-ProducingEnterobacterales. Accessed february 2, 2023. 2. Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, et al. IDSA; 2022. https://www.idsociety.org/practice-guideline/amr-guidance/#Extended-Spectrum%CE%B2-Lactamase-ProducingEnterobacterales. Accessed february 2, 2023. 2. Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, et al. IDSA; 2022. https://www.idsociety.org/practice-guideline/amr-guidance/#Extended-Spectrum%CE%B2-Lactamase-ProducingEnterobacterales. Accessed february 2, 2023. 2. Tamma PD, Aitken February 2, 2023. 3. Zhanel GG, Pozdirca M, Golden AR, et al. Drugs. 2022;82(5):533-557. 4. Jain A, Utley L, Parr TR, et al. Clin Infect Dis. 2022;76(1):78-88. 7. Eckburg PB, Muir L, Critchley IA, et al. Critchley IA, et al. Clin Infect Dis. 2022;76(1):78-88. 7. Eckburg PB, Muir L, Critchley IA, et al. Clin Infect Dis. 2022;76(1):78-88. 7. Eckburg PB, Muir L, Critchley IA, et al. Clin Infect Dis. 2022;76(1):78-88. 7. Eckburg PB, Muir L, Critchley IA, et al. Clin Infect Dis. 2022;76(1):78-88. 7. Eckburg PB, Muir L, Critchley IA, et al. Clin Infect Dis. 2022;76(1):78-88. 7. Eckburg PB, Muir L, Critchley IA, et al. Clin Infect Dis. 2022;76(1):78-88. 7. Eckburg PB, Muir L, Critchley IA, et al. Clin Infect Dis. 2022;76(1):78-88. 7. Eckburg PB, Muir L, Critchley IA, et al. Clin Infect Dis. 2022;76(1):78-88. 7. Eckburg PB, Muir L, Critchley IA, et al. Clin Infect Dis. 2022;76(1):78-88. 7. Eckburg PB, Muir L, Critchley IA, et al. Clin Infect Dis. 2022;76(1):78-88. 7. Eckburg PB, Muir L, Critchley IA, et al. Clin Infect Dis. 2022;76(1):78-88. 7. Eckburg PB, Muir L, Critchley IA, et al. Clin Infect Dis. 2022;76(1):78-88. 7. Eckburg PB, Muir L, Critchley IA, et al. Clin Infect Dis. 2022;76(1):78-88. 7. Eckburg PB, Muir L, Critchley IA, et al. Clin Infect Dis. 2022;76(1):78-88. 7. Eckburg PB, Muir L, Critchley IA, et al. Clin Infect Dis. 2022;76(1):78-88. 7. Eckburg PB, Muir L, Critchley IA, et al. Clin Infect Dis. 2022;76(1):78-88. 7. Eckburg PB, Muir L, Critchley IA, et al. Clin Infect Dis. 2022;76(1):78-88. 7. Eckburg PB, Muir L, Critchley IA, et al. Clin Infect Dis. 2022;76(1):78-88. 7. Eckburg PB, Muir L, Critchley IA, et al. Clin Infect Dis. 2022;76(1):78-88. 7. Eckburg PB, Muir L, Critchley IA, et al. Clin Infect Dis. 2022;76(1):78-88. 7. Eckburg PB, Muir L, Critchley IA, et al. Clin Infect Dis. 2022;76(1):78-88. 7. Eckburg PB, Muir L, Critchley IA, et al. Clin Infect Dis. 2022;76(1):78-88. 7. Eckburg PB, Muir L, Critchley PB, Mu NEJM. 2022;386(14):1327-1338. 8. U.S. Securities and Exchange Commission. May 3, 2022. https://www.sec.gov/Archives/edgar/data/1701108/000119312522137586/d241547dex991.htm. Accessed February 2, 2023. 9. Iterum Therapeutics plc. September 28, 2021. https://www.iterumtx.com/news/press-releases/detail/78/iterum-therapeuticsprovides-update-from-fda-type-a-meeting. Accessed February 12, 2023.

