BAB II LANDASAN TEORI

2.1 Tinjauan Umum

Perancangan konstruksi merupakan campuran antara seni dan ilmu pengetahuan yang digabungkan dengan intuisi ahli-ahli struktur dengan dasar-dasar pengetahuan seperti statika, dinamika, mekanika bahan dan analisis struktur. Hal tersebut menghasilkan konstruksi bangunan yang ekonomis dan aman, bila rangkaian kegiatan yang berlangsung sesuai dengan sasaran dan tujuan yang telah ditetapkan serta dengan hasil akhir yang maksimal.

Perancangan merupakan suatu kegiatan yang sangat penting sebelum dilaksanakannya suatu proyek. Kesalahan pemasangan ataupun urutan proses yang tidak benar dapat menyebabkan kerugian. Perancangan yang matang sebelum dimulainya suatu perencanaan tidak hanya menghemat biaya tetapi juga dapat menghemat waktu dan tenaga.

Pada perancangan suatu konstruksi bangunan gedung diperlukan beberapa landasan teori berupa analisa struktur, ilmu tentang kekuatan bahan serta hal lainnya yang berpedoman pada peraturan-peraturan yang berlaku di Indonesia. Ilmu teoritis tersebut tidaklah cukup karena analisa secara teoritis hanya berlaku pada kondisi struktur ideal. Sedangkan gaya-gaya yang dihitung hanya merupakan pendekatan dari keadaan yang sebenarnya atau yang diharapkan terjadi.

Untuk itu dalam melakukan sebuah proses perencanaan perlu ditetapkan kriteria-kriteria yang akan digunakan sebagai tolak ukur kelayakan pelaksanaan pembangunan, antara lain :

- a. Kemampuan layan (serviceability)
- b. Nilai efisiensi bangunan
- c. Pemilihan Konstruksi dan Metode pelaksanaan
- d. Biaya (Cost)

Pada bab ini, akan dijelaskan lagi mengenai tata cara, langkah-langkah sekaligus teori-teori perhitungan yang memuat rumus perhitungan struktur mulai dari struktur atas yang meliputi pelat atap (dak), pelat lantai, tangga, balok, dan

kolom sampai dengan perhitungan struktur bawah yang terdiri atas Tie Beam dan pondasi.

2.2. Ruang Lingkup Perancangan

Ruang Lingkup perancangan konstruksi pada pembangunan Gedung Hotel Gading Homestay Yogyakarta ini meliputi beberapa tahapan yakni:

2.2.1 Tahap Perancangan Konstruksi

Perancangan sebuah konstruksi merupakan sebuah sistem yang harus dilakukan dengan tahapan-tahapan tertentu agar konstruksi yang dihasilkan sesuai dengan tujuan yang ingin dicapai. Adapun ruang lingkup perancangan Bangunan Gedung Hotel Gading Homestay Yogyakarta meliputi beberapa tahapan yaitu:

1. Tahap Pra-Perencanaan (Premiliary Design)

Pada tahap ini ahli struktur harus mampu berkomunikasi dengan baik dengan arsitek mengenai pemilihan komponen-komponen struktur yang penting, baik dimensi maupun posisinya. Dan pada pertemuan pertama biasanya perancang akan datang dan membawa informasi mengenai:

- a. Sketsa denah, gambar tampak dan potongan-potongan gedung beserta segala atributnya
- b. Penjelasan mengenai fungsi setiap lantai dan ruangan
- c. Konsep awal dari sistem komponen vertikal dan horizontal dengan informasi mengenai luas dan lantai gedung serta informasi awal mengenai rencana pengaturan denah lantai, denah entrance, function room, ruang tangga, dan lain-lain.
- d. Rencana dari komponen-komponen non structural, misalnya dinding arsitektural dan lain-lain.

Selanjutnya dengan bekal dari informasi yang telah didapatkan (sesuai dengan contoh di atas), seorang ahli arsitektur harus mampu memberikan masukan mengenai:

a. Pengaturan komponen vertikal, termasuk ukuran kolom. Jarak kolom, dan penempatan kolom

- b. Sistem komponen horizontal termasuk sistem balok dan lantai
- c. Sistem pondasi
- d. Usulan mengenai komponen non struktural pada bangunan.

2. Tahap Perencanaan

a. Perencanaan bentuk arsitektur bangunan

Dalam perencanaan arsitektur bangunan ini, seorang perencana lebih dulu merealisasikan keinginan-keinginan dari pemilik bangunan sesuai dengan desain yang diinginkannya

b. Perencanaan bentuk struktur bangunan

Untuk membangun suatu bangunan, perencana mulai menghitung komponen struktur berdasar dari bentuk arsitektural yang telah didapat. Proses perencanaan dan konstruksi suatu struktur bangunan pada umumnya diatur oleh suatu aturan tertentu.

Struktur pada suatu bangunan harus bisa mencapai syarat struktur yang baik agar struktur tersebut bersifat kokoh, aman, dan stabil. Adapun struktur pada bangunan gedung terdiri dari beberapa elemen struktur, yaitu:

1. Struktur atas

Struktur bangunan atas yang direncanakan harus mampu mewujudkan perancangan estetika dari segi arsitektur dan harus menjamin mutunya dan juga dari segi keamanannya bagi penggunanya. Untuk itu, bahan banguna yang nantinya akan digunakan sebagai bahan dasar dari konstruksi hendaknya memenuhi kriteria sebagai berikut:

- a Kuat.
- b Mudah diperoleh, dalam arti tidak memerlukan biaya mobilisasi bahan yang demikian tinggi.
- c Awet untuk jangka waktu pemakaian lama.
- d Ekonomis dan perawatan yang relatif mudah

Adapun struktur atas dari suatu bangunan antara lain:

- a. Perhitungan Pelat Atap
- b. Perhitungan Pelat Lantai
- c. Perhitungan Tangga
- d. Perhitungan Portal
- e. Perhitungan Balok
- f. Perhitungan Kolom

2. Struktur bawah

Struktur bangunan bawah merupakan struktur yang menerima beban dari struktur atas, untuk diteruskan ke tanah dibawahnya. Adapun perencanaan struktur bangunan bawah meliputi:

- a. Perhitungan pondasi tiang pancang
- b. Perhitungan Tie Beam

2.2.2 Dasar-dasar Perancangan Konstruksi

1. Pedoman Perencanaan

Dalam perancangan gedung Hotel Gading Homestay Yogyakarta, penulis berpedoman pada peraturan-peraturan yang berlaku dan buku-buku referensi yang telah ada. Disamping segi teknis yang menjadi landasan utama dalam merencanakan suatu bangunan, segi-segi lainnya tidak bisa kita tinggalkan begitu saja. Faktor fungsi, ekonomi, sosial, lingkungan dan sebagainya tidak kalah pentingnya bila dibandingkan dengan segi teknis konstruksi dalam perencanaan suatu bangunan. Untuk memenuhi hal tersebut, kita harus berpedoman pada syarat-syarat yang telah ditentukan baik dari segi teknis itu sendiri maupun yang lainnya. Adapun pedoman dan peraturan yang digunakan diantaranya:

- a. Pedoman perencanaan pembebanan untuk rumah dan gedung (PPURG 1989). Pedoman ini digunakan untuk menentukan beban yang diizinkan untuk merencanakan bangunan rumah serta gedung. Ketentuan ini memuat beban-beban yang harus diperhitungkan dalam perancangan bangunan.
- b. Persyaratan Beton Struktural untuk Bangunan Gedung berdasarkan SNI 03-2847-2019. Pedoman ini digunakan sebagai standar acuan dalam melakukan

perancangan dan pelaksanaan struktur beton dengan ketentuan minimum untuk hasil struktur yang aman dan ekonomis, Pedoman ini memuat persyaratan umum serta ketentuan teknis perancangan dan pelaksanaan struktur beton untuk bangunan gedung.

c. Beban Minimum untuk Perancangan Bangunan Gedung dan Struktur Lain, SNI 1727:2018. Pedoman ini digunakan untuk menentukan beban yang diizinkan untuk merencanakan bangunan gedung dan rumah. Pedoman ini memuat ketentuan-ketentuan beban yang harus diperhitungkan dalam pembangunan.

2. Tuntutan dan ketentuan umum perencanaan

Tuntutan atau ketentuan umum dalam perencanaan gedung yang harus kita perhatikan antara lain :

- Konstruksi harus aman, kokoh, kuat, baik terhadap pengaruh cuaca, iklim, maupun terhadap pengaruh lainnya
- b. Bangunan harus benar-benar dapat berfungsi menurut penggunaannya
- c. Ditinjau dari segi biaya, bangunan harus seekonomis mungkin dengan catatan tidak boleh mengurangi kekuatan konstruksi, sehingga tidak membahayakan bangunan dan keselamatan pengguna bangunan.
- d. Dengan merencanakan bangunan ini, kita usahakan jangan sampai membahayakan atau merugikan lingkungan, baik ketika masih dalam taraf pengerjaan maupun setelah bangunan itu digunakan atau selesai dikerjakan.

3. Jenis Pembebanan

Dalam merencanakan struktur bangunan bertingkat, digunakan struktur yang mampu memdukung berat sendiri, beban angin, beban hidup, maupun beban khusus yang bekerja pada struktur bangunan tersebut. Beban-beban yang bekerja pada stuktur dihitung menurut SNI 1727-2018. Beban-beban tersebut adalah:

a. Beban Mati

Beban Mati adalah berat semua bagian dari suatu gedung yang bersifat tetap, termasuk segala unsur tambahan, penyelesaian-penyelesaian, mesinmesin serta peralatan tetap yang merupakan bagian tak terpisahkan dari gedung.

Beban sendiri dari bahan-bahan bangunan penting dan dari beberapa komponen gedung ini, dapat dilihat pada tabel berikut.

Tabel 2.1 Berat sendiri bahan bangunan gedung

Bahan Bangunan	Berat Sendiri
Baja	$7.850~kg/m^3$
Batu alam	$2.600~kg/m^3$
Batu belah, batu bulat, batu gunung (berat tumpuk)	1.500 kg/m^3
Batu karang (berat tumpuk)	700 kg/m^3
Batu pecah	1.450 kg/m^3
Besi tuang	7.250 kg/m^3
Beton	2.200 kg/m^3
Beton bertulang	2.400 kg/m^3
Kayu (Kelas 1)	1.000 kg/m^3
Kerikil, koral (kering udara sampai lembab, tanpa ayak)	1.650 kg/m^3
Pasangan bata merah	1.700 kg/m^3
Pasangan batu belah, batu bulat, batu gunung	$2.200~kg/m^3$
Pasangan batu cetak	2.200 kg/m^3
Pasangan batu karang	$1.450~kg/m^3$
Pasir (kering udara sampai lembab)	1.600 kg/m^3
Pasir (jenuh air)	1.800 kg/m^3
Pasir kerikil, koral (kering udara sampai lembab)	1.850 kg/m^3
Tanah, lempung dan lanau (kering udara sampai lembab)	1.700 kg/m^3
Tanah, lempung dan lanau (basah)	2.000 kg/m^3
Timah hitam (timbel)	11.400 kg/m^3

Sumber: PPURG 1989, hal 2

Tabel 2.2 Berat sendiri komponen bangunan gedung

Adukan, per cm tebal:	
- dari semen	21 kg/m ²
- dari kapur, semen merah atau tras	17 kg/m ²
Aspal, termasuk bahan-bahan mineral penambah, per cm tebal	14 kg/m ²
Dinding pasangan bata merah:	
- satu batu	450 kg/m^2
- setengah batu	250 kg/m^2
Dinding pasangan batako:	
Berlubang:	
- tebal dinding 20 cm (HB 20)	200 kg/m^2
- tebal dinding 10 cm (HB 10)	120 kg/m^2
Tanpa lubang	
- tebal dinding 15 cm	300 kg/m^2
- tebal dinding 10 cm	200 kg/m^2
Langit-langit dan dinding (termasuk rusuk-rusuknya, tanpa	
penggantung langit-langit atau pengaku), terdiri dari:	
- semen asbes (eternity dan bahan lain sejenis), dengan tebal	11 kg/m ²
maksimum 4 mm	
- kaca, dengan tebal 3 – 4 mm	10 kg/m^2
Lantai kayu sederhana dengan balok kayu, tanpa langit-langit	40 kg/m ²
dengan bentang maksimum 5 m dan untuk beban hidup	
maksimum 200 kg/m ²	
Penggantung langit-langit (dari kayu), dengan bentang	7 kg/m ²
maksimum 5 m dan jarak s.k.s. minimum 0,80 m	
Penutup atap genting dengan reng dan usuk/kaso, per m ²	50 kg/m ²
bidang atap	
Penutup atap sirap dengan reng dan usuk/kaso, per m² bidang	40 kg/m ²
atap	
Penutup atap seng gelombang (BWG 24) tanpa gordeng	10 kg/m ²

Penutup lantai dari ubin semen portland, teraso dan beton,	24 kg/m^2
tanpa adukan per cm tebal	
Semen asbes gelombang (tebal 5 mm)	11 kg/m ²

Catatan:

- (1) Nilai ini tidak berlaku untuk beton pengisi.
- (2) Untuk beton getar, beton kejut, beton mampat dan beton padat lain sejenis, berat sejenis, berat sendirinya harus ditentukan tersendiri.
- (3) Nilai ini adalah nilai rata-rata; untuk jenis-jenis kayu tertentu lihat Pedoman Perencanaan Konstruksi Kayu.

