On the number of topologies on a finite set

M. Yasir Kizmaz

Communicated by V. Lyubashenko

Abstract. We denote the number of distinct topologies which can be defined on a set X with n elements by $T(n)$. Similarly, $T_{0}(n)$ denotes the number of distinct T_{0} topologies on the set X. In the present paper, we prove that for any prime $p, T\left(p^{k}\right) \equiv k+$ $1(\bmod p)$, and that for each natural number n there exists a unique k such that $T(p+n) \equiv k(\bmod p)$. We calculate k for $n=0,1,2,3,4$. We give an alternative proof for a result of Z. I. Borevich to the effect that $T_{0}(p+n) \equiv T_{0}(n+1)(\bmod p)$.

1. Introduction

Given a finite set X with n elements, let $\mathfrak{T}(X)$ and $\mathfrak{T}_{0}(X)$ be the family of all topologies on X and the family of all T_{0} topologies on X, respectively. We denote the cardinality of $\mathfrak{T}(X)$ by $T(n)$ and the cardinality of $\mathfrak{T}_{0}(X)$ by $T_{0}(n)$. There is no simple formula giving $T(n)$ and $T_{0}(n)$.

Calculation of these sequences by hand becomes very hard for $n \geqslant 4$. The online encyclopedia of N. J. A. Sloane [1] gives the values of $T(n)$ and $T_{0}(n)$ for $n \leqslant 18$. For a more detailed discussion of results in the literature, we refer to the article by Borevich [4].

In the present paper, we prove that for any prime $p, T\left(p^{k}\right) \equiv k+$ $1(\bmod p)$, and that for each natural number n there exists a unique k such that $T(p+n) \equiv k(\bmod p)$. We calculate k for $n=0,1,2,3,4$. We give an alternative proof for a result of Z. I. Borevich [5] to the effect that $T_{0}(p+n) \equiv T_{0}(n+1)(\bmod p)$. Our results depend on basic properties of group action, which is the first time used in this problem as far as the author is aware.

2010 MSC: Primary 11B50, Secondary 11B05.
Key words and phrases: topology, finite sets, T_{0} topology.

2. Main results

Let G be a group acting on the finite set X. Then the action of G on X can be extended to the action of G on $\mathfrak{T}(X)$ by setting $g \tau=$ $\{g U \mid U \in \tau\}$ where $\tau \in \mathfrak{T}(X)$ and $g U=\{g u \mid u \in U\}$. Now set $\operatorname{Fix}(\mathfrak{T}(X))=\{\tau \in \mathfrak{T}(X) \mid g \tau=\tau$ for all $g \in G\}$. Notice that if G is a p-group, $|\mathfrak{T}(X)| \equiv|\operatorname{Fix}(\mathfrak{T}(X))|(\bmod p)$ as every non-fixed element of $\mathfrak{T}(X)$ has orbit of length a positive power of p. For a given topology $\tau \in \mathfrak{T}(X)$ and $x \in X$, we denote the intersection of all open sets of τ including x by O_{x}. Note that $O_{x} \in \tau$ as we are in the finite case.

Definition 1. A base \mathfrak{B} of a topology τ is called a minimal base if any base of the topology contains \mathfrak{B}.

Example. Let $X=\{a, b, c\}$ be a set and let τ be a topology on X with $\tau=\{\varnothing,\{a\},\{a, b\},\{a, c\},\{a, b, c\}\}$. Now if \mathfrak{B} is an arbitrary base for τ then we have $U=\bigcup_{x \in U} B_{x}$ where $U \in \tau$ and $B_{x} \in \mathfrak{B}$ such that $x \in B_{x} \subseteq U$. Thus, we observe that $\mathfrak{B}^{\prime}=\{\{a\},\{a, b\},\{a, c\}\} \subseteq \mathfrak{B}$. Moreover, \mathfrak{B}^{\prime} is also a base for τ which implies that \mathfrak{B}^{\prime} is a minimal base for τ.

Proposition 1. Let $\tau \in \mathfrak{T}(X)$ and M_{τ} be the set of all distinct O_{x} for $x \in X$. A base \mathfrak{B} of τ is a minimal base if and only if $\mathfrak{B}=M_{\tau}$.

