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A B S T R A C T   

An influence of exothermic chemical reaction on the natural thermo-solutal convection in a horizontal channel 
filled with sparsely packed permeable nanofluid is investigated. It is assumed that the fluid viscosity is different 
from the effective viscosity. The Brinkman approach is engaged for the porous material, while the nanofluid 
approach features the Buongiorno model. To figure out the stability of the linear terms, normal mode analysis is 
opted. Galerkin technique is selected to work out the nonlinear terms. The Rayleigh number and its relevant 
wave numbers are assessed for all dimensionless parameters and exposed in the form of graphs. It is found that 
there is a critical value of Frank–Kamenetskii number at which the system is most unstable. It is found that 
increasing the viscosity ratio delays the onset of convection. With exothermic chemical reactions, the fluid in the 
porous medium is more prone to instability as compared to the case in which chemical reactions are absent. A 
critical value of Frank–Kamenetskii number is also identified at which the system is most unstable, and this is 
shown to be independent of both porous media parameter and the viscosity ratio. Applications of the study arise 
in nano-doped geothermal energy extraction, chemical and bio reactors and other engineering systems.   

1. Introduction 

Conventional methods employed to increase heat transfer rates in 
industrial and energy systems, which include extended surface areas and 
micro-channels, are characterized by the disadvantage that when the 
required pumping power of the cooling liquid is increased or when 
micro fluids are deployed, gravity settling, clogging and other sedi
mentation problems arise. The innovative concept of ‘nanofluids’ con
sisting of base fluid having nanoparticles suspensions is the best choice 
to overcome these challenges. By dispersing metallic (e.g. silver oxide, 
copper, zinc) or non-metallic (carbon nanotube, silicate etc) nano-sized 
particles or nano fibres having a typical size of <100 nm in a fluid results 
in nanofluid. These nanofluids can be employed in the extraction of the 
geothermal energy [1]. Further when drilling, nanofluids reduce the 
temperature and friction which occurs in machinery equipment work
ing. By placing nanoparticles in geothermal fields, demonstrating that as 
circuit fluids, copper or alumina nanofluids yield enhanced heat 
extraction rates compared with conventional steam or water systems 
[2,3]. Nanofluids simultaneously avoid the flooding and agglomeration 
problems encountered with conventional displacement fluids. In such 
systems porous media are encountered and natural rock (stratum) 

boundaries arise. The exceptional thermal conductivity enhancement 
achieved with nanofluids makes them a viable technology for 
geothermal power systems. 

The approach is defined to replicate the onset of convection due to 
exothermic reactions saturated by a nanofluid, as a simulation of a 
reactive geothermal system. Thermosolutal convection and reactive 
flows are significant in geothermal systems [4–9]. In certain reactive 
flows, density differences in a liquid mobilize thermal convection which 
occurs to release the heat of an exothermic reaction and this in turn 
disturbs the reaction rate. Such a complicated interaction between 
convection and reaction is the major aspect for different instabilities 
monitored in reacting flows. In few cases including the storing of self 
igniting media such as waste dumps, coal piles, etc., these non-uniform 
motions are considered to be responsible for preventing heat explosions, 
while in other cases, these non-uniform flows, as in a reaction in a 
packed bed, can lead to an appearance of hot spots and should be 
avoided. Exothermic reactions can be influenced in a critical way by the 
properties of the natural convection. Chemical vapor deposition sys
tems, synthesis of ceramic media by self-propagating reactions, tubular 
laboratory reactors, geochemical processes in reservoirs, oxidation of 
solid media in large chambers are among some of the representative 
examples of the influence of chemical reactions on natural convection 
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flows. Articles are published using the Frank–Kamenetskii thermal ex
plosion model [9] which was in use for a homogeneous mixture of re
actants within an enclosure with isothermal boundaries. Law and Law 
[10] used matched asymptotic expansions to calculate the weakly 
reactive ignition in steady boundary-layer motion of a combustible 
mixture over heated, isothermal, non-permeable, non-catalytic flat sheet 
at large activation energy. Li et al. [11] derived a locally similar solution 
for thermal ignition of a reacting boundary-layer motion about the hot 
wedge/cone surface. Bég et al. [12] engaged DTM and Padé approx
imants to simulate the thermal ignition in combusting flow from a tilted 
slope as a model of forest fire spread, evaluating achievement of 
Frank–Kamenetskii parameter on thermal buoyancy effects. Further 
studies employing the Frank–Kamenetskii theory include Bég et al. [13] 
(on elastico-viscous hypergolic bi-propellant rocket fuel conduction- 
convection at different Biot numbers). Hashmi et al. [14] presented 
homotopy results for thermal source/sink influences in mixed convec
tive hydromagnetic Oldroyd-B fluid in the gap between two infinite 
stretching disks of constant temperature. They computed the thermal 
and momentum components using Frank–Kamenetskii parameter. Gor
don [15] researched on the analytical approach of heat explosion in 
Darcy porous media. Several researchers have also considered free 
convection in nanofluid immersed porous matrix for the thermal igni
tion. Rahman et al. [16] estimated the natural magneto-convection flow 
energized with Frank-Kamenstkii reaction and Arrhenius kinetics for the 
permeable nanofluid. They noted that both Rayleigh and Frank- 
Kamenetskii numbers exert a significant impact on the convective pat
terns and that average Nusselt number is elevated with Frank- 
Kamenetskii parameter (stronger exothermic reaction) whereas it is 
suppressed with Rayleigh number. Ul-Haq [17] investigated the 
exothermically reactive convection for the conducting permeable 
nanofluid in the triangular cavity, observing that exothermic reaction 
produces more heat with higher Frank-Kamenetskii parameter, and 
significantly intensifies the circulation with the enclosure. Relatively 
sparse studies have been organized for the presence of exothermic re
action with considerations of nanoparticles and thermo-solutal insta
bility. The interaction of chemical reaction and buoyancy forces was first 

