Quasi-valuation maps based on positive implicative ideals in BCK-algebras

Young Bae Jun, Kyoung Ja Lee and Seok Zun Song

Communicated by V. A. Artamonov

Abstract. The notion of PI-quasi-valuation maps of a BCK-algebra is introduced, and related properties are investigated. The relationship between an I-quasi-valuation map and a PI-quasivaluation map is examined. Conditions for an I-quasi-valuation map to be a PI-quasi-valuation map are provided, and conditions for a real-valued function on a BCK-algebra to be a quasi-valuation map based on a positive implicative ideal are founded. The extension property for a PI-quasi-valuation map is established.

1. Introduction

Logic appears in a 'sacred' form (resp., a 'profane') which is dominant in proof theory (resp., model theory). The role of logic in mathematics and computer science is twofold; as a tool for applications in both areas, and a technique for laying the foundations. Non-classical logic including many-valued logic, fuzzy logic, etc., takes the advantage of the classical logic to handle information with various facets of uncertainty (see [11] for generalized theory of uncertainty), such as fuzziness, randomness, and so on. Non-classical logic has become a formal and useful tool for computer science to deal with fuzzy information and uncertain information. Among all kinds of uncertainties, incomparability is an important one which can

[^0]be encountered in our life. BCK and BCI-algebras are two classes of logical algebras. They were introduced by Imai and Iséki (see [2-5]) and have been extensively investigated by many researchers. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. Neggers and Kim [10] introduced the notion of d-algebras which is another useful generalization of BCK-algebras, and then they investigated several relations between d-algebras and BCK-algebras as well as some other interesting relations between d-algebras and oriented diagraphs. In [9], Neggers et al. discussed the ideal theory in d-algebras. Neggers et al. [8] introduced the concept of d-fuzzy function which generalizes the concept of fuzzy subalgebra to a much larger class of functions in a natural way. In addition they discussed a method of fuzzification of a wide class of algebraic systems onto [0, 1] along with some consequences. In [6], Jun et al. introduced the notion of quasi-valuation maps based on a subalgebra and an ideal in BCK/BCI-algebras, and then they investigated several properties. They provided relations between a quasi-valuation map based on a subalgebra and a quasi-valuation map based on an ideal. In a BCIalgebra, they gave a condition for a quasi-valuation map based on an ideal to be a quasi-valuation map based on a subalgebra, and found conditions for a real-valued function on a BCK/BCI-algebra to be a quasi-valuation map based on an ideal. Using the notion of a quasi-valuation map based on an ideal, they constructed (pseudo) metric spaces, and showed that the binary operation $*$ in BCK-algebras is uniformly continuous. In this paper, we introduce the notion of PI-quasi-valuation maps of a BCKalgebra, and investigate related properties. We discuss the relationship between an I-quasi-valuation map and a PI-quasi-valuation map. We provide conditions for an I-quasi-valuation map to be a PI-quasi-valuation map, and find conditions for a real-valued function on a BCK-algebra to be a quasi-valuation map based on a positive implicative ideal. We finally establish an extension property for a PI-quasi-valuation map.

2. Preliminaries

An algebra $(X ; *, 0)$ of type $(2,0)$ is called a $B C I$-algebra if it satisfies the following axioms:
(I) $(\forall x, y, z \in X)(((x * y) *(x * z)) *(z * y)=0)$,
(II) $(\forall x, y \in X)((x *(x * y)) * y=0)$,
(III) $(\forall x \in X)(x * x=0)$,
(IV) $(\forall x, y \in X)(x * y=0, y * x=0 \Rightarrow x=y)$.

If a BCI-algebra X satisfies the following identity:
(V) $(\forall x \in X)(0 * x=0)$,
then X is called a $B C K$-algebra. Any BCK/BCI-algebra X satisfies the following conditions:
(a1) $(\forall x \in X)(x * 0=x)$,
(a2) $(\forall x, y, z \in X)(x * y=0 \Rightarrow(x * z) *(y * z)=0,(z * y) *(z * x)=0)$,
(a3) $(\forall x, y, z \in X)((x * y) * z=(x * z) * y)$,
(a4) $(\forall x, y, z \in X)(((x * z) *(y * z)) *(x * y)=0)$.
We can define a partial ordering \leqslant by $x \leqslant y$ if and only if $x * y=0$. A subset A of a BCK/BCI-algebra X is called an ideal of X if it satisfies the following conditions:
(b1) $0 \in A$,
(b2) $(\forall x, y \in X)(x * y \in A, y \in A \Rightarrow x \in A)$.
A subset A of a BCK-algebra X is called a positive implicative ideal of X if it satisfies (b1) and
(b3) $(\forall x, y, z \in X)((x * y) * z \in A, y * z \in A \Rightarrow x * z \in A)$.
Proposition 2.1. [7] For a subset A of a BCK-algebra X, the following are equivalent:
(1) A is a positive implicative ideal of X.
(2) A is an ideal, and for any $x, y \in X,(x * y) * y \in A$ implies $x * y \in A$.