Sumber : PPURG 1989, hal 2-3

b. Beban Hidup

Beban hidup adalah semua beban yang terjadi akibat penghunian dan penggunaan gedung tersebut serta kedalamannya termasuk beban-beban pada lantai yang berasal dari barang-barang yang dapat dipindahkan, mesin-mesin serta peralatan yang tidak merupakan bagian yang tidak dapat dipisahkan dari gedung dan dapat diganti selama masa hidup dari gedung itu, sehingga mengakibatkan perubahan dalalm pembebanan lantai dan atap tersebut. Khususnya pada atap yang dikategorikan beban hidup dapat termasuk beban yang berasal dari air hujan, baik akibat genangan maupun akibat tekanan jatuh butiran air

Tabel 2.3. Beban hidup terdistribusi merata minimum, L_o dan beban hidup terpusat minimum.

Hunian atau penggunaan	Merata, L _o psf (kN/m²)	Terpusat lb (kN)
Apartemen (lihat rumah tinggal)		
Sistem lantai akses		
Ruang kantor	50 (2,4)	2.000 (8,9)
Ruang komputer	100 (4,79)	2.000 (8,9)

Gudang persenjataan dan ruang latihan	150 (7,18)	
Ruang pertemuan		
Kursi tetap (terikat di lantai)	60 (2,87)	
Lobi	100 (4,79)	
Kursi dapat dipindahkan	100 (4,79)	
Panggung pertemuan	100 (4,79)	
Lantai podium	150 (7,18)	
	100 (4,79)	
Tribun penonton Stadion dan arena	60 (2.87)	
dengan kursi tetap (terikat di lantai)		
Ruang pertemuan lainnya	100 (4.79)	
Balkon dan dek	1,5 kali beban	
	hidup untuk	
	daerah yang	
	dilayani. Tidak	
	perlu melebihi	
	100 psf	
	$(4,79 \text{ kN/m}^2)$	
Jalur untuk akses pemeliharaan	40 (1,92)	300 (1,33)
Koridor		
Lantai pertama	100 (4,79)	
Lantai lain	Sama seperti	
	pelayanan	
	hunian kecuali	
	disebutkan lain	
Ruang makan dan restoran	100 (4,79)	
Hunian (lihat rumah tinggal)		
Dudukan mesin elevator		200 (1.22)
(pada area 2 in.x 2 in. [50 mm x 50 mm])		300 (1,33)

Konstruksi pelat lantai <i>finishing</i> ringan		
(pada area 1 in.x 1 in. [25 mm x 25 mm])		200 (0,89)
	100 (4.79)	
Jalur penyelamatan saat kebakaran	, , ,	
Hunian satu keluarga saja	, , ,	
Tangga permanen	Lihat Pa	sal 4.5.4
Garasi/Parkir (Lihat Pasal 4.10)		
Mobil penumpang saja	40 (1,92)	Lihat Pasal
		4.10.1
Truk dan bus	200 (0,89) 200 (0,89)	
	4.10.2	4.10.2
Pegangan tangga dan pagar pengaman	Lihat 4.5.1	
Batang pegangan		
Helipad (Lihat Pasal 4.11)		
Helikopter dengan berat lepas landas	40 (1,92)	Lihat Pasal
sebesar 3.000 lb (13,35 kN) atau		4.11.2
kurang		
Helikopter dengan berat lepas landas	60 (2,87)	Lihat Pasal
Lebih dari 3.000 lb (13,35 kN)		
Leoni dan 3.000 io (13,33 kiv)		7.11.2
Rumah sakit		
Ruang operasi, laboratorium	60 (2,87)	1.000 (4,45)
Ruang pasien	40 (1,92)	1.000 (4,45)
Koridor diatas lantai pertama	80 (3,83)	1.000 (4,45)
Hotel (lihat rumah tinggal)		
Perpustakaan		
Ruang baca	60 (2,87)	1.000 (4,45)
Ruang penyimpanan	150 (7,18)	1.000 (4,45)
Koridor di atas lantai pertama	80 (3,83)	1.000 (4,45)
Pabrik		
Ringan	125 (6,00)	2.000 (8,90)

Berat	250 (11,97)	3.000 (13,35)
Gedung perkantoran		
Ruang arsip dan komputer harus	100 (4,79)	2.000 (8,90)
dirancang untuk beban yang		
lebih berat berdasarkan pada		
perkiraan hunian		
Lobi dan koridor lantai pertama kantor	50 (2,40)	2.000 (8,90)
Koridor di atas lantai pertama	80 (3,83)	2.000 (8,90)
Lembaga hukum		
Blok sel	40 (1,92)	
Koridor	100 (4,79)	
Tempat rekreasi		
Tempat bowling, billiard, dan	75 (3,59)	
penggunaan sejenis		
Ruang dansa dan ballroom	100 (4,79)	
Gymnasium	100 (4,79)	
Rumah tinggal		
Hunian satu dan dua keluarga		
Loteng yang tidak dapat dihuni	10 (0,48)	
tanpa gudang		
Loteng yang tidak dapat dihuni	20 (0,96)	
dengan gudang		
Loteng yang dapat dihuni dan	30 (1,44)	
ruang tidur		
Semua ruang kecuali tangga	40 (1,92)	
Semua hunian rumah tinggal lainnya		
Ruang pribadi dan koridornya	40 (1,92)	
Ruang publik	100 (4,79)	
Koridor ruang publik	100 (4,79)	

Atom		
Atap	20 (0.06)	
Atap datar, berbubung, dan lengkung	20 (0,96)	
Atap yang digunakan penghuni	Sama dengan	
	penggunaan	
	yang dilayani	
Atap untuk tempat berkumpul	100 (4,70)	
Atap vegetatif dan atap lansekap		
Atap bukan untuk hunian	20 (0,96)	
Atap untuk tempat berkumpul	100 (4,79)	
Atap untuk penggunaan lainnya	Sama dengan	
	penggunaan	
	yang dilayani	
Awning dan kanopi		
Atap konstruksi fabric yang	5 (0,24)	200 (0,89)
didukung oleh struktur rangka		
kaku ringan		
Rangka penumpu layar penutup	5 (0,24)	2000 (8,90)
	berdasarkan area	
	tributari	
	dari atap yang	
	didukung oleh	
	komponen	
	struktur rangka	
Semua konstruksi lainnya		
Komponen struktur atap utama, yang		
terhubung langsung dengan	20 (0,96)	300 (1,33)
pekerjaan lantai tempat bekerja		\
i j i i i i i i i i i i i i i i i i i i		
Titik panel tunggal dari kord		300 (1,33)
bawah rangka batang atap		
atau suatu titik sepanjang		

Г.	1	1
komponen struktur utama		
pendukung atap diatas pabrik,		
gudang penyimpanan dan		
pekerjanya, dan garasi bengkel		
Semua komponen struktur atap		300 (1,33)
utama lainnya		
Semua permukaan atap dengan		
beban pekerja pemeliharaan		
Sekolah		
Ruang kelas	40 (1,92)	1.000 (4,45)
Koridor di atas lantai pertama	80 (3,83)	1.000 (4,45)
Koridor lantai pertama	100 (4,79)	1.000 (4,45)
Scuttles, rusuk untuk atap kaca dan		
langit-langit yang dapat diakses		200 (0,89)
Jalan di pinggir untuk pejalan kaki, jalan	250 (11,97)	8.000 (35,60)
lintas kendaraan, dan lahan/jalan		
untuk truk-truk		
Tangga dan jalan keluar	100 (4,79)	300 (1,33)
Rumah tinggal untuk satu dan dua	40 (1,92)	300 (1,33)
keluarga saja		
Gudang diatas langit-langit	20 (0,96)	
Gudang penyimpanan dan pekerja		
(harus dirancang untuk beban lebih		
berat jika diperlukan)		
Ringan	125 (6,00)	
Berat	250 (11,97)	
Toleo		
Toko	100 (4.70)	1 000 (4 45)
Eceran	100 (4,79)	1.000 (4,45)

Lantai pertama	75 (3,59)	1.000 (4,45)
Lantai diatasnya	125 (6,00)	1.000 (4,45)
Grosir, di semua lantai		
Penghalang kendaraan		Lihat Pasal
		4.5.3
Susuran jalan dan panggung yang	60 (2,87)	
ditinggikan (selain jalan keluar)		
Pekarangan dan teras, jalur pejalan	100 (4,79)	
kaki		

Sumber: SNI 2847-2019, tentang Beban Minimum Untuk Perancangan Bangunan Gedung dan Struktur Lain, hal 24-27

2.3. Metode Perhitungan

Pada penyelesaian perhitungan untuk bangunan gedung Hotel Gading Homestay Yogyakarta, penulis mengambil acuan pada referensi yang berisi mengenai peraturan dan tata cara perancangan bangunan gedung, seperti berikut:

2.3.1 Perancangan Pelat Atap dan Pelat Lantai

Pelat adalah suatu elemen horizontal yang berfungsi untuk menyalurkan beban hidup, baik yang bergerak maupun statis ke elemen pemikul beban vertikal yaitu balok, kolom maupun dinding. Pelat beton bertulang dalam satu struktur dipakai pada lantai dan dak.

Struktur pelat pada suatu gedung terdapat dua jenis yaitu pelat atap dan pelat lantai. Hal yang membedakan perancangan pelat atap dengan pelat lantai adalah beban-beban yang bekerja diatasnya lebih kecil sehingga ketebalan pelat atap lebih tipis dibandingkan pelat lantai :

Beban beban yang bekerja pada pelat atap dan pelat lantai adalah:

- 1. Beban mati (W_D)
 - Beban sendiri pelat atap
 - Beban yang diterima oleh pelat akibat adanya adukan mortar, plafond, dan penggantung plafond

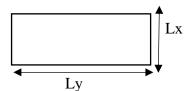
2. Beban hidup (W_L)

- Beban hidup untuk pelat atap diambil sebesar $0.96~\rm{KN/m^2}$ dan untuk pelat lantai diambil $4.79~\rm{KN/m^2}$

Pada pelat yang ditumpu balok pada keempat sisinya, pelat terbagi dua berdasarkan geometrinya yaitu :

1. Pelat satu arah

Pelat dengan tulangan pokok satu arah ini akan dijumpai jika pelat beton lebih dominan menahan beban yang berupa momen lentur pada bentang satu arah saja.


2. Pelat dua arah

Pelat dengan tulangan pokok dua arah ini akan dijumpai jika pelat beton menahan beban yang berupa momen lentur pada bentang dua arah.

Adapun pelat yang akan ditinjau dalam perancangan Gedung Hotel Gading Homestay Yogyakarta adalah pelat dua arah (Two Way Slab)

Dalam perencanaan struktur pelat dua arah, langkah-langkahnya adalah sebagai berikut :

- a. Menghitung tebal minimum pelat
 - Identifikasi jenis plat dengan syarat yaitu, $\frac{ly}{lx} \le 2$, adapun Ly sebagai sisi plat terpanjang dan Lx sebagai sisi terpendek.