By the proposition, we extend the definition: a base \mathfrak{B} on X is minimal if $\mathfrak{B}=M_{\tau}$ where τ is the topology generated by \mathfrak{B}.

Lemma 1. $\tau \in \operatorname{Fix}(\mathfrak{T}(X))$ if and only if M_{τ} is G-invariant.
Proof. Let $\tau \in \operatorname{Fix}(\mathfrak{T}(X))$ and $O_{x} \in M_{\tau}$. We need to show that $g O_{x} \in M_{\tau}$. Let $g x=y$ for $g \in G$. As $g \tau=\tau, g O_{x} \in \tau$. Thus, $g O_{x}$ is an open set containing the element $g x=y$. Hence, $O_{y} \subseteq g O_{x}$. Since $g^{-1} y=x$, we can show that $O_{x} \subseteq g^{-1} O_{y}$ which forces $g O_{x}=O_{y}$. So, $g O_{x} \in$ $M_{\tau} \forall g \in G$. Now assume that M_{τ} is G-invariant. For each $U \in \tau$, we have $U=\bigcup_{x \in U} O_{x}$. Then $g U \in \tau$ as $g O_{x} \in M_{\tau}$ for all $g \in G$, and hence $\tau \in \operatorname{Fix}(\mathfrak{T}(X))$.

Theorem 1. Let p be a prime and let k be a natural number. Then $T\left(p^{k}\right) \equiv k+1(\bmod p)$.

Proof. Without loss of generality, let X be the cyclic group of order p^{k}, that is, $X=C_{p^{k}}$. Clearly X acts on X by left multiplication. By extending
this action, X acts on $\mathfrak{T}(X)$. Notice that $|\mathfrak{T}(X)| \equiv|\operatorname{Fix}(\mathfrak{T}(X))|(\bmod p)$ as X is a p-group. It is left to show that $\operatorname{Fix}(\mathfrak{T}(X))$ has $k+1$ elements.

Let $\tau \in \operatorname{Fix}(\mathfrak{T}(X))$ and let $O_{x}, O_{y} \in M_{\tau}$ for $x, y \in X$. Then $\left(y x^{-1}\right) O_{x}$ is an open set including y. Hence, $O_{y} \subseteq\left(y x^{-1}\right) O_{x}$ which means $\left|O_{y}\right| \leqslant\left|O_{x}\right|$. The other inclusion can be done similarly so $\left|O_{x}\right|=\left|O_{y}\right|$ for all $x, y \in X$. Now if $m \in O_{x} \cap O_{y}$, then $O_{m} \subseteq O_{x} \cap O_{y}$. As their orders are equal, we must have $O_{x}=O_{y}$ or $O_{x} \cap O_{y}=\varnothing$. Thus, X is a disjoint union of elements of M_{τ}, that is, $X=\biguplus_{O_{x} \in M_{\tau}} O_{x}$. It follows that $|X|=\left|M_{\tau}\right|\left|O_{x}\right|$ for any $x \in X$.

Note that X also acts on M_{τ} by Lemma 1 . Let e be the identity element of X and $\operatorname{Stab}\left(O_{e}\right)$ be the stabilizer of O_{e} in the action of X on M_{τ}. Then we obtain that $\left|X: \operatorname{Stab}\left(O_{e}\right)\right|=\left|M_{\tau}\right|$ as the action is transitive. It follows that $\left|\operatorname{Stab}\left(O_{e}\right)\right|=\left|O_{e}\right|$ as $|X|=\left|M_{\tau}\right|\left|O_{e}\right|$ also holds. Since our action is induced from left multiplication in the group X, the product $\operatorname{Stab}\left(O_{e}\right) O_{e}$ is exactly set multiplication in the group X. Then we obtain that $O_{e}=\operatorname{Stab}\left(O_{e}\right) O_{e} \supseteq \operatorname{Stab}\left(O_{e}\right) e=\operatorname{Stab}\left(O_{e}\right)$. But the equality $\left|O_{e}\right|=\left|\operatorname{Stab}\left(O_{e}\right)\right|$ forces that $O_{e}=\operatorname{Stab}\left(O_{e}\right)$.