considered by Kordylewski and Krajewski [18] for the permeable fluid. 
They assumed LTE (local thermal equilibrium) model and a zero-order 
exothermic reaction with a Darcy law under the Boussinesq approxi
mation. They bestowed the consequence of chemical reaction on the 
critical conditions of heat ignition. Gatica et al. [19] presented stability 
test of chemical reaction outcome on thermal convection in a confined 
permeable fluid. They considered first order isothermal and zeroth order 
and non-isothermal reaction and analytically evaluated the Rayleigh 
number. Vafai et al. [20] reported finite element simulations of time- 
dependent convection along with chemical reactions in a packed bed. 
They resolved the critical boundary temperature producing thermal 
runaway inside the cavity applying Frank-Kamenetskii theory. They also 
identified “hot spots” in domains removed from the horizontal borders 
of the chamber. Subramanian and Balakotaiah [21] explored the con
ditions to set on the exothermic reactions in an open rectangular cavity 
embedded with porous matrix. They demonstrated the sensitivity of 
bifurcation neutral stability lines on Lewis number, observing a 
displacement in steady stability border with higher Ra. They further 
identified a critical Lewis number below which the entire ignited con
duction branch is stable to convective perturbations Rayleigh number at 
the extinction point. Malashetty et al. [22] have inspected the impact of 
exothermic reactions on the onset of convection for the permeable liquid 
adopting Darcy's law. 

The papers mentioned as above adapted the Darcy law for the mo
mentum equation. However, Darcy's model is applicable only under 
special circumstances and is confined to viscous-dominated, low speed 
flows for which a bulk matrix impedance alone is present. More gener
alized models for evaluating accurately convection flows in porous beds 
are however available which may address inertial, channeling, tortu
osity, vorticity diffusion and other effects. An elegant formulation is the 
Darcy-Brinkman model which includes the Brinkman's viscous term and 
has been described in some detail by Kladias and Prasad [23]. Vasseur 
and Robillard [24] discussed the stability for the porous matrix enclo
sure convection with variable temperature gradients adopting the 
Darcy-Brinkman model which was shown to achieve a better prediction 
for the diffusion. Bég et al. [25] utilized a non-Darcy model to 

Nomenclature 

a dimensionless wave number 
b, d reaction orders 
B pre-exponential factor 
DB Brownian motion parameter 
DT thermophoresis parameter 
E activation energy (J) 
FK Frank–Kamenetskii parameter 
g gravitational acceleration vector (m/s2) 
H height of the porous layer (m) 
K permeability (m2) 
Kr viscosity ratio 
l, m dimensionless wave number in the x- and y- coordinates 
Ln thermo-nanofluid Lewis number 
M thermal capacity ratio 
NA modified diffusivity ratio 
NB modified particle-density rise 
p pressure (Pa) 
Pr Prandtl number 
q velocity vector (m/s) 
Q heat of reaction (kJ/mol) 
R the universal gas constant (J/K.mol) 
Ra modified Rayleigh number 
Rm basic-density Rayleigh number 
Rn nanoparticle concentration Rayleigh number 