Gambar 2.1 Pelat Dua Arah

2 Untuk plat tanpa balok interior yang membentang di antara tumpuan pada semua sisinya yang memiliki rasio bentang panjang terhadap bentang pendek maksimum 2, tebal minimum h tidak boleh kurang dari batasan pada tabel berikut:

Tabel 2.4 Ketebalan minimum plat dua arah tanpa balok interior (mm)

	Tanp	a drop pa	anel ^[3]	Dengan drop panel ^[3]							
fy,	Panel eksterior		Panel interior	Panel e	Panel interior						
MPa ^[2]	Tanpa balok tepi	Dengan balok tepi ^[4]		Tanpa balok tepi	Dengan balok tepi ^[4]						
280	ℓ _n /33	ℓ _n /36	ℓ _n /36	ℓ _n /36	ℓ _n /40	ℓ _n /40					
420	ℓ _n /30	ℓn/33	ℓn/33	ℓn/33	ℓn/36	ℓn/36					
520	ℓn/28	ℓn/31	ℓn/31	ℓ _n /31	ℓn/34	ℓn/34					

 $^{[1]}\ell_n$ adalah jarak bersih ke arah memanjang, diukur dari muka ke muka tumpuan

 $^{12}I_{rh}$ adalah jarak bersih ke arah memanjang, diukur dan muka ke muka tumpuan (mm) $^{[2]}$ Untuk f_{r} dengan nilai diantara yang diberikan dalam tabel, ketebalan minimum harus dihitung dengan interpolasi linear $^{[3]}$ Drop panel sesuai 8.2.4 $^{[4]}$ Pelat dengan balok di antara kolom sepanjang tepi eksterior. Panel eksterior harus dianggap tanpa balok pinggir jika a_{r} kurang dari 0,8. Nilai a_{r} untuk balok tepi harus dihitung sesuai 8.10.2.7

Sumber: SNI 2847-2019, tentang Beban Minimum Untuk Perancangan

Bangunan Gedung dan Struktur Lain, Tabel 8.3.1.1;)

Pelat tanpa penebalan, tebal pelat minimum 125 mm

Pelat dengan penebalan, tebal pelat minimum 100 mm

- 3 Untuk plat dua arah dengan balok di antara tumpuan di semua sisi, ketebalan plat keseluruhan h harus memenuhi batasan berikut
 - a) Untuk $0.2 \le \alpha_{fm} \le 2.0$ tebal pelat minimum adalah :

$$h = \frac{\ln(0.8 + \frac{fy}{1500})}{36 + 5\beta(\alpha fm - 0.2)}$$

dan tidak boleh kurang dari 125 mm

b) Untuk $\alpha_{fm} > 2.0$ tebalan pelat minimum adalah :

$$h = \frac{\ln{(0.8 + \frac{fy}{1400})}}{36 + 9\beta}$$

dan tidak boleh kurang dari 90 mm

Menghitung α_{fm} masing masing panel

$$\alpha 1 = \frac{I \ balok}{I \ pelat}$$

$$\alpha m = \frac{\alpha 1 + \alpha 2 + \alpha 3 + \alpha 4}{n}$$

untuk $\alpha m < 2,0$ tebal pelat minimum adalah 125 mm untuk $\alpha m > 2,0$ tebal pelat minimum adalah 90 mm

c. Menghitung beban mati berat sendiri pelat dan kemudian hitung beban rencana total.

 $W_U = 1.2W_{DL} + 1.6W_{LL}$

 $W_U = Jumlah beban terfaktor (KN/m)$

 $W_L = Jumlah beban hidup pelat (KN/m)$

 $W_D = Jumlah beban mati pelat (KN/m)$

d. Menghitung momen rencana (M_u)

Menghitung momen yang bekerja pada arah x dan y, dengan metoda koefisien momen pelat

Tabel 2.5 Momen Pelat dua arah akibat beban terbagi merata

Kandiai Balat	Nilai							Р	erban	dinga	an Ly	/Lx						
Kondisi Pelat	Momen Pelat	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	>
																		H
	$Mtx = -0.001.q.Lx^2 x$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	$MIX = 0.001.q.Lx^2 X$	44	52	59	66	73	78	84	88	93	97	100	103	106	108	110	112	1
Ly	$Mly = 0.001.q.Lx^2 x$	44	45	45	44	44	43	41	40	39	38	37	36	35	34	32	32	L
•	$Mty = -0.001.q.Lx^2 x$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	H
	$Mtx = -0.001.q.Lx^2 x$	52	59	64	69	73	76	79	81	82	83	83	83	83	83	83	83	T
	$MIx = 0.001.q.Lx^2 x$	21	25	28	31	34	36	37	38	40	40	41	41	41	42	42	42	Г
	$Mly = 0.001.q.Lx^2 x$	21	21	20	19	18	17	16	14	13	12	12	11	11	11	10	10	Γ
	$Mty = -0.001.q.Lx^2 x$	52	54	56	57	57	57	57	57	57	57	57	57	57	57	57	57	Γ
																		Γ
.300000000	$Mtx = -0.001.q.Lx^2 x$	68	77	85	92	98	103	107	111	113	116	118	119	120	121	122	122	ŀ
	$MIx = 0.001.q.Lx^2 x$	28	33	38	42	45	48	51	53	55	57	58	59	59	60	61	61	Γ
	$Mly = 0.001.q.Lx^2 x$	28	28	28	27	26	25	23	23	22	21	19	18	17	17	16	16	T
<i>a</i>	Mty = $-0.001.q.Lx^2 x$	68	72	74	76	77	77	78	78	78	78	79	79	79	79	79	79	
																		L
a—————————————————————————————————————	$Mtx = -0.001.q.Lx^2 x$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	L
	$MIx = 0.001.q.Lx^2 x$	22	28	34	42	49	55	62	68	74	80	85	89	93	97	100	103	L
	$Mly = 0.001.q.Lx^2 x$	32	35	37	39	40	41	41	41	41	40	39	38	37	36	35	35	L
	$Mty = -0.001.q.Lx^2 x$	70	79	87	94	100	105	109	112	115	117	119	120	121	122	123	123	L
<i>''</i>	$Mtx = -0.001.q.Lx^2 x$	70	74	77	79	81	82	83	84	84	84	84	84	83	83	83	83	H
	$MIx = 0.001.q.Lx^2 x$	32	34	36	38	39	40	41	41	42	42	42	42	42	42	42	42	H
	Mly = $0.001.q.Lx^2 x$	22	20	18	17	15	14	13	12	11	10	10	10	9	9	9	9	H
	Mty = $-0.001.q.Lx^2 x$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	H
	- 0.001.q.EX X	Ť	Ť	Ť			_	۰	Ť			Ť						t
	$Mtx = -0.001.q.Lx^2 x$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Γ
	$MIx = 0.001.q.Lx^2 x$	31	38	45	53	60	66	72	78	83	88	92	96	99	102	105	108	Ī
	$Mly = 0.001.q.Lx^2 x$	37	39	41	41	42	42	41	41	40	39	38	37	36	35	34	33	
	$Mty = -0.001.q.Lx^2 x$	84	92	99	104	109	112	115	117	119	121	122	122	123	123	124	124	
																		L
	$Mtx = -0.001.q.Lx^2 x$	84	92	98	103	108	111	114	117	119	120	121	122	122	123	123	124	Ľ
	$MIx = 0.001.q.Lx^2 x$	37	41	45	48	51	53	55	56	56	59	60	60	60	61	61	62	H
44444444	Mly = $0.001.q.Lx^2 x$	31	30	28	27	25	24	22	21	20	19	18	17	17	16	16	15	H
	$Mty = -0.001.q.Lx^2 x$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	H
	$Mtx = -0.001.q.Lx^2 x$	55	65	74	82	89	94	99	103	106	110	114	116	117	118	119	120	Ι.
	$MIx = 0.001.q.Lx^2 x$	21	26	31	36	40	43	46	49	51	53	55	56	57	58	59	60	T
	Mly = $0.001.q.Lx^2 x$	26	27	28	28	27	26	25	23	22	21	21	20	20	19	19	18	T
	$Mty = -0.001.q.Lx^2 x$	60	65	69	72	74	76	77	78	78	78	78	78	78	78	78	79	
																		ſ
<i>juunuuu</i>	$Mtx = -0.001.q.Lx^2 x$	60	66	71	74	77	79	80	82	83	83	83	83	83	83	83	83	L
	$MIx = 0.001.q.Lx^2 x$	26	29	32	35	36	38	39	40	40	41	41	42	42	42	42	42	L
	Mly = $0.001.q.Lx^2 x$	21	20	19	18	17	15	14	13	12	12	11	11	10	10	10	10	L
'11111111111111111111111111111111111111	$Mty = -0.001.q.Lx^2 x$	55	57	57	57	58	57	57	57	57	57	57	57	57	57	57	57	

(Sumber : PBI 1971)

e. Mencari tebal efektif pelat

Rasio tulangan dalam beton (ρ) dan memperkirakan besarnya diameter tulangan utama dan untuk menentukan tinggi efektif arah x (dx) adalah :

dx = h - tebal selimut beton - ½ Ø tulangan arah x

dy = h - tebal selimut beton - Ø tulangan pokok y - Ø tulangan arah

Dalam suatu struktur beton bertulang, tebal selimut beton minimum yang harus disediakan untuk besi tulangan harus memenuhi ketentuan sebagai berikut:

Tabel 2.6 Tebal Minimum Selimut Beton

Paparan	Komponen Struktur	Tulangan	Ketebalan Selimut (mm)
Dicor dan secara permanen kontak dengan tanah	semua	semua	75
Terpapar cuaca		Batang D19 sampai D57	50
atau kontak dengan tanah		Batang D16, Kawat Ø13 atau D13 dan yang lebih kecil	40
Tidak terpapar cuaca atau kontak dengan tanah	Pelat, Pelat berusuk dan Dinding	Batang D43 dan D57	40
		Batang D36 dan yang lebih kecil	20
	Balok, kolom, pedestal, dan, batang tarik	Tulangan utama, sengkang, sengkang ikat, spiral dan sengkang pengekat	40

(Sumber: SNI 2847:2019:460)

f. Mencari rasio penulangan (ρ)

$$\rho_{min} = \frac{1,4}{Fy}; \text{ atau } \rho_{min} = \frac{o,25\sqrt{fc'}}{fy}$$

$$\rho = \frac{Fc}{Fy} (0,85 - \sqrt{(0,85)^2 - Q})$$

$$Q = \left(\frac{1,7}{\emptyset fc'}\right) \frac{Mu}{b.d^2}$$

Keterangan:

Mu: Momen Rencana/terfaktor pada penampang (KNm)

b : Lebar penanmpang (mm), diambil tiap 1 meter

d : Tinggi efektif (mm)

Ø: Faktor reduksi rencana (Agus Setiawan 2016:71)

g. Mencari luas tulangan (As)

As_{min} =
$$\frac{o.25\sqrt{fc'}}{fy}b.d$$
 atau As_{min} = $\frac{1.4}{fy}b.d$

$$As_{perlu} = \rho.b.d$$

h. Mencari jumlah tulangan (n)

$$n = \frac{As}{\frac{1}{4} \pi \emptyset^2}$$

i. Mencari jarak antar tulangan (s)

$$s = \frac{1000 \times A_b}{A_s}$$

 Memilih tulangan pokok yang akan dipasang beserta dengan tulangan susut dan suhu.

Tabel 2.7 Rasio luas tulangan Ulir susut dan suhu terhadap luas penampang beton bruto

Jenis tulangan	f_y MPa	Rasio tulangan minimum	
Batang ulir	< 420	0,0020	
Batang ulir atau kawat las	≥ 420	Terbesar dari:	$\frac{0,0018 \times 420}{f_y}$ 0,0014

(Sumber: SNI 2847:2019:553)

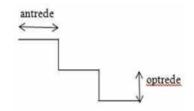
k. Memasang tulangan

Untuk arah y sama dengan langkah-langkah pada arah x, hanya perlu diingat bahwa tinggi efektif arah y (dy) tidak sama dengan yang digunakan dalam arah $x \to dy = h - p - \emptyset_{arah\ x} - \emptyset_{arah\ y}$

2.3.2. Perancangan Tangga

Tangga adalah suatu konstruksi yang merupakan salah satu bagian dari bangunan yang berfungsi sebagai alat yang menghubungka nantara lantai bawah dengan lantai yang ada diatasnnya pada bangunan bertingkat dalam keadaan tertentu. (Drs. IK. Sapribadi, 1993:10).

