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Abstract. Let R be a ring. A right R-module M is called

d-Rickart if for every endomorphism ϕ of M , ϕ(M) is a direct

summand of M and it is called wd-Rickart if for every nonzero

endomorphism ϕ of M , ϕ(M) contains a nonzero direct summand

of M . We begin with some basic properties of (w)d-Rickart modules.

Then we study direct sums of (w)d-Rickart modules and the class

of rings for which every finitely generated module is (w)d-Rickart.

We conclude by some structure results.

1. Introduction

In [10], Lee, Rizvi and Roman introduced and studied a notion called
d-Rickart modules. A module M is said to be d-Rickart (or dual Rickart)
if for every ϕ ∈ EndR(M), Imϕ is a direct summand of M . Actually,
this notion is dual to the notion of Rickart modules introduced by Lee,
Rizvi and Roman in [9]. A module M is called a Rickart module if for
every endomorphism ϕ of M , Kerϕ is a direct summand of M . Later
in [13], Tribak introduced and investigated the notion called wd-Rickart
modules, which is a generalization of the concept of d-Rickart modules.
A module M is said to be wd-Rickart (or weak dual Rickart) if for every
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nonzero endomorphism ϕ of M , Imϕ contains a nonzero direct summand
of M . Let M and N be two modules. Then M is called N -wd-Rickart if
for every nonzero homomorphism ϕ :M → N , Imϕ contains a nonzero
direct summand of N .

In Section 2, we investigate some basic properties of (w)d-Rickart
modules.

In Section 3, we study direct sums of (w)d-Rickart modules. We provide
a characterization for a direct sum of two d-Rickart modules to be d-
Rickart. We also show that if M1, . . . ,Mn are modules such that Mi is
Mj-projective for all j > i in {1, . . . , n}. Then ⊕n

i=1Mi is a wd-Rickart
module if and only if Mi is Mj-wd-Rickart for all i, j ∈ {1, . . . , n}.

Section 4 is devoted to the study of the class of rings over which
finitely generated modules are (w)d-Rickart. Among other results, the
class of commutative rings R for which every finitely generated R-module
is d-Rickart is shown to be precisely that of semisimple rings.

We conclude this paper by a short section in which we present some
structure results.

Throughout this paper, R is an associative ring with identity and all
the modules are unital right R-modules. Let M be a module. The notation
N 6M means that N is a submodule of M . By Soc(M) and EndR(M),
we denote the socle of M and the endomorphism ring of M , respectively.
By Q, Z, and N we denote the set of rational, integer and natural numbers,
respectively.

2. Some properties of d-Rickart modules and wd-Rickart
modules

Let M and N be two modules. Following [10, Definition 2.14], the
module M is called N -d-Rickart (or relatively d-Rickart to N) if for every
homomorphism ϕ :M → N , Imϕ is a direct summand of N . Therefore
M is a d-Rickart module if and only if M is M -d-Rickart.

Recall that a module M is called a (C3)-module if whenever A and
B are direct summands of M with A ∩ B = 0, then A ⊕ B is a direct
summand of M . Note that every injective module is a (C3)-module.

Example 2.1. Let M1 be a semisimple module and let M2 be a module
such that the module M =M1 ⊕M2 is a (C3)-module. Then M1 and M2

are relatively d-Rickart to each other by [2, Proposition 2.3].

If M is a d-Rickart (wd-Rickart) module, then a factor module of M
may not be d-Rickart (wd-Rickart) as we see in the following example.
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Example 2.2. Let R be a von Neumann regular ring which is not a
right V -ring (see [8, Example 3.74A]). By [10, Remark 2.2], RR is a d-
Rickart module. Then by [10, Proposition 2.25], every finitely generated
free R-module is a d-Rickart module. Since R is not a right V -ring, there
exists a finitely generated R-module M such that M is not a wd-Rickart
module (Proposition 4.1). It is well known that every finitely generated
R-module is a homomorphic image of a finitely generated free R-module.
Therefore there exists a positive integer n such that M ∼= R(n)/K for some
submodule K of R(n). Hence R(n)/K is not a wd-Rickart (so R(n)/K is
not a d-Rickart) module while R(n) is a d-Rickart module.