We refer the reader to the books $[1,7]$ for further information regarding BCK/BCI-algebras.

3. Quasi-valuation maps based on a positive implicative ideal

Definition 3.1 ([6]). Let X be a BCK/BCI-algebra. By a quasi-valuation map of X based on a subalgebra (briefly S-quasi-valuation map of X), we mean a mapping $f: X \rightarrow \mathbb{R}$ which satisfies the following condition:

$$
\begin{equation*}
(\forall x, y \in X)(f(x * y) \geqslant f(x)+f(y)) \tag{3.1}
\end{equation*}
$$

Proposition 3.2 ([6]). For any S-quasi-valuation map f of a BCKalgebra X, we have
(c1) $(\forall x \in X)(f(x) \leqslant 0)$.
For any real-valued function f on a BCK/BCI-algebra X, we consider the following conditions:
(c2) $f(0)=0$.
(c3) $f(x) \geqslant f(x * y)+f(y)$ for all $x, y \in X$.
(c4) $f(x * y) \geqslant f(((x * y) * y) * z)+f(z)$ for all $x, y, z \in X$.
(c5) $f(x * z) \geqslant f((x * y) * z)+f(y * z)$ for all $x, y, z \in X$.
(c6) $f(x * y) \geqslant f((x * y) * y)$ for all $x, y \in X$.
(c7) $f((x * z) *(y * z) \geqslant f((x * y) * z)$ for all $x, y, z \in X$.
Definition 3.3 ([6]). Let X be a BCK/BCI-algebra. By a quasi-valuation map of X based on an ideal (briefly I-quasi-valuation map of X), we mean a mapping $f: X \rightarrow \mathbb{R}$ which satisfies the conditions (c2) and (c3).

Definition 3.4. Let X be a BCK-algebra. By a quasi-valuation map on X based on a positive implicative ideal (briefly PI-quasi-valuation map of X), we mean a mapping $f: X \rightarrow \mathbb{R}$ which satisfies the conditions (c2) and (c5).

Example 3.5. Let $X=\{0, a, b\}$ be a BCK-algebra with the $*$-operation given by Table 1.

TABLE	1.	*-operation.	
$*$	0	a	b
0	0	0	0
a	a	0	0
b	b	b	0

Let f be a real-valued function on X defined by

$$
f=\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & -2
\end{array}\right)
$$

Then f is a PI-quasi-valuation map of X.
Example 3.6. Let $X=\{0, a, b, c\}$ be a BCK-algebra with the $*$-operation given by Table 2.

TABLE 2. *-operation.

$*$	0	a	b	c
0	0	0	0	0
a	a	0	0	a
b	b	a	0	b
c	c	c	c	0

Let f be a real-valued function on X defined by

$$
f=\left(\begin{array}{cccc}
0 & a & b & c \\
0 & 0 & 0 & -7
\end{array}\right) .
$$

Then f is a PI-quasi-valuation map of X.
Theorem 3.7. Let X be a BCK-algebra. Every PI-quasi-valuation map of X is an I-quasi-valuation map of X.

Proof. Let $f: X \rightarrow \mathbb{R}$ be a PI-quasi-valuation map on a BCK-algebra X. If we take $z=0$ in (c5) and use (a1), then we have the condition (c3). Hence f is an I-quasi-valuation map of X.

The converse of Theorem 3.7 may not be true as shown by the following example.

Example 3.8. Let $X=\{0, a, b, c\}$ be a BCK-algebra with the $*$-operation given by Table 2 and let g be a real-valued function on X defined by

$$
g=\left(\begin{array}{cccc}
0 & a & b & c \\
0 & -2 & -3 & 0
\end{array}\right)
$$

Then g is an I-quasi-valuation map of X, but not a PI-quasi-valuation map of X since $g(b * a)=-2<0=g((b * a) * a)+g(a * a)$.

Example 3.9. Let $X=\{0, a, b, c\}$ be a BCK-algebra with the $*$-operation given by Table 3.