Secara umum, kontruksi tangga harus memenuhi syarat-syarat seperti berikut:


- 1 Tangga harus mudah dijalani atau dinaiki;
- 2 Tangga harus cukup kuat dan kaku;
- 3 Ukuran tangga harus sesuai dengan sifat dan fungsinya
- 4 Material tangga yang digunakan untuk pembuatan tangga terutama pada gedung-gedung umum harus berkualitas baik, tahan lama dan bebas dari bahaya kebakaran;
- 5 Letak tangga harus strategis;
- 6 Sudut kemiringan tidak lebih dari 45⁰;

Bagian bagian tangga adalah sebagai berikut :

a. Anak tangga

Yaitu bagian dari tangga yang berfungsi untuk memijakkan / melangkahkan kaki ke arah vertikal maupun horizontal (datar).anak tangga terdiri dari :

- 1) Antride, adalah anak tangga dan pelat tangga dibidang horizontal yang merupakan bidang pijak telapak kaki.
- 2) Optride adalah selisih tinggi antara dua buah anak tangga yang berurut.

Gambar 2.2 Bagian-bagian tangga

Ketentuan-ketentuan konstruksi Antride dan Optride, antara lain:

- 1) Untuk bangunan rumah tinggal
 - a. Antride = 25 cm (minimum)
 - b. Optride = 20 cm (maksimum)
 - c. Lebar Tangga = 80-100 cm
- 2) Untuk perkantoran dan lain-lain
 - a. Antrede = 25 cm
 - b. Optrede = 17 cm
 - c. Lebar tangga = 120-200 cm
- 3) Syarat 1 (satu) anak tangga
 - a Optrede + 1 Antrede = 57-65 cm
- 4) Sudut kemiringan
 - a. Maksimum = 45°
 - b. Minimum $= 25^{\circ}$

b. Ibu tangga

Yaitu bagian tangga berupa dua batang atau papan miring yang berfungsi menahan kedua ujung anak tangga.

c. Bordes

Yaitu bagian dari tangga yang merupakan bidang datar yang agak luas dan berfungsi sebagai tempat istirahat bila terasa lelah.Bordes dibuat apabila jarak tempuh tangga sangat panjang yang mempunyai jumlah trede lebih dari 20buah atau lebar tangga cukupakan tetapi ruangan yang tersedia untuk tangga biasa/ tusuk tidak mencukupi.

Untuk menetukan panjang bordes (L):

L=
$$ln + 1,5 a \frac{s}{d} 2.a$$

Dimana:

L = panjang bordes

*l*n = ukuran satu langkah normal datar (57-65 cm)

a =*Antrede*

Untuk menentukan lebar tangga total = Lebar tangga efektif + 2.t +2.s

Dimana:

t = tebal rimbat tangan (4-6 cm)

s = sisa pijakan (5-10 cm)

Tabel 2.8 Daftar Ukuran Lebar Tangga Ideal

No	Digunakan Untuk	Lebar Efektif	Lebar Total
1.	1 orang	± 65	± 85
2.	1 orang + anak	± 100	± 120
3.	2 orang + bagasi	± 85	± 105
4.	2 orang	± 120-130	140-150
5.	3 orang	± 180-190	200-210
6.	> 3 orang	> 190	> 210

(Sumber: Ilmu Bangunan Gedung B, 1993)

Berikut ini adalah langkah-langkah dalam perencanaan konstruksi tangga:

- 1. Perencanaan tangga
 - a. Penentuan ukuran antrede dan optrede

Tinggi optrede sebenarnya =
$$\frac{h}{jumlah \ optrede}$$

Antrede = Ln - 2 optrede

- b. Pementuan jumlah antrede dan optrede $=\frac{h}{tinggi\ optrede}$
- c. Panjang tangga = jumlah optrede x lebar optrede
- d. Sudut kemiringan tangga = Arc Tan $\theta = \frac{optrade}{antrede}$

- e. Penentuan tebal pelat tangga = $h_{min} = \frac{1}{28}l$
- 2. Penentuan pembebanan pada anak tangga
 - a. Beban Mati
 - 1) Berat sendiri bordes

 Berat pelat bordes = tebal pelat x γ_{beton} x 1 meter
 - Berat sendiri anak tangga
 Berat satu anak tangga (Q) dalam per m'
 Q = 1/2 antrede x optrede x 1 m x γ x jumlah anak tangga/m
 - 3) Berat spesi dan ubin
 - b. Beban Hidup

Beban hidup yang bekerja pada tangga yaitu $4,79~\rm kN/m^2$. Dari hasil perhitungan akibat beban mati dan beban hidup, maka didapat : Wu = 1,2 DL + 1,6 LL.

- 3. Perhitungan tangga untuk mencari gaya-gaya yang bekerja menggunakan program SAP 2000. Adapun langkah-langkah sebagai berikut:
 - a. Membuat permodelan tangga pada SAP 2000.
 - b. Memasang tumpuan pada permodelan tangga
 - c. Masukkan beban yang bekerja pada anak tangga dan bordes yang telah dikombinasikan antara beban mati dan beban hidup
 - d. Setelah pembebanan sudah selesai dimasukkan pada permodelan maka kita dapat melakukan "run analysis", namun "self weight" dijadikan 0 karena beban sendiri dihitung secara manual.
- 4. Perhitungan tulangan tangga
 - a. Menghitung tinggi efektif (d_{eff})

 $d = h - tebal selimut beton - \frac{1}{2} \emptyset tulangan pokok$

b. Menentukan rasio penulangan

Syarat =
$$\rho_{min} < \rho < \rho_{maks}$$

c. Menghitung luas penampang tulangan (As) menggunakan rumus:

$$As_{\min} = \frac{1,4}{f.y} b d$$

$$As = \rho b d_{eff}$$

- d. Memilih tulangan pokok yang akan dipasang beserta tulangan suhu dan susut. Menurut SNI 03-2847-2019, rasio luasan tulangan ulir suhu dan susut terhadap luas penampang beton bruto harus memenuhi dalam tabel 2.6
- e. Mengontrol tulangan

Untuk mengontrol tulangan dapat ditinjau dari $As_{min} \le As \le As_{maks}$

Apabila As < As_{min} maka digunakan As_{min}

Apabila As > As_{maks} maka plat dibuat tulangan *double*

f. Menentukan spasi tulangan

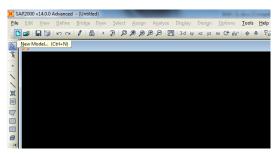
2.3.3 Perancangan Portal

Portal adalah suatu sistem yang terdiri dari bagian-bagian struktur yang saling berhubungan yang berfungsi menahan beban sebagai suatu kesatuan lengkap yang berdiri sendiri seperti berat sendiri, peralatan berat gording, beban hidup, dan beban mati, tanpa dibantu oleh diafragma-diafragma horisontal atau sistem-sistem lantai. Perancangan portal ini dihitung dengan menggunakan program SAP 2000.

Berikut merupakan tahapan dalam merancangan pembebanan pada portal:

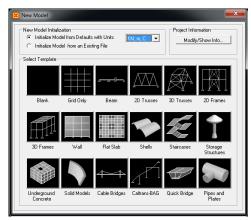
- 1. Menghitung besarnya momen (akibat beban mati dan beban hidup)
 - a. Portal akibat beban mati

Untuk merencanakan portal akibat beban mati ini yang harus dilakukan yakni melakukan pembebanan pada portal. Beban mati ini ditinjau pada arah melintang dan memanjang. Pembebanan akibat beban mati antara lain :

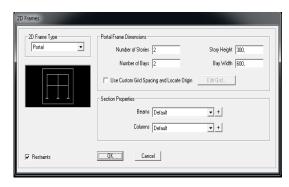

- Beban sendiri pelat
- Beban balok
- Beban penutup lantai dan adukan semen
- Beban pasangan dinding
- Beban plesteran dinding
- Beban plafond dan penggantung
- b. Portal akibat beban hidup

Untuk perancangan portal akibat beban hidup, yang harus dilakukan yakni menentukan beban pada portal serta perhitungan akibat beban hidup sama dengan perhitungan arah beban mati. Berikut ini pembebanan pada portal akibat beban hidup menurut SNI 1727-2018 yaitu:

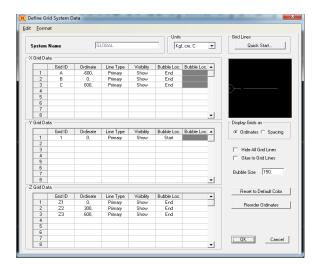
- Beban hidup untuk pelat lantai diambil sebesar 4,79 kg/m²
- Beban hidup pada atap diambil sebesar 0,96 kg/m²


Langkah-langkah perhitungan dengan menggunakan metode SAP 2000 yang perlu diperhatikan adalah sebagai berikut:

- 1. Buat model struktur portal akibat beban mati dan beban hidup
 - a) Klik New Model atau CTRL + N

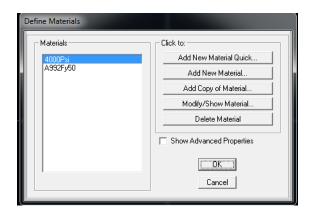

Gambar 2.3 Toolbar New Model

b) Selanjutnya akan ditampilkan kotak dialog *New Model* Tetapkan satuan yang akan dipakai, misalnya KN, m, C

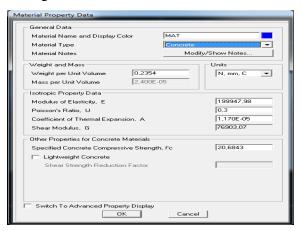

Gambar 2.4 Tampilan New Model

c) Pilih model template *2D Frames*, akan muncul jendela seperti gambar 2.5 isikan *Number of stories, story height, Number of Bays*, dan *bay width* masukan sesuai data – data perencanaan. Kemudian klik ok.

Gambar 2.5 Tampilan 2D Frames

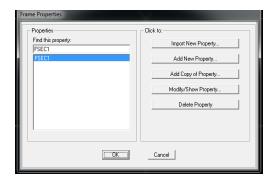

d) Untuk mengatur kembali jarak – jarak pada portal. Dapat dilakukan dengan cara **klik 2x** pada *grid point* yang terdapat pada portal. Maka, akan muncul tampilan *Define Grid System* data (dapat dilihat pada gambar 2.5) setelah itu dapat dilakukan penyesuaian jarak portal dengan data perencanaan yang ada dan disesuaikan arah x, dan z pada SAP 2000.

Gambar 2.6 Define Grid System data

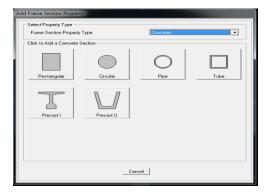

2. Menentukan material

a) Langkah pertama klik *Define* pada *Toolbar* > selalu klik *Materials* maka akan muncul jendela *Define Material*.

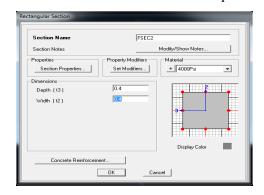
Gambar 2.7 Jendela Define Material


b) Pilih *Add New Material*, maka akan muncul jendela material Property Data. Ganti nilai Weight per unit volume dengan 24 (nilai ini adalah nilai dari berat jenis beton). Ubah nilai *Modulus of Elasticity* dengan rumus $4700\sqrt{Fc^1}.1000$, serta ubah juga nilai Fc dan Fy sesuai dengan perencanaan dengan masing – masing dikali 1000, klik OK.

Gambar 2.8 Jendela Material Property Data


3. Menetukan nilai dimensi kolom dan balok

a) Blok *frame* kolom/balok, lalu pilih *menu* pada *toolbar*, *Define* > *section properties* > *Frame section*, setelah memilih menu diatas akan tampil *Toolbar Frame Properties* seperti pada gambar 2.9.



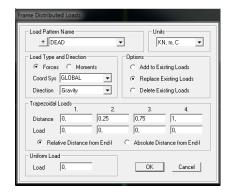
Gambar 2.9 Toolbar Frame Properties

b) Klik *Add new property*, maka akan muncul jendela *add Frame Election Property*. Pada Select *Property Type*, ganti *frame selection property type* menjadi *concrate*. Lalu pilih *rectangular* pada *click to add a Concrate section* (untuk penampang berbentuk segiempat).