T temperature (K) 
t time (s) 
(u,v,w) velocity components (m/s) 
(x,y,z) space coordinates (m) 
YF

b, Y0
d mass fraction of fuel and oxidizer respectively 

Greek symbols 
κ effective heat diffusivity (m2/s) 
β heat expansion parameter (K− 1) 
ε porosity 
μ dynamic viscosity (kg/m.s) 
μe effective viscosity (kg/m.s) 
ν kinematic viscosity (m2/s) 
νe effective kinematic viscosity (m2/s) 
θ non-dimensional temperature 
ρ density (kg/m3) 
σ porous parameter 

Superscripts 
* non-dimensional quantity 
′ perturbed quantity 

Subscripts 
b base state quantity 
r reference  
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understand the viscous effects in two-dimensional laminar boundary 
layer flows in homogenous porous media. Kumar et al. [26] applied the 
Darcy-Brinkman model and both perturbation and differential transform 
methods to calculate the influence of mixed convection characteristic, 
porous characteristic, relative viscosity parameter, aspect parameter, 
relative conductivity parameter and Biot numbers in a duct with mixed 
boundary conditions. Tripathi and Bég [27] deployed a homotopy 
perturbation method (HPM) to investigate the peristaltic propulsion of 
Maxwell viscoelastic biopolymers in incompressible Darcy-Brinkman 
porous media. 

The magnetic impacts on the mixed convection of a nanofluid in an 
undulating porous cavity under the thermal radiation and heat gener
ation effects were researched by Alsedais et al. [28] under LTNE (linear 
thermal nonequilibrium) approach. Their results indicated that the 
growth in nanoparticles parameter augments the profiles of average 
Nusselt number of a fluid phase. The heat transfer was influenced by the 
variations in the length/position of the heater source. Aly and El-Sapa 
[29] studied more complex problem by introducing magnetohydrody
namic thermosolutal convection of a nanofluid in a square cavity 
including dual rotation among an outer circular cylinder and an inner 
cross shape. They remarked that the variations of the thermal/solutal 
boundary conditions can work effectively in adjusting the heat/mass 
transfer and nanofluid flow within a cavity. Further increasing Hart
mann number from 0 to 50 lessens the maximum of the nanofluid ve
locity by 44.4%. Aly et al. [30] adopted the time-fractional derivative of 
the incompressible smoothed particle hydrodynamics (ISPH) method for 
studying the magnetic field, diffusion-thermo, and thermo-diffusion 
impacts on the double diffusion of a nanofluid in a porous annulus be
tween a square cavity and astroid element. The main findings of the 
ISPH numerical simulations showed that a decrease in a fractional de
rivative order delivers the sooner steady-state of the double diffusion 
which suppresses the performed calculations. Alsedais and Aly [31] also 
worked on the double-diffusive convection from an oscillating baffle 
embedded in an astroid-shaped cavity suspended by nano-encapsulated 
phase change materials using ISPH simulations. They found that the 
Stefan and fusion parameters were acting effectively in enhancing a 
phase change zone. The superior values of the average Nusselt and 
Sherwood numbers were obtained when the inner baffle was expanded 
due to higher buoyancy forces. 

The instability properties of mixed convection flow of different 
nanofluids in a differentially heated vertical channel through a linear 
stability analysis were reported by Singh and Khandelwal [32]. Their 
main findings were that compared to conventional pure water fluid, the 
inclusion of nanoparticles in pure water delayed the onset of instabilities 
by reducing the growth of the disturbance. The oscillation characterstics 
and evolution process for large Prandtl number (Pr = 58) nanofluid 
thermocapillary convection and the variation of critical Marangoni 
number and flow instability under different nanoparticle concentrations 
were reported by Zhou et al. [33]. Their results showed that, nanofluid 
thermocapillary oscillatory convection is consisted of multiple vortices 
and these vortices migrate periodically from cold wall to hot wall. 
Further as nanoparticle volume fraction increases, the critical Mar
angoni number decreases. In order to reveal the oscillatory character
istics of the natural convection of nanofluid, Hu et al. [34] presented a 
comprehensive numerical work on the oscillatory natural convection of 
Al2O3-water nanofluid near its density maximum in a narrow horizontal 
annulus. Their results showed that the density inversion of the working 
fluid affected the velocity and temperature distributions of the natural 
convection of Al2O3-water nanofluid significantly. Adding nanoparticles 
was beneficial to stabilizing the flow of nanofluid and keeping the 
symmetry of the flow structure. Weak nonlinear hydrodynamic thermal 
instability analysis has been performed by Bhadauria and Kiran [35] for 
double diffusive oscillatory mode of convection in a horizontal layer of 
viscoelastic fluid, heated from below. They found that in-phase tem
perature modulation has negligible effect, while out of phase tempera
ture modulation and only lower plate temperature modulation have 