TABLE				
3.	*-operation			
$*$	0	a	b	c
0	0	0	0	0
a	a	0	0	0
b	b	b	0	0
c	c	c	b	0

Let f be a real-valued function on X defined by

$$
f=\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & -3
\end{array}-4\right)
$$

Then f is an I-quasi-valuation map of X, but not a PI-quasi-valuation map of X since $f(c * b)=-3<0=f((c * b) * b)+f(b * b)$.

We give conditions for an I-quasi-valuation map to be a PI-quasivaluation map. We first consider the following lemma.

Lemma 3.10. [6] For any I-quasi-valuation map f of X, we have the following assertions:
(1) f is order reversing.
(2) $f(x * y)+f(y * x) \leqslant 0$ for all $x, y \in X$.
(3) $f(x * y) \geqslant f(x * z)+f(z * y)$ for all $x, y, z \in X$.

Theorem 3.11. Let f be an I-quasi-valuation map of a BCK-algebra X. If f satisfies the condition (c6), then f is a PI-quasi-valuation map of X.

Proof. Let f be an I-quasi-valuation map of X which satisfies the condition (c6). Notice that $((x * z) * z) *(y * z) \leqslant(x * z) * y=(x * y) * z$ for all $x, y, z \in X$. Since f is order reversing, it follows that

$$
f(((x * z) * z) *(y * z)) \geqslant f((x * y) * z)
$$

so from (c6) and (c3) that

$$
\begin{aligned}
f(x * z) & \geqslant f((x * z) * z) \geqslant f(((x * z) * z) *(y * z))+f(y * z) \\
& \geqslant f((x * y) * z)+f(y * z) .
\end{aligned}
$$

Therefore f is a PI-quasi-valuation map of X.
For any function $f: X \rightarrow \mathbb{R}$, consider the following set:

$$
I_{f}:=\{x \in X \mid f(x)=0\} .
$$

Lemma 3.12. [6] Let X be a BCK-algebra. If f is an I-quasi-valuation map of X, then the set I_{f} is an ideal of X.

Lemma 3.13. [6] In a BCK-algebra, every I-quasi-valuation map is an S-quasi-valuation map.

Lemma 3.14. Every PI-quasi-valuation map f of a BCK-algebra X satisfies the condition (c6).

Proof. Let f be a PI-quasi-valuation map of X. Then f is an I-quasivaluation map of X by Theorem 3.7. If we take $z=y$ in (c5), then $f(x * y) \geqslant f((x * y) * y)+f(y * y)=f((x * y) * y)+f(0)=f((x * y) * y)$ for all $x, y \in X$. Thus the condition (c6) is valid.

Theorem 3.15. Let X be a BCK-algebra. If f is a PI-quasi-valuation map of X, then the set I_{f} is a positive implicative ideal of X.

Proof. Suppose f is a PI-quasi-valuation map of X. Then f is an I-quasi-valuation map of X by Theorem 3.7, and so I_{f} is an ideal of X by Lemma 3.12. Let $x, y \in X$ be such that $(x * y) * y \in I_{f}$. Then $f((x * y) * y)=0$ and so $f(x * y) \geqslant f((x * y) * y)=0$ by Lemma 3.14. Using Lemma 3.13 and Proposition 3.2, we get $f(x) \leqslant 0$ for all $x \in X$. Thus $f(x * y)=0$ which means that $x * y \in I_{f}$. Thus, by Proposition 2.1, we conclude that I_{f} is a positive implicative ideal of X.

The following examples show that the converse of Theorem 3.15 may not be true, that is, there exist a BCK-algebra X and a function $f: X \rightarrow \mathbb{R}$ such that
(1) f is not a PI-quasi-valuation map of X,
(2) I_{f} is a positive implicative ideal of X.

Example 3.16. Let $X=\{0, a, b, c, d\}$ be a BCK-algebra with the $*-$ operation given by Table 4.

TABLE							
4.							*-operation.
$*$	0	a	b	c	d		
0	0	0	0	0	0		
a	a	0	a	0	a		
b	b	b	0	b	0		
c	c	a	c	0	c		
d	d	d	d	d	0		

Let g be a real-valued function on X defined by

$$
g=\left(\begin{array}{cccc}
0 & a & b & c \\
0 & d & -8 & 0
\end{array}\right)
$$

Then $I_{g}=\{0, a, c\}$ is a positive implicative ideal of X. But g is not a PI-quasi-valuation map of X since $g(b * c)=g(b)=-8 \nsupseteq-6=$ $g((b * d) * c)+g(d * c)$.

