Algebra and Discrete Mathematics Volume **26** (2018). Number 1, pp. 65–75 (c) Journal "Algebra and Discrete Mathematics"

Quasi-valuation maps based on positive implicative ideals in BCK-algebras

Young Bae Jun, Kyoung Ja Lee and Seok Zun Song

Communicated by V. A. Artamonov

ABSTRACT. The notion of PI-quasi-valuation maps of a BCK-algebra is introduced, and related properties are investigated. The relationship between an I-quasi-valuation map and a PI-quasivaluation map is examined. Conditions for an I-quasi-valuation map to be a PI-quasi-valuation map are provided, and conditions for a real-valued function on a BCK-algebra to be a quasi-valuation map based on a positive implicative ideal are founded. The extension property for a PI-quasi-valuation map is established.

1. Introduction

Logic appears in a 'sacred' form (resp., a 'profane') which is dominant in proof theory (resp., model theory). The role of logic in mathematics and computer science is twofold; as a tool for applications in both areas, and a technique for laying the foundations. Non-classical logic including many-valued logic, fuzzy logic, etc., takes the advantage of the classical logic to handle information with various facets of uncertainty (see [11] for generalized theory of uncertainty), such as fuzziness, randomness, and so on. Non-classical logic has become a formal and useful tool for computer science to deal with fuzzy information and uncertain information. Among all kinds of uncertainties, incomparability is an important one which can

²⁰¹⁰ MSC: 06F35, 03G25, 03C05.

Key words and phrases: (positive implicative) ideal, S-quasi-valuation map, I-quasi-valuation map, PI-quasi-valuation map.

be encountered in our life. BCK and BCI-algebras are two classes of logical algebras. They were introduced by Imai and Iséki (see [2-5]) and have been extensively investigated by many researchers. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. Neggers and Kim [10] introduced the notion of *d*-algebras which is another useful generalization of BCK-algebras, and then they investigated several relations between *d*-algebras and BCK-algebras as well as some other interesting relations between d-algebras and oriented diagraphs. In [9], Neggers et al. discussed the ideal theory in *d*-algebras. Neggers et al. [8] introduced the concept of *d*-fuzzy function which generalizes the concept of fuzzy subalgebra to a much larger class of functions in a natural way. In addition they discussed a method of fuzzification of a wide class of algebraic systems onto [0, 1] along with some consequences. In [6], Jun et al. introduced the notion of quasi-valuation maps based on a subalgebra and an ideal in BCK/BCI-algebras, and then they investigated several properties. They provided relations between a quasi-valuation map based on a subalgebra and a quasi-valuation map based on an ideal. In a BCIalgebra, they gave a condition for a quasi-valuation map based on an ideal to be a quasi-valuation map based on a subalgebra, and found conditions for a real-valued function on a BCK/BCI-algebra to be a quasi-valuation map based on an ideal. Using the notion of a quasi-valuation map based on an ideal, they constructed (pseudo) metric spaces, and showed that the binary operation * in BCK-algebras is uniformly continuous. In this paper, we introduce the notion of PI-quasi-valuation maps of a BCKalgebra, and investigate related properties. We discuss the relationship between an I-quasi-valuation map and a PI-quasi-valuation map. We provide conditions for an I-quasi-valuation map to be a PI-quasi-valuation map, and find conditions for a real-valued function on a BCK-algebra to be a quasi-valuation map based on a positive implicative ideal. We finally establish an extension property for a PI-quasi-valuation map.

2. Preliminaries

An algebra (X; *, 0) of type (2, 0) is called a *BCI-algebra* if it satisfies the following axioms:

(I) $(\forall x, y, z \in X)$ (((x * y) * (x * z)) * (z * y) = 0),

(II) $(\forall x, y \in X) ((x * (x * y)) * y = 0),$

(III) $(\forall x \in X) (x * x = 0),$

(IV) $(\forall x, y \in X) (x * y = 0, y * x = 0 \Rightarrow x = y).$

If a BCI-algebra X satisfies the following identity:

(V) $(\forall x \in X) (0 * x = 0),$

then X is called a BCK-algebra. Any BCK/BCI-algebra X satisfies the following conditions:

(a1) $(\forall x \in X) (x * 0 = x),$

(a2) $(\forall x, y, z \in X) \ (x * y = 0 \Rightarrow (x * z) * (y * z) = 0, \ (z * y) * (z * x) = 0),$

(a3) $(\forall x, y, z \in X) ((x * y) * z = (x * z) * y),$

(a4) $(\forall x, y, z \in X)$ (((x * z) * (y * z)) * (x * y) = 0).