The following proposition provides a sufficient condition under which
some factor modules of a d-Rickart module are d-Rickart.

Proposition 2.3. Let M be a d-Rickart module and let N be a fully
invariant submodule of M . If every endomorphism of M/N can be lifted
to an endomorphism of M , then M/N is also a d-Rickart module.

Proof. Let ϕ be a nonzero endomorphism of M/N . By assumption, there
exists an endomorphism ψ of M such that πψ = ϕπ, where π :M →M/N
is the canonical projection. It is clear that ψ 6= 0. As M is d-Rickart,
Imψ is a direct summand of M . Note that Imϕ = ϕπ(M) = πψ(M) =
(ψ(M)+N)/N . Since N is fully invariant in M , Imϕ is a direct summand
of M/N .

Corollary 2.4. Let M be a quasi-projective d-Rickart module. If N is a
fully invariant submodule of M , then M/N is a d-Rickart module.

Proof. By Proposition 2.3.

Next, we investigate connections between a wd-Rickart module and
its endomorphism ring.

A ring R is called left w-Rickart if for every nonzero element x ∈ R,
lR(x) = {r ∈ R | rx = 0} is contained in a proper direct summand of the
left R-module RR.

Proposition 2.5. If M is a wd-Rickart module, then S = EndR(M) is
a left w-Rickart ring.

Proof. Let ϕ be a nozero endomorphism of M . Since M is wd-Rickart,
there exists a nonzero idempotent e ∈ S with e(M) ⊆ ϕ(M). Then clearly
lS(ϕ) ⊆ S(1− e) and S(1− e) 6= S. This proves the proposition.

The following example shows that the converse of the above proposition
is not true, in general.
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Example 2.6. The Z-module Z is not wd-Rickart, but EndZ(Z) ∼= Z is
a left w-Rickart ring.

Corollary 2.7. If R is a right wd-Rickart ring, then eRe is a left w-
Rickart ring for any idempotent e in R.

Proof. This follows from [13, Corollary 2.5] and Proposition 2.5.

Let M be an R-module and let S = EndR(M). We denote rM (I) =
{m ∈ M | Im = 0} for ∅ 6= I ⊆ S and lS(N) = {ϕ ∈ S | ϕ(N) = 0} for
a submodule N of M . In [1, Corollary 4.2], it is presented some examples
of submodules K of a module M for which rM (lS(K)) = K. Moreover, it
is shown in [10, Corollary 3.7] that a module M is a d-Rickart module if
and only if rM lS(ϕ(M)) = ϕ(M) and rM lS(ϕ(M)) is a direct summand
of M for all ϕ ∈ S = EndR(M).

It is natural to ask when the converse of Proposition 2.5 holds. In this
vein we give the next theorem. But first we need the following lemma.

Lemma 2.8. Let M be a module with S = EndR(M). Then S is a left w-
Rickart ring if and only if rM lS(ϕ(M)) contains a nonzero direct summand
of M for all nonzero endomorphisms ϕ of M .

Proof. (⇒) Let ϕ :M →M be a nonzero endomorphism of M . Since S
is left w-Rickart, there exists an idempotent f of S such that lS(ϕ) ⊆ Sf
and Sf 6= S. Then rM (Sf) ⊆ rM lS(ϕ(M)). This implies that the nonzero
direct summand (1− f)(M) of M is contained in rM lS(ϕ(M)).

(⇐) Let 0 6= ϕ ∈ S. By hypothesis, there exists 0 6= e = e2 ∈ S
such that e(M) ⊆ rM lS(ϕ(M)). Thus lSrM lS(ϕ(M)) ⊆ lS(e(M)). Hence
lS(ϕ(M)) ⊆ lS(e(M)). So lS(ϕ) ⊆ lS(e) = S(1− e) 6= R. This completes
the proof.