Proposition 3.17. Let X be a BCK-algebra. Then every PI-quasi-valuation map f of X satisfies the condition (c7).

Proof. Let f be a PI-quasi-valuation map of X. Then f satisfies the condition (c6) (see Lemma 3.14) and f is an I-quasi-valuation map f of X (see Theorem 3.7). It follows from [6, Proposition 3.13] that f satisfies the condition (c7).

Notice that an I-quasi-valuation map f of a BCK-algebra X does not satisfy the condition (c7). In fact, consider a BCK-algebra $X=\{0, a, b, c\}$ in which the $*$-operation is given by the Table 5 .

TABLE 5. *-operation.

$*$	0	a	b	c
0	0	0	0	0
a	a	0	0	a
b	b	a	0	b
c	c	c	c	0

Let f be a real-valued function on X defined by

$$
f=\left(\begin{array}{cccc}
0 & a & b & c \\
0 & -3 & -3 & -8
\end{array}\right)
$$

Then f is an I-quasi-valuation map of X. Since

$$
f((b * a) *(a * a))=f(a * 0)=f(a)=-3<0=f((b * a) * a)
$$

f does not satisfy the condition (c7).
Theorem 3.18. Let X be a BCK-algebra. If an I-quasi-valuation map f of X satisfies the condition (c7), then it is a PI-quasi-valuation map of X.

Proof. Let f be an I-quasi-valuation map of X which satisfies the condition (c7). For any $x, y, z \in X$, we have

$$
f(x * z) \geqslant f((x * z) *(y * z))+f(y * z) \geqslant f((x * y) * z)+f(y * z)
$$

by (c3) and (c7). Therefore f is a PI-quasi-valuation map of X.
Theorem 3.19. Let f be a real-valued function on a BCK-algebra X. If f satisfies conditions (c2) and (c4), then f is a PI-quasi-valuation map of X.

Proof. Assume that f satisfies conditions (c2) and (c4). Then

$$
f(x)=f(x * 0) \geqslant f(((x * 0) * 0) * z)+f(z)=f(x * z)+f(z)
$$

for all $x, z \in X$. Hence f is an I-quasi-valuation map of X. Taking $z=0$ in (c4) and using (a1) and (c2), we have

$$
f(x * y) \geqslant f(((x * y) * y) * 0)+f(0)=f((x * y) * y)
$$

for all $x, y \in X$. It follows from Theorem 3.11 that f is a PI-quasi-valuation map of X.

Proposition 3.20. Every PI-quasi-valuation map f of a BCK-algebra X satisfies the following implication for all $x, y, a, b \in X$:

$$
\begin{equation*}
(((x * y) * y) * a) * b=0 \Rightarrow f(x * y) \geqslant f(a)+f(b) \tag{3.2}
\end{equation*}
$$

Proof. Note that f is an I-quasi-valuation map of X by Theorem 3.7. Assume that $(((x * y) * y) * a) * b=0$ for all $x, y, a, b \in X$. Using [6, Proposition 3.14], we have $f((x * y) * y) \geqslant f(a)+f(b)$. It follows from (III), (a1) and (c7) that
$f(x * y)=f((x * y) * 0)=f((x * y) *(y * y)) \geqslant f((x * y) * y) \geqslant f(a)+f(b)$.
This completes the proof.
Lemma 3.21. [6, Theorem 3.16] If a real-valued function f on X satisfies the conditions (c2) and

$$
\begin{equation*}
(\forall x, y, z \in X)((x * y) * z=0 \Rightarrow f(x) \geqslant f(y)+f(z)) \tag{3.3}
\end{equation*}
$$

then f is an I-quasi-valuation map of X.
Theorem 3.22. Let f be a real-valued function on a BCK-algebra X. If f satisfies conditions (c2) and (3.2), then f is a PI-quasi-valuation map of X.

Proof. Let $x, y, z \in X$ be such that $(x * y) * z=0$. Then

$$
(((x * 0) * 0) * y) * z=0
$$

It follows from (a1) and (3.2) that $f(x)=f(x * 0) \geqslant f(y)+f(z)$. Thus f is an I-quasi-valuation map of X by Lemma 3.21. Since

$$
(((x * y) * y) *((x * y) * y)) * 0=0
$$

for all $x, y \in X$, we have $f(x * y) \geqslant f((x * y) * y)+f(0)=f((x * y) * y)$ by (3.2) and (c2). Therefore, by Theorem 3.11, f is a PI-quasi-valuation map of X.