Hence, the set M_{τ} is the set of left cosets of a subgroup of X. Since the chosen topology τ from $\operatorname{Fix}(\mathfrak{T}(X))$ uniquely determines M_{τ} and M_{τ} uniquely determines a subgroup O_{e} of X, we have an injection from $\operatorname{Fix}(\mathfrak{T}(X))$ to the set of all subgroups of X. Conversely, for a subgroup H of X, the set of left cosets of H forms an X-invariant minimal base for a topology. The topology τ generated by this base is an element of $\operatorname{Fix}(\mathfrak{T}(X))$ by Lemma 1 . Hence, the cardinality of $\operatorname{Fix}(\mathfrak{T}(X))$ is equal to the number of the subgroups of X, which is $k+1$.

By applying the same method in the above proof, we can also show that $T_{0}\left(p^{k}\right) \equiv 1(\bmod p)$. Actually, Z. I. Borevich proved a more general result about $T_{0}(n)$. Now we establish an alternative proof for the theorem of Z. I. Borevich.

Theorem $2(\mathrm{Z} . \mathrm{I} . \operatorname{Borevich})$. Let p be a prime. If $k \equiv l(\bmod p-1)$, then $T_{0}(k) \equiv T_{0}(l)(\bmod p)$.

Proof. It is equivalent to show that $T_{0}(n+p) \equiv T_{0}(n+1)(\bmod p)$ for an integer $n \geqslant 0$. Let $C=C_{p}$ be the cyclic group of order p and N be a set with n elements. Without loss of generality, let X be the disjoint union of C and N so that the cardinality of X is $p+n$. We define the action of C on X in the following way: for $c \in C$ and for $x \in X, c * x=c x$ if $x \in C$ and $c * x=x$ if $x \in N$. Then the action of C on X can be extended to
the action of C on $\mathfrak{T}_{\mathfrak{0}}(X)$. As $\left|\mathfrak{T}_{\mathfrak{0}}(X)\right| \equiv\left|\operatorname{Fix}\left(\mathfrak{T}_{\mathfrak{o}}(X)\right)\right|(\bmod p)$, it is left to show that $\left|\operatorname{Fix}\left(\mathfrak{T}_{\mathfrak{0}}(X)\right)\right|=T_{0}(n+1)$.

Let $\tau \in \operatorname{Fix}\left(\mathfrak{T}_{0}(X)\right)$. Pick $x, y \in C$ and $a \in N$ where $x \neq y$. We know that $y x^{-1} O_{x}=O_{y}$. Then we can observe that $O_{x} \cap N=O_{y} \cap N$ as N is fixed by C. Similarly, $O_{x} \cap C$ and $O_{y} \cap C$ are disjoint or equal. But we can not have $O_{x}=O_{y}$ as it is a T_{0} topology. Hence, $\left(O_{x} \cap C\right) \cap\left(O_{y} \cap C\right)=\varnothing$. Then we obtain that $O_{x} \cap C=\{x\}$, and hence $O_{x}=\{x\} \cup S$ for a subset S of N. On the other hand, $x\left(C \cap O_{a}\right)=C \cap O_{a}$, which forces that $C \cap O_{a}$ is either C or \varnothing, and hence O_{a} is either $C \cup T$ or T for a subset T of N. Set $Y=\{x\} \cup N$ then for each $\tau \in \operatorname{Fix}\left(\mathfrak{T}_{0}(X)\right)$, we have subspace topology $\tau_{Y}=\{U \cap Y \mid U \in \tau\}$ on Y. Note that τ_{Y} is a T_{0} topology as it is the subspace topology on Y induced from τ.

Now our aim is to show that the mapping $\tau \mapsto \tau_{Y}$ is a bijection from $\operatorname{Fix}\left(\mathfrak{T}_{0}(X)\right)$ to $T_{0}(Y)$. Let $\pi, \tau \in \operatorname{Fix}\left(\mathfrak{T}_{0}(X)\right)$ such that $\tau_{Y}=\pi_{Y}$. Then we have $O_{t} \cap Y=O_{t}^{\prime} \cap Y$ for all $t \in Y$ where $O_{t} \in M_{\tau}$ and $O_{t}^{\prime} \in M_{\pi}$. Note that $O_{x} \subseteq Y$ by the properties deduced in previous paragraph, and hence we obtain $O_{x}=O_{x}^{\prime}$. We also have the equality $O_{a} \cap Y=O_{a}^{\prime} \cap Y$ for $a \in N$, which forces that $O_{a} \cap C=O_{a}^{\prime} \cap C$ is either C or \varnothing by previous paragraph. Since $O_{a} \cap N=O_{a}^{\prime} \cap N$, we get $O_{a}=O_{a}^{\prime}$ for $a \in N$. Then it follows that $O_{t}=O_{t}^{\prime}$ for all $t \in Y$. Since $O_{z}=z x^{-1} O_{x}$ for $z \in C$, we obtain that $O_{t}=O_{t}^{\prime}$ for all $t \in X$, which implies the equality $\tau=\pi$. Thus, our map is one to one.