Theorem 2.9. Let M be a module with the property that rM lS(ϕ(M)) =
ϕ(M) for every nonzero endomorphism ϕ of M . Then M is a wd-Rickart
module if and only if S = EndR(M) is a left w-Rickart ring.

Proof. (⇒) By Proposition 2.5.
(⇐) This follows from Lemma 2.8.

Recall that a module M is called retractable if for every nonzero
submodule N 6 M , there exists a nonzero endomorphism ϕ of M such
that Imϕ ⊆ N . It was shown in [10, Proposition 4.10] that if M is a
retractable d-Rickart module, then every nonzero submodule ofM contains
a nonzero direct summand of M . Now we give the following.
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Proposition 2.10. Let M be a wd-Rickart module. Then M is retractable
if and only if every nonzero submodule of M contains a nonzero direct
summand of M .

Proof. (⇒) By [13, Proposition 2.13].
(⇐) This is clear.

Let M and N be two modules. The module M is called N -wd-
Rickart (or relatively wd-Rickart to N) if for every nonzero homomorphism
ϕ :M → N , Imϕ contains a nonzero direct summand of N . Therefore M
is a wd-Rickart module if and only if M is M -wd-Rickart (see [13, Defini-
tion 2.1]).

Lemma 2.11. Let M and N be modules. Then M is N -wd-Rickart
(N -d-Rickart) if and only if M/X is N -wd-Rickart (N -d-Rickart) for any
submodule X 6M .

Proof. (⇒) Assume that M is N -wd-Rickart (N -d-Rickart). Let ϕ :
M/X →N be a nonzero homomorphism. Consider the nonzero homo-
morphism ϕπ : M →M/X → N , where π : M →M/X is the natural
epimorphism. By the assumption, there exists a nonzero direct summand T
of N such that T ⊆ Imϕπ=Imϕ (Imϕπ=Imϕ is a direct summand of N).

(⇐) The result follows by taking X = 0.

Theorem 2.12. The following conditions are equivalent for a module M :
(a) M is a wd-Rickart module;
(b) For any submodule N of M and every direct summand K of M ,

M/N is K-wd-Rickart;
(c) For every pair of direct summands K and N of M , N is K-wd-

Rickart.

Proof. (a) ⇒ (b) This is clear by Lemma 2.11 and [13, Proposition 2.4].
(b) ⇒ (c) Clear.
(c) ⇒ (a) Take N = K =M .

Definition 2.13. A module M is called w-C2 if for every nonzero sub-
module N of M and every direct summand K of M , N ∼= K implies that
N contains a nonzero direct summand of M .

Proposition 2.14. A module M is wd-Rickart if and only if M has w-C2

condition and for every nonzero ϕ ∈ EndR(M), there exists a nonzero
submodule A of M such that A is isomorphic to a nonzero direct summand
of M and A ⊆ Imϕ.
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Proof. This follows from [13, Proposition 2.3] and the definition of a
wd-Rickart module.

Theorem 2.15. The following are equivalent for a module M :

(a) M is a wd-Rickart module;
(b) For every nonzero finitely generated right ideal I of S = EndR(M),∑

ϕ∈I ϕ(M) contains a nonzero direct summand of M .

Proof. (a) ⇒ (b) Let I =< ϕ1, . . . , ϕn > be a finitely generated right
ideal of S, where each ϕi is a nonzero endomorphism of M . Note that∑

ϕ∈I ϕ(M) = ϕ1(M) + · · ·+ϕn(M). Since M is wd-Rickart, there exists
a nonzero direct summand T of M such that T ⊆ ϕ1(M) ⊆

∑
ϕ∈I ϕ(M).

(b) ⇒ (a) This is clear.

3. Direct sums of d-Rickart (wd-Rickart) modules

We begin with the following theorem which gives a characterization
for a direct sum of two d-Rickart modules to be d-Rickart.