Gambar 2.10 Toolbar Frame Properties

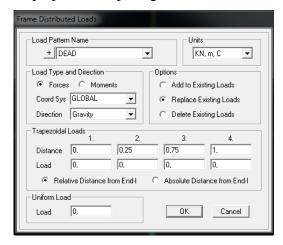
Gambar 2.11 Jendela Rectangular Section

c) Ganti *section name* dengan nama Balok (untuk balok), kolom (untuk kolom). Ganti ukuran tinggi (*Depth*) dan lebar (*Width*) Balok/Kolom sesuai


- dengan perencanaan. Kemudian klik *Concrate Reinforcement*, klik *Column* (untuk kolom), *Beam* (untuk balok) lalu klik OK.
- d) Untuk menentukan *frame*tersebut balok atau kolom yaitu dengan cara memblok *frame* kemudian pada *toolbar* pilih menu *Assign Frame / Cable / Tendon Frame Section* pilih Balok atau Kolom.
- 4. Membuat cases beban mati, beban hidup dan angin
 - a) Pilih menu pada toolbar, Define Load pattern buat nama pembebanan, tipe pembebanan dan nilai koefisiennya diisi dengan nilai 0. Lalu klik add New Load pattern seperti yang terlihat pada gambar. Apabila selesai klik OK.

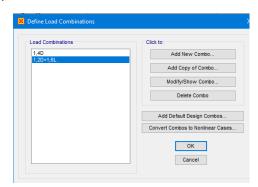
Gambar 2.12 Jendela Define Load Pettern

- b) Input nilai beban mati, beban hidup dan angin
 - 1) Akibat beban merata

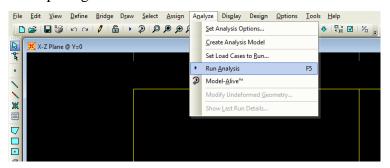

Blok *frame* yang akan di input, lalu pilih menu pada *toolbar*, *Assign* – *Frame Loads* – *Distributed* – pilih beban mati atau beban hidup untuk pembebanan tersebut pada *Load patter*.

Gambar 2.13 Jendela Frame Disributed Loads

2) Akibat beban terpusat


Sama halnya dengan menginput data pada pembebanan merata, hanya saja setelah memilih menu Frame – selanjutnya yang dipilih adalah Points, maka akan tampil jendela seperti gambat berikut :

Gambar 2.14 Jendela Frame Point Loads


- **5.** *Input Load Combination* (beban kombinasi), yaitu :
 - a. 1,4 Beban Mati
 - b. 1,2 Beban Mati + 1,6 Beban Hidup

Balok seluruh frame yang akan di kombinasi, kemudian pilih menu pada toolbar, Define – Combination – add new combo, kemudian akan terlihat seperti gambar berikut :

Gambar 2.15 Jendela Loads Combination

6 *Run Analysis*, setelah semua beba mati dan beban hidup dimasukkan ke portal, maka portal tersebut siap untuk dianalisis dengan menggunakan *Run Analysis* seperti yang terlihat pada gambar dibawah ini.

Gambar 2.16 Jendela Frame Point Loads

2.3.4 Perancangan Balok

Balok merupakan salah satu pekerjaan beton bertulang. Balok merupakan bagian struktur yang berupa bidang horizontal yang digunakan sebagai dudukan lantai dan pengikat kolom lantai atas. Balok biasanya berupa dinding, pelat atau atap bangunan dan menyalurkannya pada tumpuan atau struktur di bawahnya.

Adapun beberapa jenis struktur balok beton bertulang dapat dibedakan berdasarkan perancangan lentur dan berdasarkan tumpuannya.

- 1. Berdasarkan perancangan lenturnya, jenis balok dibedakan menjadi:
 - a. Balok persegi dengan tulangan rangkap
 Apabila besar penampang suatu balok dibatasi, mungkin dapat terjadi keadaan dimana kekuatan tekan beton tidak dapat memikul tekanan yang timbul akibat beban yang bekerja.
 - b. Balok T

Balok T merupakan suatu balok yang tidak berbentuk persegi, melainkan berbentuk huruf T. sebagian dari pelat akan bekerja sama dengan bagian atas balok untuk memikul beban tekan.

- 2. Berdasarkan tumpuannya, balok dibagi menjadi 2, yaitu:
 - a. Balok induk

Balok induk merupakan balok yang bertumpu pada kolom. Balok ini berguna untuk memperkecil tebal pelar dan mengurangi besarnya lendutan

yang terjadi. Balok induk direncanakan berdasarkan gaya maksimum yang bekerja pada balok yang berdimensi sama

b. Balok anak

Balok anak adalah suatu jenis balok yang bertumpu pada balok induk atau tidak bertumpu langsung pada kolom. Balok ini berguna untuk memperkecil tebal pelat dan mengurangi besarnya lendutan yang akan terjadi akibat beban yang bekerja. Untuk merencanakan balok anak sama halnya dengan perhitungan pada rencana balok induk.

Berikut langkah perencanaan balok:

- 1. Menentukan mutu dari beton yang akan digunakan
- 2. Menghitung pembebanan yang akan terjadi, yaitu :
 - a. Beban hidup
 - b. Beban balok
 - c. Beban mati
 - d. Sambungan plat
- 3. Menghitung beban *ultimate* = Vu = 1.2 D + 1.6 L
- 4. Menghitung momen rencana = $Mu = 1.2 M_{DL} + 1.6 M_{LL}$
- 5. Penulangan lentur lapangan dan tumpuan
 - a. Penulanagn lentur lapangan

In
$$l = L - (1/2 Lk) - (1/2 Lk)$$

 D_{eff} balok = lebar balok - P - Ø sengkang - ½ Ø sengkang

Lebar efektif

- $B_{eff} \leq \frac{1}{4} L$
- $B_{eff} \le 16 \text{ hf} + \text{bw}$
- $B_{eff} \le bw + Ln$

Sehingga, diambil Beff terkecil

$$\mathrm{As} = \frac{0.85 \times fc'c.a.b_{eff}}{fy}$$

(Agus Setiawan:2016:57)

- b. Penulangan lentur tumpuan
 - 1) Menetukan deff = h ρ Ø sengkang ½ Ø tulangan utama
 - 2) Menghitung nilai ρ

$$-Q = \left(\frac{1,7}{\emptyset fc'}\right) \frac{Mu}{b.d^2}$$

-
$$\rho$$
 hitung = $\frac{fc'}{fy} \left[0.85 - \sqrt{(0.85)^2 - Q} \right]$

c. Hitung As yang diperlukan

$$As = \rho \times b \times d_{eff}$$

As_{min} harus lebih besar dari:

- As_{min} >
$$\frac{o.25\sqrt{fc'}}{fy}b_w d$$

- As_{min} >
$$\frac{1.4}{fy}b_w d$$

(SNI 2487:2019 Pasal 9.6.1.2, hal.189)

6. Menghitung tulangan geser rencana

Berikut langkah-langkah perhitungan tulangan geser rencana balok : (Setiawan, 2016:103).

- a. Hitung gaya geser ultimit, V_u dari beban terfaktor yang bekerja pada struktur. Nilai V_u yang diambil sebagai dasar desain adalah nilai V_u pada lokasi penampang kritis, yaitu sejarak d dari muka tumpuan.
- b. Hitung nilai $\phi V_{c,\frac{1}{2}} \phi V_{c}$

$$\phi V_c = \phi \left(0.17 \lambda \sqrt{f'_c} \right) b_w d$$

- c. Periksa nilai Vu
 - Jika $V_u < \frac{1}{2} \phi V_c$, tidak dibutuhkan tulangan geser
 - Jika $\frac{1}{2}\phi V_c < V_u < \phi V_c$, dibutuhkan tulangan geser minimum. Dapat digunakan sengkang vertikal berdiameter 10 mm dengan jarak maksimum ditentukan langkah 7).
 - Jika $V_u > \phi V_c$, tulangan geser harus disediakan sesuai langkah d) sampai h).
- d. Hitung gaya geser yang harus dipikul oleh tulangan geser

$$V_{s} = \frac{V_{u} - \phi V_{c}}{\phi}$$

e. Hitung nilai V_{c1}, V_{c2}

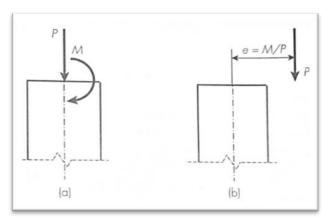
$$V_{c1} = 0.33 \sqrt{f'_c} b_w d$$

$$V_{c2} = 0.66 \sqrt{f'_c} b_w d$$

Apabila V_s < V_{c2} maka proses desain dapat dilanjutkan ke langkah berikutnya, namun bila V_s > V_{c2} maka ukuran penampang harus diperbesar.

f. Hitung jarak tulangan sengkang berdasarkan persamaan:

$$s_1 = \frac{A_v f_{yt} d}{V_s}$$


- g. Tentukan jarak maksimum tulangan sengkang (S_{maks}) sesuai dengan persyaratan dalam SNI 2847:2019.
- h. Apabila nilai s_1 yang dihitung (pada langkah f) < S_{maks}, maka gunakan jarak sengkang vertikal = s_1 dan jika s_1 > S_{maks} maka gunakan jarak S_{maks} sebagai jarak tulangan sengkang.
- i. Peraturan tidak mensyaratkan jarak minimum tulangan sengkang. Namun dalam kondisi normal, sebagai tujuan praktis dapat digunakan $S_{min} = 75$ mm untuk d ≤ 500 mm,dan $S_{min} = 100$ mm untuk d > 500 mm. Jika nilai s yang diperoleh kecil, maka dapat ditempuh jalan memperbesar diameter tulangan sengkang atau menggunakan sengkang dengan kaki lebih dari dua.

2.3.5 Perancangan Kolom

Kolom adalah salah satu komponen struktur vertikal yang secara khusus di fungsikan untuk memikul beban aksial tekan (dengan atau tanpa adanya momen lentur) dan memiliki rasio tinggi/panjang terhadap dimensi terkecil sebesar 3 atau lebih (Agus Setiawan, 2016). Kolom memikul beban vertikal yang berasal dari pelat lantai atau atap dan menyalurkannya ke pondasi.

Pada bangunan bertingkat tidak memungkinkan untuk menjamin kevertikalan kolom secara sempurna, dan akibatnya akan muncul beban yang eksentris terhadap pusat dari penampang kolom. Ketika sebuah elemen kolom diberi beban aksial (P) dan momen lentur (M) seperti pada Gambar 2.26, maka

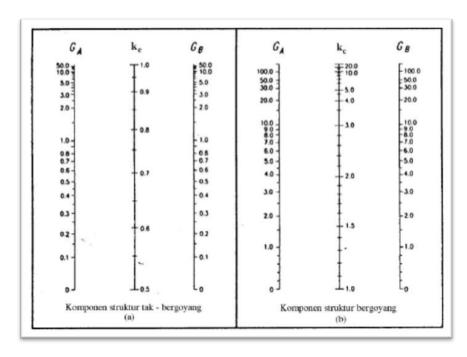
biasanya dapat diekuivalenkan dengan beban P yang bekerja pada eksentrisitas e = M/P seperti pada Gambar 2.26.

Gambar 2.17 Kolom dengan beban aksial dan momen lentur

Analisis penampang kolom, biasanya dapat diklasifikasikan berdasarkan eksentrisitasnya. Apabila penampang kolom diberi beban tekan eksentris dengan eksentrisitas yang besar, maka akan terjadi keruntuhan tarik. Kolom mengalami keruntuhan akibat luluhnya tulangan baja dan hancurnya beton pada saat rengan tulangan baja melampaui $\epsilon_y = f_y / E_s$. Dalam kasus ini kuat tekan nominal penampang, Pn, akan lebih kecil dari Pb, atau eksentrisitas, e = Mn/Pn lebih besar dari eksentrisitas. Maka apabila e > d dapat diasumsikan keruntuhan tarik.

Apabila gaya tekan, Pn, melebihi gaya tekan dalam kondisi seimbang, Pb, atau eksentrisitas, e = Mn/Pn, lebih kecil daripada eksentrisitas pada kondisi seimbang, eb. Maka penampang kolom akan mengalami keruntuhan tekan. Pada kasus ini regangan pada beton akan mencapai 0,003, sedangkan regangan pada tulangan baja akan kurang dari ey. Sebagian besar penampang beton akan berada dalam kedadaan tekan. Sumbu netral akan bergerak mendekati tulangan tarik, menambah luas daerah tekan beton, sehingga jarak sumbu netral dari serat tekan beton akan melebihi jaraknya pada kondisi seimbang (c > cb). Beban tekan nominal, Pn, dapat dihitung dengan prinsip-prinsip dasar kesetimbangan gaya.