We can define a partial ordering \leq by $x \leq y$ if and only if x * y = 0. A subset A of a BCK/BCI-algebra X is called an *ideal* of X if it satisfies the following conditions:

(b1) $0 \in A$,

(b2) $(\forall x, y \in X) \ (x * y \in A, y \in A \Rightarrow x \in A).$

A subset A of a BCK-algebra X is called a *positive implicative ideal* of X if it satisfies (b1) and

(b3) $(\forall x, y, z \in X)$ $((x * y) * z \in A, y * z \in A \Rightarrow x * z \in A).$

Proposition 2.1. [7] For a subset A of a BCK-algebra X, the following are equivalent:

(1) A is a positive implicative ideal of X.

(2) A is an ideal, and for any $x, y \in X$, $(x * y) * y \in A$ implies $x * y \in A$.

We refer the reader to the books [1,7] for further information regarding BCK/BCI-algebras.

3. Quasi-valuation maps based on a positive implicative ideal

Definition 3.1 ([6]). Let X be a BCK/BCI-algebra. By a quasi-valuation map of X based on a subalgebra (briefly S-quasi-valuation map of X), we mean a mapping $f: X \to \mathbb{R}$ which satisfies the following condition:

$$(\forall x, y \in X) \ (f(x * y) \ge f(x) + f(y)). \tag{3.1}$$

Proposition 3.2 ([6]). For any S-quasi-valuation map f of a BCKalgebra X, we have (c1) $(\forall x \in X) \ (f(x) \leq 0).$

For any real-valued function f on a BCK/BCI-algebra X, we consider the following conditions:

(c2) f(0) = 0.(c3) $f(x) \ge f(x * y) + f(y)$ for all $x, y \in X.$ (c4) $f(x * y) \ge f(((x * y) * y) * z) + f(z)$ for all $x, y, z \in X$. (c5) $f(x * z) \ge f((x * y) * z) + f(y * z)$ for all $x, y, z \in X$. (c6) $f(x * y) \ge f((x * y) * y)$ for all $x, y \in X$. (c7) $f((x * z) * (y * z) \ge f((x * y) * z)$ for all $x, y, z \in X$.

Definition 3.3 ([6]). Let X be a BCK/BCI-algebra. By a quasi-valuation map of X based on an ideal (briefly *I*-quasi-valuation map of X), we mean a mapping $f: X \to \mathbb{R}$ which satisfies the conditions (c2) and (c3).

Definition 3.4. Let X be a BCK-algebra. By a quasi-valuation map on X based on a positive implicative ideal (briefly *PI-quasi-valuation map* of X), we mean a mapping $f : X \to \mathbb{R}$ which satisfies the conditions (c2) and (c5).

Example 3.5. Let $X = \{0, a, b\}$ be a BCK-algebra with the *-operation given by Table 1.

ΤA	BLI	Ξ1.	*-ope	erati	on.
	*	0	a	b	
	0	0	0	0	
	a	a	0	0	
	$b \mid$	b	b	0	

Let f be a real-valued function on X defined by

$$f = \begin{pmatrix} 0 & a & b \\ 0 & 0 & -2 \end{pmatrix}$$

Then f is a PI-quasi-valuation map of X.

Example 3.6. Let $X = \{0, a, b, c\}$ be a BCK-algebra with the *-operation given by Table 2.

TAE	BLE 2	2. *-0	opera	tion.
*	0	a	b	c
0	0	0	0	0
a	a	0	0	a
b	b	a	0	b
С	С	С	С	0

Let f be a real-valued function on X defined by

$$f = \begin{pmatrix} 0 \ a \ b \ c \\ 0 \ 0 \ 0 \ -7 \end{pmatrix}.$$

Then f is a PI-quasi-valuation map of X.

Theorem 3.7. Let X be a BCK-algebra. Every PI-quasi-valuation map of X is an I-quasi-valuation map of X.

Proof. Let $f: X \to \mathbb{R}$ be a PI-quasi-valuation map on a BCK-algebra X. If we take z = 0 in (c5) and use (a1), then we have the condition (c3). Hence f is an I-quasi-valuation map of X.

The converse of Theorem 3.7 may not be true as shown by the following example.