Theorem 3.1. Let M =M1 ⊕M2 be a module. The following conditions
are equivalent:

(a) M is a d-Rickart module;
(b) (i) Mi and Mj are relatively d-Rickart for i, j ∈ {1, 2}, and

(ii) for every ϕ ∈ EndR(M) such that Imϕ+M1 is a direct summand
of M , Imϕ is a direct summand of M .

(c) (i) Mi and Mj are relatively d-Rickart for i, j ∈ {1, 2}, and
(ii) for every ϕ ∈ EndR(M) with (Imϕ+M1)⊕N = M for some
submodule N 6M2, Imϕ is a direct summand of M .

Proof. (a) ⇒ (b) By [10, Theorem 2.19] and the definition of a d-Rickart
module.

(b) ⇒ (c) This is clear.
(c) ⇒ (a) Let ϕ : M → M be a nonzero homomorphism. Let π1 :

M →M1 and π2 :M →M2 be the natural epimorphisms. Consider the
homomorphisms ϕ1 = π1ϕ : M → M1 and ϕ2 = π2ϕ : M → M2. Note
that M is M1-d-Rickart and M is M2-d-Rickart by [10, Corollary 5.4].
Then there exists a direct summand M ′

1 of M1 and a direct summand M ′

2

of M2 such that M1 = ϕ1(M) ⊕M ′

1 and M2 = ϕ2(M) ⊕M ′

2. It is easy
to check that ϕ(M) +M1 = ϕ1(M) ⊕ ϕ2(M) ⊕M ′

1 = M1 ⊕ ϕ2(M). So
(ϕ(M) +M1)⊕M ′

2 =M . By assumption, ϕ(M) is a direct summand of
M . Hence M is a d-Rickart module.
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Recall that an element c of a ring R is called regular if cr 6= 0 and
rc 6= 0 for all nonzero r ∈ R. Following [5, p. 104], an R-module X is called
divisible in case X = Xc for every regular element c of R. An R-module
Y is called torsion if for any y ∈ Y , there exists a regular element c in R
such that yc = 0. On the other hand, an R-module Z is called torsion-free
if whenever z ∈ Z satisfies zd = 0 for some regular element d of R then
z = 0. The ring R is called a right Goldie ring if RR has finite rank and
R has the acc on right annihilators. The following theorem provides many
examples of d-Rickart modules.

Theorem 3.2. Let R be a prime right Goldie ring such that R is not
right primitive and let an R-module M be a direct sum of a torsion-free
divisible submodule X and a torsion semisimple submodule Y . Then M is
a d-Rickart module.

Proof. By [5, Propositions 6.12 and 6.13],X is a nonsingular injective mod-
ule. Hence X is d-Rickart since EndR(X) is von Neumann regular. More-
over, in the proof of [7, Corollary 2.16] it is shown that HomR(X,Y ) = 0
and HomR(Y,X) = 0. Therefore X and Y are fully invariant submodules
of M . Then M is a d-Rickart module by [10, Proposition 5.14].

Corollary 3.3. Let R be a prime PI-ring which is not artinian and let
an R-module M be a direct sum of a torsion-free divisible submodule X
and a torsion semisimple submodule Y . Then M is a d-Rickart module.

Proof. By [7, Corollary 2.17] and [11, Corollary 13.6.6 and Theorem 13.3.8],
R is a right Goldie ring and R is not right primitive. The result follows
from Theorem 3.2.

The following proposition is inspired by [10, Proposition 5.2]. This
result provides a rich source of examples showing that the wd-Rickart
property does not go to direct sums of wd-Rickart modules. It extends
[13, Example 2.6] to arbitrary modules.

Proposition 3.4. Let M be an indecomposable module with a nonzero
proper socle. Then M ⊕ Soc(M) is not a wd-Rickart module.