Desain kolom dilakukan berdasarkan beban terfaktor, yang tidak boleh lebih besar daripada kuat rencana penampang, yaitu:


$$\emptyset M_n > M_u$$
 $\emptyset P_n > P_u$

Proses analisis dan desain untuk elemen kolom harus dipertimbangkan beberapa faktor bila kolom termasuk dalam kategori kolom panjang. Beberapa faktor lain yang turut mempengaruhi proses elemen kolom panjang adalah tinggi/panjang kolom, ukuran penampang, rasio kelangsingan dan kondisi tumpuan ujung.

Panjang kolom yang dipergunakan untuk menentukan rasio kelangsingan kolom adalah fungsi dari panjang efektif kolom (klu). Panjang efektif kolom ini merupakan fungsi dari dua buah faktor utama, yaitu:

- Panjang tak terkekang (lu), merepresentasikan tinggi tak terkekang kolom antara dua lantai tingkat. Nilai ini diukur dari jarak bersih antar pelat lantai, balok, ataupun elemen struktur lain yang memberikan kekangan lateral pada kolom.
- Faktor panjang efektif (k), Ini merupakan rasio antara jarak dua titik dengan momen nol terhadap panjang tak terkekang sebesar l_u, dan jarak antara dua titik yang memiliki momen sama dengan nol adalah lu juga, memilik faktor panjang efektif, k = lu/lu = 1,0. Jika kedua tumpuan ujung adalah jepit, momen nol terjadi pada jarak lu/4 dari kedua tumpuan, sehingga k = 0,5lu/lu = 0,5. Nilai k dapat ditentukan pula dengan menggunakan nomogram dengan terlebih dahulu menghitung faktor tahanan ujung.

$$\psi = \frac{\sum \frac{EI}{lc} kolom}{\sum \frac{EI}{l} balok}$$

Gambar 2.18 Diagram nomogram untuk mementukan tekuk dari kolom

Batasan antara kolom pendek dan kolom panjang sangat ditentukan oleh rasio kelangsingannya. Batasan tersebut diberikan dalam SNI 2847:2013 Pasal 10.10.1 yang menyatakan bahwa efek kelangsingan boleh diabaikan untuk:

1) Elemen struktur tekan bergoyang

$$\frac{kl_u}{r} \le 22$$

2) Elemen struktur tekan tak bergoyang

$$\frac{kl_u}{r} \le 34 - 12(\frac{M_1}{M_2}) \le 40$$

Dimana:

 M_1 = momen ujung terfaktor pada kolom

 M_2 = momen ujung terfaktor pada kolom

k = faktor panjang efektif

 l_u = panjang tak terkekang dari elemen kolom

r= jari – jari girasi penampang yang dapat diambil sebesar 0.3h untuk penampang persegi dan 0.25 kali diameter untuk penampang lingkaran

Setelah menentukan apakah kolom termasuk kategori kolom pendek atau kolom panjang, selanjutnya melakukan perhitugan kolom sebagai berikut:

1 Kolom Pendek

Analisa kolom pendek pada laporan akhir ini menggunakan metode *Reiprokal Bresler* yang mempertimbangkan eksentrisitas dua arah dengan mengasumsikan kolom terjadi keruntuhan tekan. Adapun langkah-langkah analisis kolom pendek sebagai berikut:

- a) Menentukan nilai beban tekan ultimit kolom (P_u) pada saat lentur dua arah terjadi. Nilai P_u yang diambil adalah nilai P_u kombinasi dari tiap batang kolom dikurangi berat batang kolom yang ditinjau.
- b) Menghitung nilai eksentrisitas (e_x dan e_y) dengan menggunakan persamaan sebagai berikut:

$$e = \frac{M_u}{P_u}$$

- c) Menentukan kapasistas beban P_{nx} terhadap sumbu x yang bekerja dengan eksentrisitas e_{y} . Analisa akan dilakukan dengan langkah langkah sebagai berikut:
 - 1) Analisa untuk keadaan seimbang (jarak sumbu netral)

$$c_b = \frac{600}{600 + f_y}$$

$$a_b = \beta 1 c_b$$

$$f'_s = 600 \left(\frac{c_b - d'}{c_b}\right)$$
Jika $f'_s > f_y$ maka $f'_s = f_y = 400 Mpa$

Selanjutnya menghitung gaya-gaya yang bekerja pada penampang kolom:

$$C_c = 0.85 f'_c a_b b$$

$$T = A_s f_y$$

$$C_s = A'_s (f'_s - 0.85 f'_c)$$
Maka nilai $P_{bx} = C_c + C_s - T$

- 2) Periksa nilai e_y terhadap d, apabila $e_y < d$, maka asumsikan terjadi keruntuhan tekan kemudian lakukan analisa sebagai berikut:
 - a) Analisa P_n dari kesetimbangan gaya dengan persamaan berikut:

$$P_n = C_c + C_s - T$$

Dengan:

$$C_c = 0.85 f'_c a_b b$$

$$C_s = A'_s(f'_s - 0.85f'_c)$$

(asumsikan tulangan tekan sudah luluh)

$$T = A_s f_y \qquad (f_s < f_y)$$

b) Analisa P_n dengan mengambil jumlahan momen terhadap A_s dengan persamaan berikut:

$$P_n = \frac{1}{e'} \left[C_c \left(d - \frac{a}{2} \right) + C_s (d - d') \right]$$

Dengan e' = e + d'' (atau e' = e + d - h/2, jika $A_s = A'_s$).

- c) Asumsikan nilai c sehingga $c > c_b$. Hitung $a = \beta 1c$. Asumsikan $f'_s = f_s$
- d) Hitung nilai f_s berdasarkan asumsi nilai c dengan persamaan berikut:

$$f_s = \varepsilon_s E_s = 600 \left(\frac{d-c}{c} \right) \le f_y$$

e) Hitung nilai P_{n1} dan P_{n2} dengan menggunakan persamaan sebagai berikut:

$$P_{n1} = C_c + C_s - T$$

$$P_{n2} = \frac{1}{e'} \Big[C_c \left(d - \frac{a}{2} \right) + C_s (d - d') \Big]$$

Apabila P_{n1} cukup dekat dengan P_{n2} , maka nilai P_n diambil dari nilai terkecil antara P_{n1} dan P_{n2} atau rerata keduanya. Jika P_{n1} dan P_{n2} tidak cukup dekat, maka asumsikan nilai c dan a yang baru dan ulangi perhitungan hingga P_{n1} cukup dengan P_{n2} (kurang lebih 1%).

f) Periksa apakah tulangan tekan benar sudah luluh sesuai dengan asumsi semula, dengan menghitung ε'_s dan membandingkannya dengan ε_y .

Bila $\varepsilon'_s > \varepsilon_y$ maka tulangan tekan sudah luluh. Jika belum luluh, maka f'_s dihitung sebagai berikut:

$$f_s = 600 \left(\frac{c - d'}{c} \right) \le f_y$$

- g) Menentukan kapasistas beban P_{ny} terhadap sumbu y yang bekerja dengan eksentrisitas e_{∞} . Analisa akan dilakukan dengan langkah langkah yang sama seperti langkah c.
- h) Tentukan nilai Po dengan menggunakan persamaan berikut:

$$P_0 = 0.85 f'_c A_g + A_{st} (f_y - 0.85 f'_c)$$

i) Hitung P_n dengan menggunakan persamaan $Resiprokal\ Bresler$ berikut:

$$\frac{1}{P_n} = \frac{1}{P_{nx}} + \frac{1}{P_{ny}} - \frac{1}{P_0}$$

Desain kolom dilakukan berdasarkan beban terfaktor, yang tidak boleh lebih besar daripada kuat rencana penampang, yaitu :

$$\emptyset M_n > M_u$$

$$\emptyset P_n > P_u$$

Dengan $\emptyset = 0.65$ untuk sengkang persegi dan $\emptyset = 0.75$ untuk sengkang spiral.

2 Kolom Panjang

Proses perhitungan kolom panjang sama halnya dengan kolom pendek. Namun, pada perhitugan kolom panjang dilakukan terlebih dahulu perbesaran momen dengan metode perbesaran momen portal bergoyang. Prosedur untuk menentukan faktor perbesaran momen pada portal bergoyang dapat diurutkan sebagai berikut:

- a Tentukan apakah portal termasuk portal bergoyang atau tidak, tentukan faktor panjang efektif, k dan panjang tak terkekang l_u .
- b Hitung besarnya EI, P_c dan C_m dengan menggunakan persamaan sebagai berikut:
 - 1) Kekakuan kolom (EI)

$$EI = \frac{0.2E_cI_g + E_sI_{se}}{1 + \beta_{dns}}$$

atau

$$EI = \frac{0.4E_cI_g}{1 + \beta_{dns}}$$

Dengan:

$$E_c = 4.700 \sqrt{f'_c}$$

$$E_s = 200.000 \text{ Mpa}$$

 I_a = momen inersia bruto penampang terhadap sumbu yang ditinjau

 I_{se} = momen inersia tulangan baja

$$\beta_{dns} = \frac{\text{beban tetap aksial terfaktor maksimum}}{\text{beban aksial terfaktor maksimum}} = \frac{1.2 D}{1.2 D + 1.6 L}$$

2) Beban tekuk Euler (Pc)

$$P_c = \frac{\pi^2 EI}{(kl_u)^2}$$

3) Hitung nilai C_m

$$C_m = 0.6 + \frac{0.4 M_1}{M_2} \geq 0.4$$

c Menghitung faktor perbesaran momen dengan menggunakan persamaan berikut:

$$\delta_s = \frac{1}{1 - O} \ge 1.0$$

Namun bila δ_s yang dihasilkan besarnya melebihi 1,5, maka δ_s harus dihitung berdasarkan analisa orde dua, atau dengan menggunakan persamaan berikut :

$$\delta_s = \frac{1}{\frac{1 - \sum P_u}{0.75 \sum P_c}} \ge 1.0$$

Dengan:

 $\sum P_u$: jumlah seluruh beban vertikal terfaktor yang bekerja pada suatu tingkat.

 $\sum P_c$: jumlah seluruh kapasitas tekan kolom-kolom bergoyang pada suatu tingkat.

d Hitung momen ujung, M_1 dan M_2 yang telah diperbesar:

$$M_1 = M_{1ns} + \delta_s M_{1s}$$

$$M_2 = M_{2ns} + \delta_s M_{2s}$$

Dengan M_{1ns} dan M_{2ns} adalah momen yang diperoleh dari kondisi tak bergoyang, sedangkan M_{1s} dan M_{2s} adalah momen yang diperoleh dari kondisi bergoyang.

e Apabila $M_2 > M_1$ yang dihasilkan dari analisis struktur, maka momen yang digunakan untuk desain kolom adalah:

$$M_c = M_{2ns} + \delta_s M_{2s}$$

f Elemen struktur tekan dapat didesain terhadap beban terfaktor aksial P_u dan momen M_c pada persamaan $M_c = M_{2ns} + \delta_s M_{2s}$, apabila:

$$l_u/r < \frac{35}{\sqrt{\frac{P_u}{f'_c \cdot A_g}}}$$

Sebagai tambahan elemen struktur tekan tersebut harus didesain terhadap beban terfaktor aksial P_u beserta momen $M_c = \delta_{ns} M_{2ns} + \delta_s M_{2s}$, apabila:

$$l_u/r < \frac{35}{\sqrt{\frac{P_u}{f'_c \cdot A_g}}}$$

2.3.6 Perancangan Sloof

Sloof merupakan salah satu struktur bawah suatu bangunan yang memiliki fungsi utama sebagai pengikat antarpondasi sehingga diharapkan bila terjaid penurunan pondasi, penurunan itu dapat tertahan atau akan terjadi secara bersamaan. Adapun urutan-urutan dalam menganalisis tie beam:

- 1. Tentukan dimensi tie beam
- 2. Tentukan pembebanan pada tie beam
 - Berat sendiri tie beam
 - Berat dinding dan plesteran

Kemudian semua beban dijumlahkan untuk mendapatkan beban total, lalu dikalikan faktor untuk beban terfaktor.

$$Mu = 1.4 MD$$

$$Mu = 1.2 MD + 1.6 ML$$

Nilai M didapat dari momen akibat beban mati diperhitungan SAP Sloof

- 3. Perhitungan momen (menggunakan program SAP 2000)
- 4. Penulangan lentur lapangan dan tumpuan
 - a) Perhitungan lentur lapangan

1) Tentukan
$$d_{eff} = h - p - \emptyset$$
 sengkang $-\frac{1}{2}\emptyset$ tulangan

2)
$$K = \frac{Mu}{\phi, b, d}$$
 = didapat nilai ρ di tabel.