Example 3.8. Let $X = \{0, a, b, c\}$ be a BCK-algebra with the *-operation given by Table 2 and let g be a real-valued function on X defined by

$$g = \begin{pmatrix} 0 & a & b & c \\ 0 & -2 & -3 & 0 \end{pmatrix}.$$

Then g is an I-quasi-valuation map of X, but not a PI-quasi-valuation map of X since g(b * a) = -2 < 0 = g((b * a) * a) + g(a * a).

Example 3.9. Let $X = \{0, a, b, c\}$ be a BCK-algebra with the *-operation given by Table 3.

TABLE	3.	*-operation
-------	----	-------------

*	0	a	b	С
0	0	0	0	0
a	a	0	0	0
b	b	b	0	0
c	c	С	b	0

Let f be a real-valued function on X defined by

$$f = \begin{pmatrix} 0 a & b & c \\ 0 & 0 & -3 & -4 \end{pmatrix}.$$

Then f is an I-quasi-valuation map of X, but not a PI-quasi-valuation map of X since f(c * b) = -3 < 0 = f((c * b) * b) + f(b * b).

We give conditions for an I-quasi-valuation map to be a PI-quasivaluation map. We first consider the following lemma.

Lemma 3.10. [6] For any I-quasi-valuation map f of X, we have the following assertions:

- (1) f is order reversing.
- (2) $f(x * y) + f(y * x) \leq 0$ for all $x, y \in X$.
- (3) $f(x * y) \ge f(x * z) + f(z * y)$ for all $x, y, z \in X$.

Theorem 3.11. Let f be an I-quasi-valuation map of a BCK-algebra X. If f satisfies the condition (c6), then f is a PI-quasi-valuation map of X.

Proof. Let f be an I-quasi-valuation map of X which satisfies the condition (c6). Notice that $((x * z) * z) * (y * z) \leq (x * z) * y = (x * y) * z$ for all $x, y, z \in X$. Since f is order reversing, it follows that

$$f(((x*z)*z)*(y*z)) \ge f((x*y)*z)$$

so from (c6) and (c3) that

$$f(x*z) \ge f((x*z)*z) \ge f(((x*z)*z)*(y*z)) + f(y*z) \\ \ge f((x*y)*z) + f(y*z).$$

Therefore f is a PI-quasi-valuation map of X.

For any function $f: X \to \mathbb{R}$, consider the following set:

$$I_f := \{ x \in X \mid f(x) = 0 \}.$$

Lemma 3.12. [6] Let X be a BCK-algebra. If f is an I-quasi-valuation map of X, then the set I_f is an ideal of X.

Lemma 3.13. [6] In a BCK-algebra, every I-quasi-valuation map is an S-quasi-valuation map.

Lemma 3.14. Every PI-quasi-valuation map f of a BCK-algebra X satisfies the condition (c6).

Proof. Let f be a PI-quasi-valuation map of X. Then f is an I-quasi-valuation map of X by Theorem 3.7. If we take z = y in (c5), then $f(x * y) \ge f((x * y) * y) + f(y * y) = f((x * y) * y) + f(0) = f((x * y) * y)$ for all $x, y \in X$. Thus the condition (c6) is valid. \Box

Theorem 3.15. Let X be a BCK-algebra. If f is a PI-quasi-valuation map of X, then the set I_f is a positive implicative ideal of X.

Proof. Suppose f is a PI-quasi-valuation map of X. Then f is an I-quasi-valuation map of X by Theorem 3.7, and so I_f is an ideal of X by Lemma 3.12. Let $x, y \in X$ be such that $(x * y) * y \in I_f$. Then f((x * y) * y) = 0 and so $f(x * y) \ge f((x * y) * y) = 0$ by Lemma 3.14. Using Lemma 3.13 and Proposition 3.2, we get $f(x) \le 0$ for all $x \in X$. Thus f(x * y) = 0 which means that $x * y \in I_f$. Thus, by Proposition 2.1, we conclude that I_f is a positive implicative ideal of X.

The following examples show that the converse of Theorem 3.15 may not be true, that is, there exist a BCK-algebra X and a function $f: X \to \mathbb{R}$ such that

- (1) f is not a PI-quasi-valuation map of X,
- (2) I_f is a positive implicative ideal of X.

Example 3.16. Let $X = \{0, a, b, c, d\}$ be a BCK-algebra with the *operation given by Table 4.