Proof. Assume thatM⊕Soc(M) is wd-Rickart. By Theorem 2.12, Soc(M)
is M -wd-Rickart. Let µ : Soc(M) →M be the inclusion map. Then there
exists a nonzero direct summand T of M such that T ⊆ µ(Soc(M)) =
Soc(M). Since M is indecomposable, we have T =M = Soc(M), which
is a contradiction.
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In [13, Proposition 2.7], it is studied when a direct sum ⊕i∈IMi of
modules Mi (i ∈ I) is N -wd-Rickart for some module N . Next, we provide
a sufficient condition under which N is (⊕i∈IMi)-wd-Rickart for some
finite index set I.

Proposition 3.5. Let M = M1 ⊕ M2 such that M2 is M1-projective
and let N be a module. Then N is M -wd-Rickart if and only if N is
Mi-wd-Rickart for all i = 1, 2.

Proof. (⇒) By Theorem 2.12.
(⇐) Let ϕ : N →M be a nonzero homomorphism. Let π2 :M →M2

be the projection on M2 along M1. Let ϕ2 = π2ϕ : N →M2.
Case 1: Assume that ϕ2 is nonzero. Since N is M2-wd-Rickart, there

exists a nonzero direct summand K2 of M2 such that K2 ⊆ Imϕ2 =
(Imϕ+M1)∩M2. Then K2 = (Imϕ+M1)∩K2. Let L2 be a submodule
ofM2 such thatM2 = L2⊕K2. Note thatK2 is M1-projective by [15, 18.1].
On the other hand, K2⊕M1 = [Imϕ∩ (K2⊕M1)] +M1. Then by [15, 41.
14], K2 ⊕M1 = C ⊕M1 for some submodule C 6 Imϕ ∩ (K2 ⊕M1).
Clearly, C is a nonzero direct summand of M which is contained in Imϕ.

Case 2: Assume that ϕ2 = 0. Then (Imϕ+M1)∩M2 = 0. This implies
that Imϕ+M1 =M1 and hence Imϕ ⊆M1. Since N is M1-wd-Rickart,
Imϕ contains a nonzero direct summand of M .

Theorem 3.6. Let M = ⊕n
i=1Mi such that Mj is Mi-projective for all

j > i in {1, . . . , n}, and let N be a module. Then N is M -wd-Rickart if
and only if N is Mi-wd-Rickart for all i = 1, . . . , n.

Proof. The proof is by induction on n and using Proposition 3.5, Theorem
2.12 and [15, 18.2(2)].

Corollary 3.7. Assume that M1, . . . ,Mn are R-modules such that Mi is
Mj-projective for all j > i in {1, . . . , n}. Then ⊕n

i=1Mi is a wd-Rickart
module if and only if Mi is Mj-wd-Rickart for all i, j ∈ {1, . . . , n}.

Proof. (⇒) Clear by Theorem 2.12.
(⇐) By [13, Proposition 2.7], ⊕n

i=1Mi is Mj-wd-Rickart for all j ∈
{1, . . . , n}. Therefore ⊕n

i=1Mi is a wd-Rickart module by Theorem 3.6.

4. Rings whose finitely generated modules are d-Rickart
(wd-Rickart)

We begin with a result which gives some information about the class
of rings over which every finitely generated module is wd-Rickart.
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Proposition 4.1. Let R be a ring such that every finitely generated
R-module is a wd-Rickart module. Then

(i) R is a right V -ring.
(ii) Every indecomposable finitely generated R-module is a simple injec-

tive module.
(iii) Every uniform module is a simple injective module.

Proof. (i) Assume that there is a simple R-module S with E(S) 6= S.
Take a nonzero element x ∈ E(S) which is not in S. Clearly, we have
Soc(xR) = S. By hypothesis, the finitely generated right R-module xR⊕
Soc(xR) = xR⊕S is wd-Rickart. This is impossible (see Proposition 3.4).

(ii) Let M be an indecomposable finitely generated R-module. Let
0 6= x ∈ M . Since xR ⊕M is wd-Rickart, xR is M -wd-Rickart by [13,
Corollary 2.8(ii)]. Therefore xR contains a nonzero direct summand of M .
As M is indecomposable, xR =M . Hence M is a simple module.