oscillatory effects on heat and mass transport. 
The Darcy-Brinkman model is picked in the conservation balance 

equation to understand the instability in permeable nanofluid. The 
liquid viscosity and the effective viscosity are different for the fluid in 
porous media. The formation of multiple conductive states and the heat 
rate result to the marked differences between the reaction-driven con
vection and the classical Lapwood-Brinkman and Rayleigh-Bénard 
convection. More recently, the focus is on trying to study the convective 
instabilities that arise due to exothermic reactions occurring inside a 
porous medium. The heat released by an exothermic reaction creates 
density differences within the fluid and induces natural convection, 
which in tern, affects the rate of reaction. This complex interaction be
tween convection and chemical reaction is believed to be a major factor 
in different instabilities observed in reacting flows. These non-uniform 
flows, in some cases, as in a chemical reaction in a packed bed, might 
lead to the formation of hot spots and are to be avoided, while in some 
other cases, like the storing of self igniting materials such as coal piles, 
waste dumps, etc., these non-uniform flows are believed to be respon
sible for preventing (or delaying) thermal explosions. Natural convec
tion effects may influence the course of an exothermic chemical reaction 
in a critical way. Examples of the interaction of chemical reaction and 
free convection occur in tubular laboratory reactors, chemical vapor 
deposition systems, oxidation of solid materials in large containers, 
synthesis of ceramic materials by self-propagating reaction, and others. 
However few works have been done on the effect of chemical reaction on 
convection in porous media until recently. The present review is 
particularly relevant to chemo-dynamic simulations of nano-doped 
geothermal reservoirs and also in simulating operations of an 
exothermic reactor during its shutdown period. It may also be of rele
vance to porous media combustion fuel cell systems [36,37]. The major 
contribution of the proposed analysis is to examine the enforcement of 
the Frank–Kamenstkii thermal ignition parameter and nanoscale in
fluences on onset of convection in using a Darcy-Brinkman model filled 
with reacting nanofluid in a horizontal duct. Extensive linear stability 
computations with Fourier decomposition are presented and a para
metric study of the impingement of key parameters on transport char
acteristics conducted with graphical visualizations. 

2. Exothermic reactive nanofluid porous media model 

The schematic figure consists of horizontal duct filled with nanofluid 
along with the porous bed as exhibited in Fig. 1. The lower wall is 
located at z = 0 and the upper plate at z = H with the z-axis in the 
vertical direction against gravity. It is estimated that the inert porous 
nanofluid is chemically reactive and the exothermic reactions are weak 
(Frank-Kamenetskii thermal ignition model) and is cooled from the top 
boundary (representing e.g. the rock stratum of a geothermal reservoir 
or upper wall of a reactor) at a temperature of Tc. The Newton's balance 
equations are as follows [41]. 

∇q = 0 (1)  

ρ0

(

ε− 1∂q
∂t

+ ε− 2q∇q
)

= − ∇p+ ρg −
μ
k

q+ μe∇
2q (2)  

M
∂T
∂t

+ q∇T =k∇2T +QBYF
bY0

dexp
(

−
E

RT

)

+
ε(ρc)p

(ρc)f

[

DB∇ϕ∇T +DT
∇T∇T

T0

] (3)  

∂ϕ
∂t

+ ε− 1q∇ϕ = ∇

[

DB∇ϕ+DT
∇T
T

]

(4)  

ρ = ϕρp +(1 − ϕ)ρ0[1 − β(T − TC) ] (5) 

Zero order reactions are possible in two ways. The first possibility is 
the case of b = d = 0, which inform that the concentrations of reactants 
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do not play any role in the chemical reaction. This is not physical due to 
it signifies that chemical reaction is possible without the reactants. Nest 
case is that only a low reactant concentration is depleted during the 
reaction, which characterizes the weakly reacting situation under low 
temperature variation and is therefore the case addressed in the present 
work. The Boussinesq approximation is supported because the discrep
ancy in the temperature is not large. The Boussinesq approximation was 
widely utilized in many studies e.g. Stroh and Balakotaiah [38], Sub
ramanian and Balakotaiah [39]. To summarize, the current mathemat
ical model is established on the following assumptions:  

1. The nanofluid is chemically reactive fluid and process weakly 
exothermic chemical reaction of order zero. 

2. During the reaction a low reactant concentration is depleted illus
trating the weakly reacted situation in a circulation with low tem
perature differences.  