Daniel J Yang, Thanh-Liem Vu, Landon Olsen, Aiyi Chen, PharmD Candidates, and H Stephen Lee, PharmD, MSc, BSc (Honors) College of Pharmacy, Roseman University of Health Sciences, South Jordan, UT

Trial Design

Clinical Endpoints

Sulopenem (NCT03357614) Trial **Primary Endpoint**

• Clinical cure and microbiologic eradication in the microbiologic modified intent-to-treat (mMITT) population at test-of-cure (TOC)⁶ Clinical Endpoint

• Baseline signs and symptoms resolved and no new symptoms⁶ Microbiologic Endpoint

• Bacterial pathogen reduced to <10³ CFU/mL⁶

Statistical Analysis

- Proposed sample size: 578 patients per treatment regimen for 90% power
- 10% non-inferiority margin with 2-slided 95% confidence interval (CI)⁶

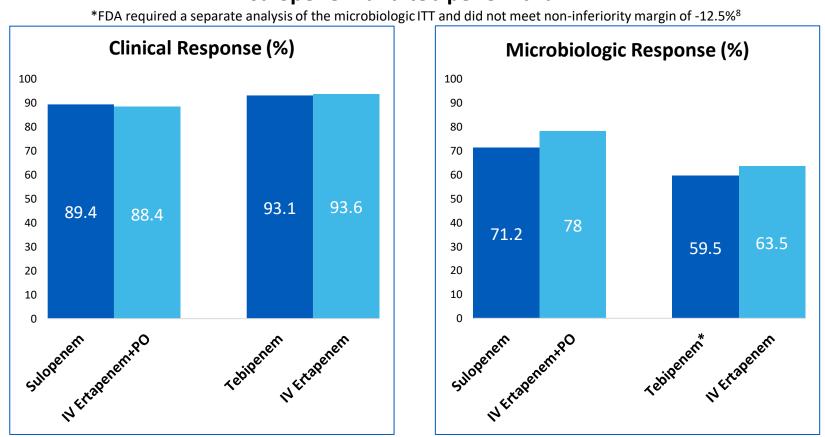
ADAPT-PO (NCT03788967) Trial

- Primary Endpoint
- Clinical cure and microbiologic response in the microbiologic intention-totreat (ITT) population at TOC⁷

Clinical Endpoint

 Baseline signs and symptoms resolved and no new symptoms⁷ Microbiologic Endpoint

Bacterial pathogen reduced to <10³ CFU/mL⁷


Statistical Analysis

• Proposed sample size: 600 patients per treatment regimen for 90% power 12.5% non-interiority margin (FDA consulted to revise from 10% due to COVID-19)7

Results

Table 3. Prima	3. Primary endpoint results for both sulopenem and tebip				
	NCT03357614 (Sulopenem)		ADAP (Tebipe		
	Ertapenem N=440	Sulopenem N=444	Ertapenem N=419		
PRIMARY Endpoint	73.9%	67.8%	61.1%		
Difference (95% Cl)		-6.1% (-12.5 to -0.1%)			

Figure 3. Clinical and microbiologic response at test-of-cure point for sulopenem and tebipenem trial^{6,7}

Adverse Events

Table 4. Summary of adverse drug events for both sulopenem and tebipenem trial ^{6,7}					
	NCT03357614	(Sulopenem)	ADAPT-PO (Tebipenem)		
	Sulopenem	IV Ertapenem + PO	Tebipenem	Ertapenem	
Headache	3%	2.3%	3.8%	3.8%	
Diarrhea	2.7%	3%	5.7%	4.4%	
Any adverse events	15.1%	16.4%	25.7%	25.6%	
Drug-related adverse events	6%	9.2%	9.3%	6.1%	

Discussion

- Both Study focused on Eastern/Central European population
- Trial design, population, and duration of trial appeared to be appropriate
- Both drugs demonstrated good response rates in clinical outcomes, but inadequate response in microbiologic outcomes
- Both drugs appeared to be safe and tolerated
- In the sulopenem trial, sulopenem demonstrated less overall success in patients with ciprofloxacin-susceptible isolates compared to ertapenem (67.7% vs 86.5%)⁶
 - This may have been due to recipients of ertapenem receiving oral ciprofloxacin for step-down therapy
- In the Tebipenem trial, the study was not powered to assess noninferiority, but still demonstrated inadequate microbiologic outcome⁷
 - Tebipenem's microbiologic response rate was 59.5%, whereas IV Ertapenem was 63.5%⁷
 - Ertapenem treatment was completed as IV only

Conclusion

While in vitro MIC showed promising results for both sulopenem and tebipenem, phase 3 trials showed contrasting results. Both drugs appeared to be safely tolerated with good clinical response, but insufficient microbiologic response. Additional investigation is warranted.

Clinical Trial Updates

• The FDA requested additional clinical trial information for both sulopenem and tebipenem before granting drug approval for cUTI^{8,9}

penem trial^{6,7} PT-PO nem) Tebipenem N=449 **58.8%** .3% to 3.2%)