(iii) Let U be a uniform R-module and let 0 6= x ∈ U . So xR is
indecomposable. Thus xR is simple by (ii). It follows that U is a semisimple
module. But U is indecomposable. Then U is a simple module.

The following example shows that, in general, a right V -ring may
have a finitely generated module which is not wd-Rickart. Note that there
exist right noetherian right V -rings which are not von Neumann regular
(see [4]).

Example 4.2. Let R be a right noetherian right V -ring which is not von
Neumann regular. Then RR is not a d-Rickart module by [10, Remark 2.2].
Therefore RR is not a wd-Rickart module by [13, Corollary 3.5].

Next, we focus on the class of rings over which every finitely generated
module is d-Rickart.

A module M is said to be regular if every cyclic submodule of M is a
direct summand of M . Equivalently, every finitely generated submodule
of M is a direct summand of M (see [14, Remark 6.1]).

Lemma 4.3. (i) If M is an R-module such that R ⊕M is a d-Rickart
R-module, then M is a von Neumann regular module and R is a von
Neumann regular ring.

(ii) If N is a finitely generated R-module and M is a regular R-module,
then N is M -d-Rickart.

Proof. (i) Let a ∈ M and consider the R-homomorphism ϕa : R → M
defined by ϕa(x) = ax for all x ∈ R. By (i) and [10, Theorem 2.19], R
is M -d-Rickart. Therefore Imϕa = aR is a direct summand of M . So M



“adm-n2” — 2018/7/24 — 22:32 — page 209 — #47

D. Keskin Tütüncü, N. Orhan Ertaş, R. Tribak 209

is a von Neumann regular module. Similarly, we can see that R is a von
Neumann regular ring.

(ii) Let ϕ : N → M be an R-homomorphism. Then Imϕ is finitely
generated. Hence Imϕ is a direct summand of M since M is a regular
module. It follows that N is M -d-Rickart.

Proposition 4.4. The following conditions are equivalent for a finitely
generated R-module M :

(i) R⊕M is a d-Rickart module;
(ii) M is a von Neumann regular module and R is a von Neumann

regular ring.

Proof. (i) ⇒ (ii) By Lemma 4.3(i).
(ii) ⇒ (i) Applying Lemma 4.3(ii), we conclude that M is d-Rickart,

RR is M -d-Rickart, M is RR-d-Rickart and RR is d-Rickart. By [10,
Corollary 5.6], it follows that R⊕M is a d-Rickart module.

Corollary 4.5. The following are equivalent for a ring R:
(i) Every finitely generated R-module is a d-Rickart module;
(ii) For any finitely generated R-module M , R⊕M is a d-Rickart module;
(iii) Every finitely generated R-module is a regular module.

Proof. By Lemma 4.3 and Proposition 4.4.

A ring R is called a right FGC-ring if every finitely generated right
R-module is a direct sum of cyclic submodules.

Proposition 4.6. Let R be a ring such that every finitely generated
R-module is d-Rickart. Then the following hold:

(i) R is a von Neumann regular ring,
(ii) R is a right V-ring,
(iii) R is an FGC-ring,
(iv) Every indecomposable finitely generated R-module is a simple injec-

tive module, and
(v) For any right ideal I of R and any x ∈ R, there exists a right ideal

I ′ of R such that I ⊆ I ′, xR ∩ I ′ ⊆ I and xR+ I ′ = R.

Proof. (i) By Corollary 4.5 (see also [10, Remark 2.2]).
(ii) By Proposition 4.1.
(iii) By Corollary 4.5 and [14, Remark 6.2(2)].
(iv) By Proposition 4.1.
(v) Let I be a right ideal of R and let x ∈ R. By Corollary 4.5, R/I is

a regular R-module. So (xR+ I)/I is a direct summand of R/I. Let I ′ be
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a right ideal of R which contains I such that ((xR+ I)/I)⊕ (I ′/I) = R/I.
Then xR+ I ′ = R and xR ∩ I ′ ⊆ I. This completes the proof.