3. The fluid is subjected to large activation energy reaction.  
4. Boussinesq approximation is invoked; the liquid and the solid matrix 

are in heat equilibrium.  
5. The fluid viscosity and effective Brinkman viscosity are not equal. 

The heat border condition at the upper wall is 

T(x, y,H) = TC (6) 

For the lower temperature border condition, we assume two various 
cases, a wall with constant temperature and a thermally-insulated wall. 
The conditions on the walls for the temperature for these two cases are: 

Case (i) a wall of constant temperature: 
The lower boundary wall using isothermal condition is 

T(x, y, 0) = Th where Th > TC (7) 

Case (ii) a thermally-insulated wall: 
For an adiabatic wall at the bottom the boundary condition is 

∂T(x, y, 0)
∂z

= 0 (8) 

High activation energy reaction is enforced and hence we have RTC/ 
E < < 1. With this condition and setting M = 1, eq. (3) can be simplified 
to 

∂θ
∂t

+ q∇T = k∇2θ+Cexp(θ) +
Φ(ρc)pDBϕr

(ρc)f
∇ϕ∇T +

Φ(ρc)pDT ϕrTr

(ρc)f TC
∇T∇T

(9)  

where C = QBYF
bY0

dexp( − E/RTC), θ = (T − TC)/Tr, Φ = (ϕ − ϕC)/ϕr 
with Tr = RTC

2/E being the reference temperature. Zero concentration is 
imposed at both boundaries. The dimensionless concentration and 
temperature are Φ and θ. 

The conditions on the walls in terms of θ, reduce to: 

θ(x, y,H) = 0 (10)  

θ(x, y, 0) = θh or
∂θ
∂z

(x, y, 0) = 0 (11)  

where θh = (Th − TC)E/
(
RTC

2). 

2.1. Basic state 

The basic undisturbed state corresponding to two various lower wall 
border conditions are taken into account on the temperature. In the 
undisturbed state, one can find 

qb(u, v,w) = (0, 0, 0), θ = θb(z), p = pb(z), ρ = ρb(z) (12) 

Eqs. (2) and (9) become: 

∇pb(z)+ ρb(z)g = 0 (13)  

d2θb

dz2 +

(
C
κ

)(
E

RTC
2

)

exp(θb) = 0 (14)  

where θb = (Tb − TC)E/(RTC
2). The concentration eq. (4) becomes 

d2Φb

dz2 +
DT Tr

DBTCϕr

d2Tb

dz2 = 0 (15) 

The dimensionless form of Eq. (14) is 

d2θb

dz*2 = − FKexp(θb) (16) 

Here z* = z/H is dimensionless vertical coordinate and FK =

Fig. 1. Reactive nanofluid porous medium model.  
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C
(

H2

κ

)(
E

RT2
C

)
is the Frank-Kamenetskii number (also known as the 

reduced Damkohler number in the combustion literature). The Frank- 
Kamenetskii parameter is the ratio of characteristic circulation time to 
the characteristic reaction time. (For simplicity asterisks will not be 
mentioned in future). The exact solution of Eq. (16) is given by: 

θb = ln
(

C1

2FK

)

+ ln

[

1 −

(
1 − C2e−

̅̅̅̅
C2

√
z

1 + C2e−
̅̅̅̅
C2

√
z

)2 ]

(17)  

for FK ∕= 0, where C1 and C2 are the integration parameters to be defined. 
For Case (i), using the boundary conditions of constant temperature 

θb = θh at z = 0 and θb = 0 at z = 1 (18) 

C1 and C2 are emerg0ed implicitly as 

e
̅̅̅̅
C1

√

[
1 − (1 − 2FK/C1)

0.5

1 + (1 − 2FK/C1)
0.5

]

=

[
1 − (1 − 2FKexp(θh)/C1 )

0.5

1 + (1 − 2FKexp(θh)/C1 )
0.5

]

(19)  

and 

C2 = e
̅̅̅̅
C1

√

[
1 − (1 − 2FK/C1)

0.5

1 + (1 − 2FK/C1)
0.5

]

(20) 

In eq. (20), C1 is a function of FK and θh. 
For Case (ii), the border conditions employed are 

dθb

dz
= 0 at z = 0, θb = 0 at z = 1 (21) 

We then determine C1 and C2 which yield 

e
̅̅̅̅
C1

√ (
1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − 2FK/C1

√ )
=
(

1+
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − 2FK/C1

√ )
and C2 = 1 (22) 

Detailed evaluation of ignition conditions is omitted as the critical 
conditions of thermal ignition was reported by many other authors (see 
e.g. Malashetty and Gaikwad [40]). Accordingly, we focus attention on 
investigating only the stability of the base state solutions. 