Now, let $\pi \in \mathfrak{T}_{0}(Y)$ and let M_{π} be the minimal base of π. Set

$$
O_{t}= \begin{cases}t x^{-1} O_{x}^{\prime} & \text { if } t \in C \\ O_{t}^{\prime} & \text { if } t \in N \text { and } x \notin O_{t}^{\prime} \\ C \cup O_{t}^{\prime} & \text { if } t \in N \text { and } x \in O_{t}^{\prime}\end{cases}
$$

for each $O_{t}^{\prime} \in M_{\pi}$. We need to show that $\mathfrak{B}=\left\{O_{t} \mid t \in X\right\}$ is a minimal base and the topology τ generated by \mathfrak{B} is a T_{0} topology. To show that it is a minimal base, we need to show that if $a \in O_{t}$ then $O_{a} \subseteq O_{t}$ for any $a, t \in X$. In fact, we will observe that $O_{a} \subset O_{t}$ which shows that τ is a T_{0} topology. It can be done case by case but here we present only nontrivial cases. Fix $a \in N$ and let $a \in O_{x}$. Note that $a \in O_{x}^{\prime}$ as $O_{x}^{\prime}=O_{x}$, and hence we obtain $O_{a}^{\prime} \subseteq O_{x}^{\prime}$. If $x \in O_{a}^{\prime}$ then we have $O_{a}^{\prime}=O_{x}^{\prime}$ which is not possible as π is a T_{0} topology. Thus, $x \notin O_{a}^{\prime}$ which implies $O_{a}=O_{a}^{\prime}$ by our setting. Then we obtain that $O_{a} \subset O_{x}$. Now assume that $x \in O_{a}$. Then we get that $x \in O_{a}^{\prime}$ otherwise $x \notin O_{a}$ by our setting. Thus, we obtain $O_{x}^{\prime} \subset O_{a}^{\prime}$ in a similar way. It follows that $O_{x} \subset O_{a}$ as $O_{x}=O_{x}^{\prime}$. As a result $\tau \in \operatorname{Fix}\left(\mathfrak{T}_{\mathfrak{0}}(X)\right)$ as \mathfrak{B} is a C-invariant minimal base. Moreover,
the equality $\tau_{Y}=\pi$ holds, which concludes that the mapping $\tau \mapsto \tau_{Y}$ from $\operatorname{Fix}\left(\mathfrak{T}_{\mathfrak{0}}(X)\right)$ to $\mathfrak{T}_{\mathfrak{0}}(Y)$ is a bijection, which completes the proof.

Corollary 1. $T_{0}\left(p^{k}\right) \equiv 1(\bmod p)$ where k is a natural number and p is a prime number.

The proof of next theorem is similar to the proof of Theorem 2 in the sense that both use the same technique. For clarity, we repeat some arguments.

Theorem 3. For each natural number n, there exists a unique integer k such that $T(p+n) \equiv k(\bmod p)$ for all primes p.

Proof. If $n=0, T(p) \equiv 2(\bmod p)$ by Theorem 1 . Now we can assume that $n>0$. Let $C=C_{p}$ be the cyclic group of order p and N be a set with n elements. We define the action of C on X as in the proof the previous theorem. Then the action of C on X can be extended to the action of C on $\mathfrak{T}(X)$. As $|\mathfrak{T}(X)| \equiv|\operatorname{Fix}(\mathfrak{T}(X))|(\bmod p)$, it is left to show that $|\operatorname{Fix}(\mathfrak{T}(X))|$ does not depend on the choice of prime p.