Proposition 4.7. Let R be a right noetherian ring. Then the following
are equivalent:

(i) Every finitely generated R-module is a d-Rickart module;
(ii) R is a semisimple ring.

Proof. (i) ⇒ (ii) Let I be a right ideal of R. Since R is right noetherian,
I is finitely generated. Then by Corollary 4.5, I is a direct summand of
RR. Thus R is a semisimple ring.

(ii) ⇒ (i) This is clear.

Note that there exists a commutative noetherian local ring R that
may have an R-module which is not wd-Rickart, and hence not d-Rickart.

Example 4.8. Let F be a field. Consider F [[x]], the formal power series
ring over F . It is not hard to see that F [[x]] is a commutative local
noetherian ring (it is also a domain). Let F ((x)) be the quotient field of
F [[x]]. Take the cyclic F [[x]]-moduleK = {q ∈ F ((x)) | xq ∈ F [[x]]}. Note
that F [[x]] ⊆ K. Consider the nonzero F [[x]]-monomorphism α : K → K
defined by q 7→ xq. Clearly, Imα ⊆ F [[x]]. If Imα contains a nonzero
direct summand of K, then Imα = F [[x]], which is a contradiction. This
means that K is not a wd-Rickart F [[x]]-module.

Now we characterize commutative semisimple rings in terms of finitely
generated d-Rickart modules.

Proposition 4.9. The following are equivalent for a commutative ring R:

(i) Every finitely generated R-module is a d-Rickart module;
(ii) R is a semisimple ring.

Proof. (i) ⇒ (ii) By Proposition 4.6, R is an FGC-ring which is von
Neumann regular. Thus R is a direct sum of indecomposable rings by
[3, Theorem 9.1]. Since R is von Neumann regular, it follows that R is a
semisimple ring.

(ii) ⇒ (i) This is clear.

Note that there exists a non-commutative artinian local ring R that
may have a finitely generated injective R-module which is not wd-Rickart,
and hence not d-Rickart.
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Example 4.10. Let R be a local artinian ring with radical W such that
W 2 = 0, Q = R/W is commutative, dim(QW ) = 2 and dim(WQ) = 1.
Then the indecomposable injective 2-generated right R-module U =
[(R ⊕ R)/D]R with D = {(ur,−vr) | r ∈ R} and W = Ru + Rv is
not regular. For, let N be a cyclic submodule of U with length 2. Then
N 6= U since U has length 3. Therefore N cannot be a direct summand
of U . On the other hand, note that U/N is simple and let π : U → U/N
denote the canonical epimorphism. Since R is an artinian ring, we have
Soc(U) 6= 0. Let S be a simple submodule of U . Therefore there exists
an isomorphism α : U/N → S as R is a local ring. Let µ : S → U be the
inclusion map. It follows that f = µαπ : U → U is an endomorphism of U
such that Im f = S is not a direct summand of U . This implies that U is
not a d-Rickart module. Since U is indecomposable, U is not wd-Rickart,
either.

5. Some structure results

Recall that a module M is said to be dual Baer if for every submodule
N 6M , there exists an idempotent e ∈ S = EndR(M) such that D(N) =
eS, where D(N) = {ϕ ∈ S | Imϕ ⊆ N}. This notion was introduced by
Keskin Tütüncü-Tribak in 2010 [6].

In this section, we present some structure results for some subclasses
of wd-Rickart modules.

Since the properties of d-Rickart and wd-Rickart coincide for every
noetherian module by [13, Corollary 3.5], the following three results can be
obtained immediately from [10, Propositions 4.12 and 4.13 and Theorem
4.14], respectively.

Proposition 5.1. Let M be a noetherian wd-Rickart module. Then there
exists a decomposition M = M1 ⊕M2 ⊕ . . . ⊕Mn where for each i, Mi

is an indecomposable noetherian wd-Rickart module with EndR(Mi) a
division ring. Moreover, n ∈ N is uniquely determined, and the sequence
of isomorphism types of M1,M2, . . . ,Mn is uniquely determined up to
permutation.