Akan didapat nilai ρ dari tabel :

As =
$$\rho$$
. b. d

- 3) Pilih tulangan dengan dasar As terpasang \geq As direncanakan.
- b) Penulangan lentur pada tumpuan

1)
$$Q = \left(\frac{(1,7)}{\emptyset f'c}\right) \frac{Mu}{bd}$$

2)
$$p = \frac{f'c}{fy}(0.85 - \sqrt{(0.85)^2 - Q})$$

As =
$$\rho$$
. b. d

- 3) Pilih tulangan dengan dasar As terpasang \geq As direncanakan
- 5. Tulangan geser rencana

a.
$$V_c = 0.17 \lambda \sqrt{fc'}$$
. b_w.d
(SNI 2847-2019 pasal 22.5.5.1, hal.485)

Tulangan geser diperlukan apabila $Vu > \frac{1}{2} \emptyset Vc$. Tulangan geser minimum dipakai apabila nilai Vu melebihi $\frac{1}{2} \emptyset Vc$ tetapi kurang dari \emptyset Vc. Biasanya dapat digunakan tulangan berdiameter 10 mm yang diletakkan dengan jarak maksimum. Apabila nilai $Vu > \emptyset$ Vc, maka kebutuhan tulangan geser harus dihitung. (*Agus Setiawan*, 2016;103)

 b. Gaya geser Vu yang dihasilkan oleh beban terfaktor harus kurang dari atau sama dengan kuat geser nominal dikali dengan faktor reduksi (φ), atau:

$$Vu < \phi \ Vn$$

Bila,
$$Vn = Vc + Vs$$

Sehingga

$$Vu < \phi (Vc + Vs)$$

Dengan besaran faktor reduksi (\$\phi\$) untuk geser sebesar 0,75.

(Agus Setiawan, 2016; 99)

c. Luas minimum tulangan geser

$$Av_{minimum} = 0.062. \sqrt{f'c}. \ (\frac{bw.\ s}{fyt}) \ge \frac{0.35.\ bw.\ s}{fyt}$$

d. Jarak maksimum tulangan geser

Jika Vs
$$\leq$$
 0,33. $\sqrt{fc'}$. bw . d , maka S = d/2 atau 600 mm
Jika Vs \leq 0,66 $\sqrt{fc'}$. bw . d, maka S = d/4 atau 300 mm
(SNI 2847-2019 Pasal 10.7.6.5.2 hal. 223)

Dengan batasan kebutuhan luas minimum luas tulangan geser:

$$\begin{split} S_{min} &= \frac{\textit{Av .fyt}}{0.062.\sqrt{\textit{f c'.bw}}} \text{, untuk fc'} > 30 \text{ MPa} \\ S_{min} &= \frac{\textit{Av .fyt}}{0.35.\textit{bw}} \text{, untuk fc'} \leq 30 \text{ MPa} \\ (SNI 2847:2019 \text{ Pasal } 11.4.5, \text{ R9.6.3 hal. } 192) \\ \text{Rumus sengkang vertikal :} \end{split}$$

$$S = \frac{Av.fy.d}{Vs}$$
(Setiawan, 2016;99)

2.3.7 Perencanaan Pondasi

Pondasi dalam istilah ilmu teknik sipil dapat didefinisikan sebagai bagian dari struktur bangunan yang berhubungan langsung dengan tanah dan berfungsi. (Agus Setiawan, 2016:298).

Pondasi pada umumnya berlakuk sebagai komponen struktur pendukung bangunan yang terbawah dan berfungsi sebagai elemen terakhir yang meneruskan beban ke tanah.

Hal-hal yang perlu dipertimbangkan dalam mementukan jenis pondasi:

- 1. Keadaan tanah pondasi
- 2. Jenis konstruksi bangunan
- 3. Kondisi bangunan di sekitar pondasi
- 4. Waktu dan biaya pengerjaan

Berdasarkan kedalaman pondasi ada dua macam, yakni:

- 1. Pondasi dangkal
- 2. Pondasi dalam

Perencanaan pondasi tiang beton harus menentukan:

1. Beban izin dan panjang pondasi untuk tiang pancang beton yang ditentukan adalah:

Beban izin = 30-50 ton

Panjang pondasi = 15-18 m

- 2. Daya dukung pondasi tiang pancang
 - a. Bila tiang pancang dipancangkan masuk kedalam tanah sampai mencapai lapisan tanah keras dan daya dukungnya ditekankan pada tahanan ujung tiang maka disebut pondasi tiang pancang dengan daya dukung ujung atau end bearing pile atau point bearing pile.
 - b. Bila tiang pancang dipancangkan tidak mencapai lapisan tanah keras dan untuk menahan beban dipikul oleh tahanan yang ditimbulkan oleh gesekan antara tiang dengan tanah, maka disebut pondasi tiang pancang dengan daya dukung gesek atau friction bearing pile

Berdasarkan data hasil tes tanah pada lokasi pembangunan Gedung Hotel Gading Homestay Yogyakarta yang dijadikan sebagai materi dalam laporan akhir ini, maka jenis pondasi yang dipilih adalah pondasi tiang pancang dengan data sondir

Berikut ini adalah langkah-langkah perhitungan dalam merancang pondasi : (Sardjono, 1988:32)

- 1. Tahanan ujung (end bearing pile)
 - a) Terhadap kekuatan bahan pondasi tiang pancang:

$$Q_{bahan} = 0.3 \times f_c \times A_{tiang}$$

b) Terhadap kekuatan tanah:

Daya dukung ujung tiang ultimit

$$Qijin = \frac{NK \ x \ Ab}{Fb} \ x \ \frac{JHP \ x \ O}{Fs}$$

Keterangan:

NK: nilai konus

JPH: jumlah hambatan pekat

Ab: Luas Tiang

O: Keliling Tiang

Fb: faktor keamanan daya dukung ujung = 3

Fs: faktor keamanan daya dukung gesek = 5

2. Menentukan jumlah tiang pancang

$$Q = (P \times 10\%) + P + \text{berat poer}$$

$$n = \frac{Q}{Q_{izin}}$$

3. Menentukan jarak antar tiang

$$S = 2.5 - 3.0D$$

Keterangan:

d = ukuran pile (tiang)

S = jarak antar tian

4. Menentukan efisiensi kelompok tiang

$$E_g = 1 - \frac{\theta}{90^o} \left\{ \frac{(n-1)m + (m-1)n}{mn} \right\}$$

Keterangan:

m = jumlah baris

n = jumlah tiang dalam satu baris

 $\Theta = \operatorname{Arc} \tan \frac{d}{s} (\operatorname{derajat})$

5. Menentukan daya dukung grup tiang pancang

 $Q_{ultimit\ grup} = Q_{izin}.n.E_g$

6. Menentukan kemampuan tiang pancang terhadap sumbu X dan Y

$$P_{max} = \frac{\Sigma V}{n} \pm \frac{M_y.X_{max}}{ny.\Sigma X^2} \pm \frac{M_x.Y_{max}}{nx.\Sigma Y^2}$$

Keterangan:

 P_{max} = Beban yang diterima oleh tiang pancang

 ΣV = Jumlah total Beban

Mx = Momen yang bekerja pada bidang yang tegak lurus pada sumbu x

My = Momen yang bekerja pada bidang yang tegak lurus pada sumbu y

n = Banyak tiang pancang dalam kelompok tiang pancang

 X_{max} = Absis terjauh tiang pancang terhadap titik berat kelompok tiang

 Y_{max} = Ordinat terjauh tiang pancang terhadap titik berat kelompok tiang

n_y = Banyaknya tiang pancang dalam satu baris dalam arah sumbu Y

n_x = Banyaknya tiang pancang dalam satu baris dalam arah sumbu X

 ΣX^2 = Jumlah Kuadrat absis-absis tiang pancang.

 ΣY^2 = Jumlah kuadrat ordinat-ordinat tiang pancang.

(Sumber: Pondasi Tiang Pancang, Sardjono: 61)

Kontrol kemampuan tiang pancang.

Pijin =
$$\frac{p}{n}$$

Pijin < P

7. Penulangan

a) Menentukan tebal tapak pondasi

$$d_{eff} = h - p - \emptyset - \frac{1}{2}\emptyset$$
 tulangan utama

b) Menentukan $P_{u \ total}$

$$P_{u \ total} = 1.2 \ Qd + 1.6 \ Ql$$

c) Tinjauan gaya geser 1 arah

Gaya geser terfaktor = $V_u = n. P_u$

Gaya geser nominal = $\emptyset V_c = \frac{1}{6} \sqrt{fc'} bw. d$

$$V_u < \emptyset V_c$$

d) Tinjauan gaya geser 2 arah

Gaya geser terfaktor = $V_u = \Sigma P_u$

Gaya geser nominal =

$$\emptyset V_c = 0.17. \left(1 + \frac{2}{\beta c}\right) . \sqrt{f'_c} \ bo. \ d$$

$$V_u < \emptyset V_c$$

8. Perhitungan pile cap

Pile cap merupakan bagian yang mengikat dan mengunci posisi tiang pancang. Langkah-langkah perencanaan *pile cap* adalah sebagai berikut: (Agus Setiawan, 2016:326)

- a) Hitung beban terfaktor yang dipikul oleh kolom
- b) Periksa terhadap geser dua arah di sekitar kolom $b_0 = 4 (c + d)$
- c) Nilai kuat geser pons dua arah untuk beton ditentukan dari nilai terkecil antara:

$$\begin{aligned} V_{c1} &= 0.17 \left(1 + \frac{2}{\beta_c} \right) \lambda \sqrt{f'_c} \cdot b_o \cdot d \\ V_{c2} &= 0.083 \left(\frac{\alpha_1 d}{b_o} + 2 \right) \lambda \sqrt{f'_c} \cdot b_o \cdot d \\ V_{c3} &= 0.33 \lambda \sqrt{f'_c} \cdot b_o \cdot d \end{aligned}$$

- d) Periksa geser dua arah di sekitar tiang pancang $b_0=2$ (jarak as tiang ke tepi *pile cap* + c/2 + d/2) $b_0=$ keliling dari penampang kritis pada pelat pondasi
- e) Desain penampang terhadap lentur
 Nilai momen lentur yang digunakan untuk mendesain penulangan pile cap diambil dari reaksi tiang pancang terhadap muka kolom
- f) Hitung nilai ρ

$$\rho = \frac{0.85 \, fc'}{f_y} \left[1 - \sqrt{1 - \frac{4 \, M_u}{1.7 \, \phi \, f_c' b d^2}} \right]$$

g) Hitung As perlu dan As min

$$A_{s perlu} = \rho. b. d$$

$$A_{s min} = \rho_{min}. b. d$$

h) Hitung jumlah tulangan

$$n = \frac{As}{\frac{1}{4}\pi d^2}$$

9. Perhitungan tulangan pasak

Kuat tekan rencana kolom

$$\emptyset Pn = \emptyset.0,85.fc'.Ag$$

$$\emptyset Pn > P$$

Jika $\emptyset Pn > Pu$, maka beban pada kolom dapat dipindahkan dengan dukungan saja. Tetapi, diisyaratkan untuk menggunakan tulangan pasak minimum sebesar :

$$A_{s min} = 0.0058 \times Ag$$

$$n = \frac{A_{s \, min}}{\frac{1}{4} \times \pi \times d^2}$$

Kontrol panjang penyaluran pasak

$$L_{db} = \frac{0.25 \, fy \, db}{\sqrt{db}} \ge 0.04 \, fy \, db$$

2.4 Manajemen Proyek

Manajemen proyek dapat diartikan sebagai proses penerapan fungsi-fungsi manajemen seperti merencanakan, memimpin, dan mengendalikan secara sistematis dan terukur dengan pemanfaatan waktu dan sumber daya yang yang ada secara efektif dan efisien untuk mengoptimalkan pencapaian tujuan.

Fungsi dasar Manajemen Konstruksi tersebut, seperti ditulis di atas adalah sebagai berikut:

1. Perencanaan (Planning)

Sebagai perencana, manajemen konstruksi berfungsi untuk menentukan apa yang harus dikerjakan, kapan harus mengerjakannya, dan bagaimana cara mengerjakan proyek tersebut. Manajemen konstruksi berkewajiban untuk pengambilan keputusan atas proses pembuatan konstruksi.