T	ABLE	4.	*-op	eratio	on.
*	0	a	b	c	d
0	0	0	0	0	0
a	a	0	a	0	a
b	b	b	0	b	0
c	c	a	c	0	c
d	d	d	d	d	0

Let g be a real-valued function on X defined by

$$g = \begin{pmatrix} 0 \ a \ b \ c \ d \\ 0 \ 0 \ -8 \ 0 \ -6 \end{pmatrix}.$$

Then $I_g = \{0, a, c\}$ is a positive implicative ideal of X. But g is not a PI-quasi-valuation map of X since $g(b * c) = g(b) = -8 \not\geq -6 = g((b * d) * c) + g(d * c).$

Proposition 3.17. Let X be a BCK-algebra. Then every PI-quasi-valuation map f of X satisfies the condition (c7).

Proof. Let f be a PI-quasi-valuation map of X. Then f satisfies the condition (c6) (see Lemma 3.14) and f is an I-quasi-valuation map f of X (see Theorem 3.7). It follows from [6, Proposition 3.13] that f satisfies the condition (c7).

Notice that an I-quasi-valuation map f of a BCK-algebra X does not satisfy the condition (c7). In fact, consider a BCK-algebra $X = \{0, a, b, c\}$ in which the *-operation is given by the Table 5.

TABLE 5. $*$ -operation.				
*	0	a	b	c
0	0	0	0	0
a	a	0	0	a
b	b	a	0	b
c	С	c	С	0

Let f be a real-valued function on X defined by

$$f = \begin{pmatrix} 0 & a & b & c \\ 0 & -3 & -3 & -8 \end{pmatrix}.$$

Then f is an I-quasi-valuation map of X. Since

$$f((b * a) * (a * a)) = f(a * 0) = f(a) = -3 < 0 = f((b * a) * a)$$

f does not satisfy the condition (c7).

Theorem 3.18. Let X be a BCK-algebra. If an I-quasi-valuation map f of X satisfies the condition (c7), then it is a PI-quasi-valuation map of X.

Proof. Let f be an I-quasi-valuation map of X which satisfies the condition (c7). For any $x, y, z \in X$, we have

$$f(x*z) \ge f((x*z)*(y*z)) + f(y*z) \ge f((x*y)*z) + f(y*z)$$

by (c3) and (c7). Therefore f is a PI-quasi-valuation map of X.

Theorem 3.19. Let f be a real-valued function on a BCK-algebra X. If f satisfies conditions (c2) and (c4), then f is a PI-quasi-valuation map of X.

Proof. Assume that f satisfies conditions (c2) and (c4). Then

$$f(x) = f(x * 0) \ge f(((x * 0) * 0) * z) + f(z) = f(x * z) + f(z)$$

for all $x, z \in X$. Hence f is an I-quasi-valuation map of X. Taking z = 0 in (c4) and using (a1) and (c2), we have

$$f(x * y) \ge f(((x * y) * y) * 0) + f(0) = f((x * y) * y)$$

for all $x, y \in X$. It follows from Theorem 3.11 that f is a PI-quasi-valuation map of X.

Proposition 3.20. Every PI-quasi-valuation map f of a BCK-algebra X satisfies the following implication for all $x, y, a, b \in X$:

$$(((x*y)*y)*a)*b = 0 \Rightarrow f(x*y) \ge f(a) + f(b).$$
(3.2)

Proof. Note that f is an I-quasi-valuation map of X by Theorem 3.7. Assume that (((x * y) * y) * a) * b = 0 for all $x, y, a, b \in X$. Using [6, Proposition 3.14], we have $f((x * y) * y) \ge f(a) + f(b)$. It follows from (III), (a1) and (c7) that

$$f(x*y) = f((x*y)*0) = f((x*y)*(y*y)) \ge f((x*y)*y) \ge f(a) + f(b).$$

This completes the proof.

Lemma 3.21. [6, Theorem 3.16] If a real-valued function f on X satisfies the conditions (c2) and

$$(\forall x, y, z \in X) \ ((x * y) * z = 0 \ \Rightarrow \ f(x) \ge f(y) + f(z)), \tag{3.3}$$

then f is an I-quasi-valuation map of X.

Theorem 3.22. Let f be a real-valued function on a BCK-algebra X. If f satisfies conditions (c2) and (3.2), then f is a PI-quasi-valuation map of X.

Proof. Let $x, y, z \in X$ be such that (x * y) * z = 0. Then

$$(((x*0)*0)*y)*z = 0.$$

It follows from (a1) and (3.2) that $f(x) = f(x * 0) \ge f(y) + f(z)$. Thus f is an I-quasi-valuation map of X by Lemma 3.21. Since

$$(((x * y) * y) * ((x * y) * y)) * 0 = 0$$

for all $x, y \in X$, we have $f(x * y) \ge f((x * y) * y) + f(0) = f((x * y) * y)$ by (3.2) and (c2). Therefore, by Theorem 3.11, f is a PI-quasi-valuation map of X.