Proposition 5.2. Let M be a noetherian module over a commutative
ring R. Then the following are equivalent for M :

(a) M is a d-Rickart module;
(b) M is a wd-Rickart module;
(c) M is a dual Baer module;
(d) M is a semisimple module.
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Theorem 5.3. Let M be an n-generated module over a commutative
noetherian ring R for n ∈ N. Then the following are equivalent for M :

(a) M is a d-Rickart module;
(b) M is a wd-Rickart module;
(c) M is a dual Baer module;
(d) M ∼= R/m1 ⊕R/m2 ⊕ · · · ⊕R/mn, where mi are maximal ideals of

R with 1 6 i 6 n.

Let R be a Dedekind domain which is not a field. Then for each nonzero
prime ideal P of R, R(P∞) will denote the P -primary component of the
torsion R-module K/R, where K is the quotient field of R.

Theorem 5.4. Let R be a Dedekind domain which is not a field. Let K
be the quotient field of R. The following are equivalent for an R-module
M = ⊕i∈IMi, where Mi is indecomposable for each i ∈ I:

(i) M is a dual Baer module;
(ii) M is a d-Rickart module;
(iii) M is a wd-Rickart module;
(iv) M is a direct sum of copies of K, (R(P∞

i ))i∈I and (R/Qj)j∈J , where
(Pi)i∈I and (Qj)j∈J are nonzero prime ideals of R with Pi 6= Qj for
every couple (i, j) ∈ I × J .

Proof. (i) ⇒ (ii) ⇒ (iii) are clear by definitions.
(iii) ⇒ (iv) By [13, Corollaries 2.5 and 3.4], each Mi (i ∈ I) is an

indecomposable dual Baer module. Applying [6, Theorem 3.4], we see that
each Mi is either isomorphic to K or R(P∞

i ) or R/Qi for some nonzero
prime ideals Pi and Qi of R. Moreover, by [13, Example 2.6], it follows
that for every nonzero prime ideal P of R, the R-module R(P∞)⊕R/P
is not a wd-Rickart module. The result follows.

(iv) ⇒ (i) By [6, Theorem 3.4].

Corollary 5.5. For a Z-module M = ⊕i∈IMi, where Mi is indecompos-
able for each i ∈ I, the following are equivalent:

(i) M is a dual Baer module;
(ii) M is a d-Rickart module;
(iii) M is a wd-Rickart module;
(iv) M is isomorphic to a direct sum of arbitrarily many copies of Q

and (Z(p∞i ))i∈I and (Z/qjZ)j∈J , where pi(i ∈ I) and qj(j ∈ J) are
primes with pi 6= qj for every couple (i, j) ∈ I × J .

Recall that a module M is called lifting if for every submodule N of
M , there exists a direct summand K of M such that K 6 N and N/K is
small in M/K.
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Theorem 5.6. Let R be a non-local Dedekind domain. The following are
equivalent for an R-module M = ⊕i∈IMi, where Mi is indecomposable for
each i ∈ I:

(i) M is a dual Baer lifting module;
(ii) M is a d-Rickart lifting module;
(iii) M is a wd-Rickart lifting module;
(iv) M is torsion and every P -primary component of M is isomorphic

either to [R(P∞)]nP or [R/P ](IP ) for some natural number nP and
index set IP .

Proof. By Theorem 5.4 and [12, Propositions A.7 and A.8].

Corollary 5.7. For a Z-module M = ⊕i∈IMi, where Mi is indecompos-
able for each i ∈ I, the following are equivalent:

(i) M is dual Baer lifting;
(ii) M is d-Rickart lifting;
(iii) M is wd-Rickart lifting;
(iv) M is torsion and each p-primary component Mp is isomorphic either

to [Z(p∞)]nP or [Z/pZ](IP ) for some natural number nP and index
set IP .
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