Due to Lemma 1, $|\operatorname{Fix}(\mathfrak{T}(X))|$ is equal to the number of C-invariant minimal bases on X. Let $x, y \in C$. Notice that O_{x} completely determines O_{y} as $\left(y x^{-1}\right) O_{x}=O_{y}$. Then $\left|O_{x} \cap C\right|=\left|O_{y} \cap C\right|$ as $y x^{-1}\left(O_{x} \cap C\right)=O_{y} \cap C$. Now it is easy to see that $O_{x} \cap C$ and $O_{y} \cap C$ are either disjoint or equal. As cardinality of C is prime, $O_{x} \cap C$ is either $\{x\}$ or C. If $a \in N$ then we must have $g O_{a}=O_{a}$ for all $g \in C$ as $g a=a$. Hence, $O_{a} \cap C$ is either \varnothing or C. Thus, the elements of C have no contribution to the number of possible minimal bases. Now we know that such k exists. If k^{\prime} is also such an integer then $k \equiv k^{\prime}(\bmod p)$ for all primes p. Hence $k-k^{\prime}$ is divisible by all primes which forces $k-k^{\prime}=0$.

By the previous theorem, we see that k is uniquely determined by n, which leads the following definition.

Definition 2. We define the integer sequence $k(n)$ for $n \geqslant 0$ to be the unique number such that $k(n) \equiv T(p+n)(\bmod p)$ for all primes p.

The sequence $k(n)$ has appeared in the online encyclopedia of N. J. A. Sloane [2] with reference number (A265042) after this article appeared in arxiv. The proof of the theorem also gives an algorithm to calculate $k(n)$ for a given n.

Corollary 2. $T(p+1) \equiv 7(\bmod p)$ for all primes p, that is, $k(1)=7$.

Proof. By following the proof the Theorem 3, it can be easily counted that there are exactly seven C-invariant minimal bases. Then the result follows.

However, it is difficult to count C-invariant minimal bases for larger n to determine $k(n)$. We develop a new method to calculate $k(n)$ for larger n. But the method requires knowing values of $T(s)$ for some s.

Theorem 4. The sequence $k(n)$ satisfies the following inequality

$$
T(n+1)+T_{0}(n+1) \leqslant k(n)<2 T(n+1)
$$

for $n \geqslant 1$.
Proof. We follow the proof of Theorem 3. We have $k(n)=|\operatorname{Fix}(\mathfrak{T}(X))|$ where $|X|=n+p$ and $|C|=p$. Thus, we need to count C-invariant minimal bases. According to the proof, we have two main cases.
Case 1: $O_{x} \cap C=C$ for $x \in C$. Then $O_{y} \cap C=C$ for all $y \in C$ and $O_{x}=O_{y}$ for all $x, y \in C$. If $a \in N$ then $O_{a} \cap C$ is either C or \varnothing. Hence we can see the whole C as one element, that is, pass to the quotient $\bar{X}=X / \sim$ where $x \sim y$ if $x, y \in C$ then there is a one to one correspondence between C-invariant topologies and quotient topologies. It follows that we have exactly $T(n+1)$ possible sub-cases.
Case 2: $O_{x} \cap C=\{x\}$ for $x \in C$. Let $x, y \in C$ then when we define O_{x}, O_{y} is completely determined as $O_{y}=y x^{-1} O_{x}$. Moreover, we have $O_{x} \cap N=O_{y} \cap N$ as C acts trivially on N. We also have $O_{a} \cap C$ is either C or \varnothing. Now set $Y=N \cup\{x\}$ then the mapping $\tau \rightarrow \tau_{Y}$ is one to one from $\operatorname{Fix}(\mathfrak{T}(X))$ to $\mathfrak{T}(Y)$. Hence we can have at most $T(n+1)$ possible sub-cases. But we can not have exactly $T(n+1)$ possible subcases as the given map is not onto. To see this, set $O_{x}^{\prime}=\{x, a\}$ for $a \in N$ and $O_{a}^{\prime}=\{x, a\}$ for a topology $\pi \in \mathfrak{T}(Y)$. Let $\tau \in \operatorname{Fix}(\mathfrak{T}(X))$ such that $\tau_{Y}=\pi$. Note that $O_{a}^{\prime}=O_{a} \cap Y$ and O_{a} must be fixed by the action of C. Thus, we have $C \cup\{a\} \subseteq O_{a}$. Since $O_{x}=O_{x}^{\prime}=\{x, a\}$, we obtain that $O_{a} \subseteq\{x, a\}$. Then we obtain that $O_{a}=\{a\}$ as it must be fixed by C, which is a contradiction. Thus, the map is not onto. Then we get that $k(n)<2 T(n+1)$. Moreover, the mapping is onto from $\operatorname{Fix}\left(\mathfrak{T}_{0}(X)\right) \subseteq \operatorname{Fix}(\mathfrak{T}(X))$ to $\mathfrak{T}_{0}(Y) \subseteq \mathfrak{T}(Y)$. (See the proof of Theorem 2 for details of how the map $\tau \rightarrow \tau_{Y}$ is one to one. It also shows why this map is onto when the target set is $\mathfrak{T}_{0}(Y)$.) Thus, we have at least $T_{0}(n+1)$ sub-cases, and hence $T(n+1)+T_{0}(n+1) \leqslant k(n)<2 T(n+1)$.