Proposition 3.23. Every PI-quasi-valuation map of a BCK-algebra X satisfies the following implication for all $x, y, z, a, b \in X$:

$$
\begin{equation*}
(((x * y) * z) * a) * b=0 \Rightarrow f((x * z) *(y * z)) \geqslant f(a)+f(b) \tag{3.4}
\end{equation*}
$$

Proof. Let $x, y, z, a, b \in X$ be such that $(((x * y) * z) * a) * b=0$. Using Propositions 3.17, Theorem 3.7 and [6, Proposition 3.14], we have

$$
f((x * z) *(y * z)) \geqslant f((x * y) * z) \geqslant f(a)+f(b)
$$

which is the desired result.
Theorem 3.24. Let X be a $B C K$-algebra. If a real-valued function f on X satisfies two conditions (c2) and (3.4), then f is a PI-quasi-valuation map of X.

Proof. Let $x, y, a, b \in X$ be such that $(((x * y) * y) * a) * b=0$. Using (a1), (III) and (3.4), we have

$$
f(x * y)=f((x * y) * 0)=f((x * y) *(y * y)) \geqslant f(a)+f(b)
$$

It follows from Theorem 3.22 that f is a PI-quasi-valuation map of X.
Theorem 3.25. (Extension Property) Let f and g be I-quasi-valuation maps of a BCK-algebra X such that $f(x) \geqslant g(x)$ for all $x \in X$. If g is a PI-quasi-valuation map of X, then so is f.

Proof. Let $x, y, z \in X$. Using (a3), Proposition 3.17, (III) and (c2), we have

$$
\begin{aligned}
& f(((x* z) *(y * z)) *((x * y) * z)) \\
&=f(((x * z) *((x * y) * z)) *(y * z)) \\
& \quad=f(((x *((x * y) * z)) * z) *(y * z)) \\
& \geqslant g(((x *((x * y) * z)) * z) *(y * z)) \\
& \quad \geqslant g(((x *((x * y) * z)) * y) * z) \\
& \quad=g(((x * y) *((x * y) * z)) * z) \\
& \quad=g(((x * y) * z) *((x * y) * z)) \\
& \quad=g(0)=0
\end{aligned}
$$

It follows from (c3) that

$$
\begin{aligned}
f((x * z) *(y * z)) & \geqslant f(((x * z) *(y * z)) *((x * y) * z))+f((x * y) * z) \\
& =f((x * y) * z)
\end{aligned}
$$

So from Theorem 3.18 we have that f is a PI-quasi-valuation map of X.

References

[1] Y. S. Huang, BCI-algebra, Science Press, China (2006).
[2] Y. Imai and K. Iséki, On axiom systems of propositional calculi. XIV, Proc. Japan Acad. 42 (1966), 19-22.
[3] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 26-29.
[4] K. Iséki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
[5] K. Iséki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japonica 23 (1978), 1-26.
[6] Y. B. Jun, S. Z. Song and E. H. Roh, Quasi-valuation maps on BCK/BCI-algebras, Filomat (submitted).
[7] J. Meng, Y. B. Jun, BCK-algebras, Kyungmoon Publisher, Seoul (1994).
[8] J. Neggers, A. Dvurečenskij and H. S. Kim, On d-fuzzy functions in d-algebras, Found. Phys. 30 (2000), 1807-1816.
[9] J. Neggers, Y. B. Jun, H. S. Kim, On d-ideals in d-algebras, Math. Slovaca 49 (1999), 243-251.
[10] J. Neggers, H. S. Kim, On d-algebras, Math. Slovaca 49 (1999), 19-26.
[11] L. A. Zadeh, Toward a generalized theory of uncertainty (GTU)-an outline, Inform. Sci. 172, (2005), 1-40.

Contact information

Young Bae Jun Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea E-Mail(s): skywine@gmail.com

Kyoung Ja Lee Department of Mathematics Education, Hannam University, Daejeon 34430, Korea E-Mail(s): lsj1109@hotmail.com

Seok Zun Song
Department of Mathematics, Jeju National University, Jeju 63243, Korea E-Mail(s): szsong@cheju.ac.kr

Received by the editors: 22.09.2016.

[^0]: 2010 MSC: 06F35, 03G25, 03C05.
 Key words and phrases: (positive implicative) ideal, S-quasi-valuation map, I-quasi-valuation map, PI-quasi-valuation map.