Proposition 3.23. Every PI-quasi-valuation map of a BCK-algebra X satisfies the following implication for all $x, y, z, a, b \in X$:

$$(((x*y)*z)*a)*b = 0 \implies f((x*z)*(y*z)) \ge f(a) + f(b). \quad (3.4)$$

Proof. Let $x, y, z, a, b \in X$ be such that (((x * y) * z) * a) * b = 0. Using Propositions 3.17, Theorem 3.7 and [6, Proposition 3.14], we have

$$f((x*z)*(y*z)) \ge f((x*y)*z) \ge f(a) + f(b)$$

which is the desired result.

Theorem 3.24. Let X be a BCK-algebra. If a real-valued function f on X satisfies two conditions (c2) and (3.4), then f is a PI-quasi-valuation map of X.

Proof. Let $x, y, a, b \in X$ be such that (((x * y) * y) * a) * b = 0. Using (a1), (III) and (3.4), we have

$$f(x * y) = f((x * y) * 0) = f((x * y) * (y * y)) \ge f(a) + f(b).$$

It follows from Theorem 3.22 that f is a PI-quasi-valuation map of X. \Box

Theorem 3.25. (Extension Property) Let f and g be I-quasi-valuation maps of a BCK-algebra X such that $f(x) \ge g(x)$ for all $x \in X$. If g is a PI-quasi-valuation map of X, then so is f.

Proof. Let $x, y, z \in X$. Using (a3), Proposition 3.17, (III) and (c2), we have

$$\begin{split} f(((x*z)*(y*z))*((x*y)*z)) \\ &= f(((x*z)*((x*y)*z))*(y*z)) \\ &= f(((x*((x*y)*z))*z)*(y*z)) \\ &\geq g(((x*((x*y)*z))*z)*(y*z)) \\ &\geq g(((x*((x*y)*z))*z)*(y*z)) \\ &\geq g(((x*((x*y)*z))*z)*(x*y)*z) \\ &= g(((x*y)*((x*y)*z))*z) \\ &= g(((x*y)*z)*((x*y)*z)) \\ &= g((0) = 0. \end{split}$$

It follows from (c3) that

$$\begin{aligned} f((x*z)*(y*z)) &\geqslant f(((x*z)*(y*z))*((x*y)*z)) + f((x*y)*z) \\ &= f((x*y)*z). \end{aligned}$$

So from Theorem 3.18 we have that f is a PI-quasi-valuation map of X. \Box

References

- [1] Y. S. Huang, BCI-algebra, Science Press, China (2006).
- [2] Y. Imai and K. Iséki, On axiom systems of propositional calculi. XIV, Proc. Japan Acad. 42 (1966), 19–22.
- [3] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 26–29.
- [4] K. Iséki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125–130.
- [5] K. Iséki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japonica 23 (1978), 1–26.
- [6] Y. B. Jun, S. Z. Song and E. H. Roh, *Quasi-valuation maps on BCK/BCI-algebras*, Filomat (submitted).
- [7] J. Meng, Y. B. Jun, *BCK-algebras*, Kyungmoon Publisher, Seoul (1994).
- [8] J. Neggers, A. Dvurečenskij and H. S. Kim, On d-fuzzy functions in d-algebras, Found. Phys. 30 (2000), 1807–1816.
- [9] J. Neggers, Y. B. Jun, H. S. Kim, On d-ideals in d-algebras, Math. Slovaca 49 (1999), 243–251.
- [10] J. Neggers, H. S. Kim, On d-algebras, Math. Slovaca 49 (1999), 19-26.
- [11] L. A. Zadeh, Toward a generalized theory of uncertainty (GTU)-an outline, Inform. Sci. 172, (2005), 1–40.

CONTACT INFORMATION

Young Bae Jun	Department of Mathematics Education,		
	Gyeongsang National University, Jinju 52828,		
	Korea		
	E-Mail(s): skywine@gmail.com		
Kyoung Ja Lee	Department of Mathematics Education,		
	Hannam University, Daejeon 34430, Korea		
	E-Mail(s): lsj1109@hotmail.com		
Seok Zun Song	Department of Mathematics,		
	Jeju National University, Jeju 63243, Korea		
	E-Mail(s): szsong@cheju.ac.kr		

Received by the editors: 22.09.2016.