Corollary 3. $\lim _{n \rightarrow \infty} \frac{k(n)}{T(n+1)}=2$.
Proof. We have $1+\frac{T_{0}(n+1)}{T(n+1)} \leqslant \frac{k(n)}{T(n+1)}<2$ by Theorem 4. In [6], it is proved that $\lim _{n \rightarrow \infty} \frac{T_{0}(n)}{T(n)}=1$, and hence the result follows.

Theorem 5. The sequence $k(n)=2,7,51,634,12623$ for $n=0,1,2,3,4$ respectively.

Proof. If $n=0$, the result follows from Theorem 1. Now assume that $n \geqslant 1$. We only show the calculation of $k(2)$ and rest of them follow in a similar way. By previous theorem, we have $T(3)+T_{0}(3) \leqslant k(2)<2 T(3)$ so $48 \leqslant k(2)<58$. Clearly, we have

$$
\begin{aligned}
T(5) & \equiv k(2)(\bmod 3) \\
T(7) & \equiv k(2)(\bmod 5)
\end{aligned}
$$

It follows that $k(2) \equiv 6(\bmod 15)$ by solving the above congruence relation. We obtain that $k(2)=51$ as $48 \leqslant k(2)<58$. For $n=3,4$, we have the same procedure.

We should note that for $n \geqslant 5$, there is no unique solution satisfying the inequality. For example, $k(5) \in\{357593,387623,417653\}$. The closed form of $k(n)$ seems to be another open problem. Hence calculation of $k(n)$ for specific n or some better lower and upper bounds can be seen as new problems arising from this article.

Acknowledgement

The author would like to thank an anonymous referee for many invaluable suggestions on the original manuscript.

References

[1] N. J. A. Sloane, Online Encyclopedia of Integer Sequences(Concerned with sequences A000798,A001035)
[2] N. J. A. Sloane, Online Encyclopedia of Integer Sequences(A265042)
[3] M. Benoumhani, The number of topologies on a finite set, J. Integer Seq. 9 (2006), no. 2, Article 06.2.6, 9 pp.
[4] Z. I. Borevich, Periodicity Of Residues of The number Of Finite Labeled Topologies, Journal of Soviet Mathematics, 24, No. 4, 391-395 (1984)
[5] Z. I. Borevich, Periodicity of residues of the number of finite labeled T_{0}-topologies, (Russian) Modules and algebraic groups. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 114 (1982), 32-36, 217.
[6] M. Erné, Struktur- und Anzahlformeln für Topologien auf endlichen Mengen, Manuscr. Math.,11, No. 3, 221-259 (1974).
[7] A. S. Mashhour, M. E. Abd El-Monsef and A. S. Farrag, On the number of topologies on a finite set, Delta J. Sci. 10 (1986), no. 1, 41-65.
[8] R. Stanley, On the number of open sets of finite topologies, J. Combinatorial Theory 10 (1971) 74-79.

Contact information

M. Y. Kizmaz Department of Mathematics, Middle East
Technical University, Ankara 06531, Turkey
E-Mail(s): yasir@metu.edu.tr

Received by the editors: 31.03.2017
and in final form 06.10.2017.