2. Pengorganisasian (Organizing)

Setelah melakukan perencanaan, manajemen kosntruksi berfungsi untuk membentuk organisasi dalam pembuatan proyek. Manajemen konstruksi mengorganisir beberapa divisi untuk melaksanakan tugas dan tanggungjawabnya dalam proses pembuatan proyek serta berhak untuk memberikan pengembangan serta penempatan beberapa tenaga kerja dalam suatu divisi.

3. Pengarahan (Actuating)

Dalam hal ini, manajemen konstruksi dapat melakukan pembinaan motivasi, memberikan pelatihan, bimbingan, dan arahan lainnya kepada bawahan dalam melaksanakan tugas dan tanggungjawabnya yang telah direncanakan.

4. Pengontrolan (Controlling)

Pengontrolan manajemen konstruksi adalah untuk melakukan pengawasan terhadap kegiatan proyek diseluruh divisi serta mengevaluasi deviasi (penyimpangan) yang terjadi selama proyek berlangsung hingga menentukan pencegahan dini untuk menghindari kegagalan.

2.4.1 Rencana Kerja dan Syarat-syarat (RKS)

Rencana kerja dan syarat –syarat (RKS) merupakan dokumen penting selain gambar rencana untuk kelengkapan dokumen tender. Keneradaannya sangat menentukan kepentingan dari berbagai pihak yang akan terlibat dalam realisasi pekerjaan, dimulai sejak tahap awal dari proses realisasi ide dari pemilik proyek.

Untuk dapat Menyusun rencana kerja untuk sebuah proyek, maka harus dibutuhkan:

- a Gambar kerja proyek
- b Rencana anggaran biaya pelaksanaan proyek.
- c Bill of quantity (BOQ) atau daftar volume pekerjaan.
- d Data lokasi proyek berada.
- e Data sumber daya yang meliputi material, peralatan, sub-kontraktor yang tersedia disektiar lokasi pekerjaan proyek berlangsung.
- f Data kebutuhan tenaga kerja dan ketersediaan tenaga kerja yang dibutuhkan untuk menyelesaikan pekerjaan.
- g Data cuaca atau musim di lokasi pekerjaan proyek.
- h Data jenis transportasi yang dapat digunakan di sekitar lokasi proyek.
- i Metode kerja yang digunakan untuk melaksanakan masing-masing item pekerjaan.

- j Data kapasitas produksi meliputi peralatan, tenaga kerja, sub-kontraktor, material.
- k Data keuangan proyek meliputi arus kas cara pembayaran pekerjaan , tenggang waktu, pembayaran progress, dan lainnya.

2.4.2 Volume pekerjaan

Volume pekerjaan adalah jumlah keseluruhan dari banyaknya (kapasitas) suatu pekerjaan yang ada pada suatu proyek pembangunan. Volume pekerjaan dihitung dalam setiap jenis pekerjaan. Volume pekerjaan ini berguna untuk menunjukkan banyaknya suatu kuantitas dari suatu pekerjaan agar didapat harga keseluruhan dari pekerjaan-pekerjaan yang ada.

2.4.3. Analisa Harga Satuan

Analisa harga satuan pekerjaan adalah perhu analisa harga satuan pekerjaan adalah suatu cara perhitungan harga satuan pekerjaan konstruksi yang dijabarkan dalam perkalian kebutuhan bahan bangunan, upah kerja, dan peralatan dengan harga bahan bangunan, standart pengupahan pekerja dan harga sewa / beli peralatan untuk menyelesaikan per satuan pekerjaan konstruksi. analisa harga satuan pekerjaan ini dipengaruhi oleh angka koefisien yang menunjukkan nilai satuan bahan/material, nilai satuan alat, dan nilai satuan upah tenaga kerja ataupun satuan pekerjaan yang dapat digunakan sebagai acuan/panduan untuk merencanakan atau mengendalikan biaya suatu pekerjaan. untuk harga bahan material didapat dipasaran, yang kemudian dikumpulkan didalam suatu daftar yang dinamakan harga satuan bahan/material, sedangkan upah tenaga kerja didapatkan di lokasi setempat yang kemudian dikumpulkan dan didata dalam suatu daftar yang dinamakan daftar harga satuan upah tenaga kerja. Harga satuan yang didalam perhitungannya haruslah disesuaikan dengan kondisi lapangan, kondisi alat/efisiensi, metode pelaksanaan dan jarak angkut.

2.4.4 Rencana Anggaran Biaya (RAB)

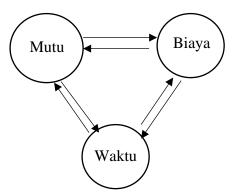
Rencana Anggaran Biaya (RAB) adalah pekerjaan bentuk bangunan yang memenuhi syarat, menentukan biaya, dan menyusun tata cara pelaksanaan teknik dan administrasi. Anggaran biaya ini ialah harga dari bangunan yang dihitung dengan teliti, cermat dan memenuhi syarat. Anggaran biaya pada bangunan yang sama akan berbeda di masing-masing daerah disebabkan karena adanya perbedaan harga bahan dan upah tenaga kerja. Tujuan rencana anggaran biaya adalah untuk memberikan gambaran yang pasti mengenai bentuk konstruksi, besar biaya, dan pelaksanaan atau penyelesaian.

2.4.5 Rencana Pelaksanaan (*Time Schedule*)

1. Network Planning (NWP)

Network Planning atau jaringan kerja adalah suatu teknik yang digunakan oleh seorang manager untuk merencanakan, menjadwalkan dan mengawasi aktivitas pekerjaan suatu proyek dengan menggunakan pendekatan atau analisis waktu (time) dan biaya (cost) yang digambarkan dalam bentuk simbol dan diagram.

Network Planning memiliki beberapa tipe, yaitu preseden, metode jalur krisis (Critical Path Methode), program evaluation dan PERT (Progam Evaluation and Review Technique), Grafis Evaluation dan review technique (GERT) yang diantaranya terdapat perbedaan-perbedaan dalam penyusunannya.


Kegunaan Analisa – analisa Network Planning adalah sebagai berikut :

- Time scheduling urutan pekerjaan yang efisien.
- Pembagian merata waktu, tenaga, dan biaya.
- Rescheduling bila ada keterlambatan keterlambatan penyelesaian.
- Menetukan Trade off atau pertukaran waktu dengan biaya yang efisien.
- Menentukan probabilitas atau kemungkinan kemungkinan yang lain menyelesaikan proyek.
- Merencanakan proyek yang kompleks.

Untuk membuat Network Planning data-data yang diperlukan adalah:

- 1. Mengetahui jenis-jenis pekerjaannya, dan prasyarat apa yang diperlukan untuk memulai pekerjaan atau kegiatan tersebut, dan kegiatan apa yang dapat dilakukan setelah pekerjaan tersebut selesai.
- 2. Taksiran waktu yang diperlukan dalam menyelesaikan masing-masing pekerjaan. Jika pekerjaan tersebut tergolong baru, maka dapat dilakukan perkiraan dengan diberikan waktu lebih (slag).
- 3. Biaya yang diperlukan masing-masing kegiatan dan biaya yang diperlukan untuk mempercepat pekerjaan tersebut.
- 4. Sumber daya yang diperlukan pada masing-masing pekerjaan (Tenaga, bahan bakar, peralatan dan perlengkapan, dan lain-lain).

Pengendalian sebuah proyek konstruksi direncanakan sebaik mungkin diharapkan agar dapat menyelaraskan antara biaya proyek yang ekonomis, menghasilkan mutu pekerjaan yang baik/berkualitas dan selesai tepat waktu karena ketiganya adalah 3 elemen yang saling mempengaruhi, seperti terlihat di bawah ini.

Gambar 2.19 Siklus biaya, material dan waktu (BMW)

Ilustrasi dari tiga siklus diatas adalah jika biaya proyek berkurang (atau dikurangi) sementara waktu pelaksanaan direncanakan tetap, maka secara otomatis anggaran belanja material akan dikurangi dan mutu pekerjaan akan berkurang sehingga secara umum proyek akan rugi. Jika waktu pelaksanaan mundur/terlambat, sementara tidak ada rencana penambahan anggaran, maka mutu pekerjaan juga akan berkurang juga menyebabkan proyek rugi. Jika

mutu ingin dijaga, sementara waktu pelaksanaan mundur/terlambat, maka akan terjadi peningkatan anggaran belanja. Hal ini juga menyebabkan proyek juga akan rugi.

2. Barchart

Barchart adalah daftar urutan bagian – bagian pekerjaan dan garis – garis lurus menyerupai balok yang menunjukkan perkiraan waktu yang dibutuhkan untuk menyelesaikan bagian – bagian pekerjaan dalam suatu proyek. Barchart disusun dalam kolom arah vertikal. Kolom arah horizontal menunjukkan skala waktu. Saat mulai dan akhir sebuah kegiatan dapat terlihat dengan jelas, sedangkan durasi kegiatan digambarkan oleh panjangnya diagram batang.

Adapun keuntungan dari penggunaan barchart ini sendiri adalah sebagai berikut:

- a. Mempermudah pembaca dalam melihat informasi yang ada.
- b. Menyajikan data lebih lengkap, karena terdiri open, high, low dan close.
- c. Proses penggunaan barchart mudah, karena panjang dan pendek balok dapat disesuaikan sesuai kebutuhan.

Sedangkan kekurangan dari penggunaan barchart ini sendiri adalah sebagai berikut:

- a. Jika warna pada barchart sama, akan menyulitkan pembaca.
- b. Hubungan setiap balok tidak jelas.

Proses penyusunan diagram batang untuk membuat suatu barchart dapat dilakukan dengan Langkah sebagai berikut:

- a. Daftar item pekerjaan yang berisi seluruh jenis pekerjaan yang ada dalam rencana pelaksanaan pembangunan.
- b. Urutan pekerjaan dari daftar item kegiatan tersebut di atas, disusun urutan pelaksanaan pekerjaan berdasarkan prioritas item kegiatan yang akan dilaksanakan lebih dahulun dan item kegiatan yang akan dilaksanakan kemudian dan tidak mengesampingkan kemungkinan pelaksanaan pekerjaan secara bersamaan

c. Waktu pelaksanaan pekerjaan adalah jangka waktu pelaksanaan dari seluruh kegiatan yang dihitung dari permulaan kegiatan sampai seluruh kegiatan berakhir. Waktu pelaksanaan pekerjaan diperoleh dari penjumlahan waktu yang dibutuhkan untuk menyelesaikan setiap item kegiatan.

3. Kurva S

Kurva S sendiri adalah sebuah jadwal pelaksanaan pekerjaan yang disajikan dalam bentuk grafis yang dapat memberikan bermacam ukuran kemajuan pekerjaan pada sumbu tegak dikaitkan dengan satuan waktu pada sumbu mendatar.

Kurva S ini dapat dipakai untuk pengujian ekonomi dan mengatur pembebanan sumber daya serta alokasinya, menguji perpaduan kegiatan terhadap rencana kerja, pembandingan kinerja aktual target rencana atau anggaran biaya untuk keperluan evaluasi dan analisis penyimpangan. Kriteria kemajuan pekerjaan ditampilkan dalam bentuk persentase kumulatif bobot prestasi pelaksanaan atau produksi, nilai uang yang dibelanjakan, jumlah kuantitas atau volume pekerjaan, kebutuhan berbagai sumber daya dan masih banyak lagi ukuran lainnya.

Kurva S dibuat dengan sumbu vertikal sebagai nilai kumulatif biaya atau orang/hari atau penyelesaian pekerjaan dan sumbu horizontal sebagai waktu kalender masing-masing dari angka 0 sampai 100, kurva tersebut harus berbentuk huruf S dikarenakan kegiatan proyek berlangsung sebagai berikut:

- a. Kemajuan pada awalnya bergerak lambat
- b. Diikuti oleh kegiatan yang bergerak cepat dalam kurun waktu yang lebih lama.
- c. Akhirnya kecepatan kemajuan menurun dan berhenti pada titik akhir.
 Manfaat dan kegunaan Kurva S adalah sebagai berikut :
- a. Sebagai informasi untuk mengontrol pelaksaan suatu proyek dengan cara membandingkan deviasi antara kurva rencana dengan kurva realisai.
- Sebagai infomasi untuk pengambilan keputusan berdasarkan perubahan kurva realisasi terhadap kurva rencana. Perubahan ini bisa dalam bentuk

- prosentase pekerjaan lebih cepat atau lebih lembat dari waktu yang sudah ditentukan untuk menyelesaikan proyek.
- c. Sebagai informasi kapan waktu yang tepat untuk melakukan tagihan kepada owner ataupun melakukan pembayaran kepada supplier.