3. Linear stability analysis 

Perturbing basic state quantities such as velocity, pressure, density 
and temperature yields: 

q = (u
′

, v
′

,w
′

), p = pb + p
′

, ρ = ρb + ρ′

, θ = θb + θ
′ (23) 

Here the primes define weak perturbations from the undisturbed 
state. Substituting Eq. (23) into Eqs. (1)–(3), the pressure is eliminated, 
using the equation of state and neglecting nonlinear terms become 

∂
∂t

ε− 1∇2w
′

= −
ν
κ
∇2w

′

+ νe∇
4w

′

+ gβTr∇1
2θ

′

− g
(ρp

ρ0
− 1
)

∇1
2Φ′ (24)  

∂θ
′

∂t
+w′ ∂θb

∂z
= κ∇2θ

′

+Cexp(θb)θ
′ (25)  

ε− 1∂Φ′

∂t
+w′

= DB∇
2Φ′

+
Φ′

(ρc)pDT ϕrTr

(ρc)f TC
∇2T ′ (26) 

Here ∇1
2 =

(
∂2

∂x2 +
∂2

∂y2

)
, C = QBYF

aY0
bexp( − E/RTC). 

Eqs. (24)–(26) can be expressed in non-dimensional form using the 
following quantities: 

w* =
w′ H

κ
, (x*,y*,z*)=

(x,y,z)
H

, t* =
κt
H2, Kr=

μe

μ , Pr=
νφ
κ
, σ2 =

H2

κ
,

Ra=
(1 − ϕc)βgH3Tr

νκ
, Rn=

(ρp

ρ0
− 1
)

βgH3Tr

νκ
, FK =C

(
H2

κ

)
E

RTC
2, Ln=

1
DB

,

NA =
DT Tr

DBTCϕr
, NB =

Φ(ρc)pϕr

(ρc)f

(27) 

The emerging normalized equations (after dropping asterisks for 
simplicity) are 
(

Pr− 1 ∂
∂t
+ σ2 − Kr∇2

)

∇2w = Ra∇2
1θ − Rn∇2

1Φ (28)  

(
∂
∂t
− ∇2

)

θ = FKexp(θb)θ − w
∂θb

∂z
(29)  

ε− 1w −
NA

Ln
∇2θ −

(
1

Ln
∇2 − s

)

Φ = 0 (30) 

Buongiorno [41] points out that Ln is of order 102–103, and NA is 
<10. Employing this condition we obtain Φb = z. 

The estimate of w, θ, Φ on the boundary are 
For the isothermal case (i): 

w = 0,
d2w
dz2 = 0, on z = 0, 1 (31a)  

dθb

dz
= 0 at z = 0, θb = 0 at z = 1 (31b)  

Φ = 0 on z = 0, 1 (31c) 

For the adiabatic case (ii): 

w = 0,
d2w
dz2 = 0 on z = 0, 1 (32a)  

θ = 0 on z = 1 and
dθ
dz

= 0 at z = 0 (32b)  

Φ = 0 on z = 0, 1 (32c) 

Fourier decomposition is applied to the disturbances, which reduces 
the perturbation equations to ordinary differential eigenvalue form. 
Accordingly, we assume w and θ as follows: 

(w, θ,Φ) = (W(z) ,Θ(z) ,Σ(z) )exp[i(lx+my − ωt) ] (33) 

Fig. 2. Rc versus FK for various σ (isothermal case).  
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Here l and m are wave parameters for x and y coordinates. Using Eq. 
(33) in Eqs. (28)–(30) respectively, we obtain 
[
− iPr− 1ω+ σ2 − Kr

(
D2 − a2) ](D2 − a2)W = − a2RaΘ+ a2RnΣ (34)  

[
− iω −

(
D2 − a2) ]Θ = FKexp(θb)Θ − W

dθb

dz
+

NB

Ln
DΣDΘ+

NANB

Ln
DΘDΘ

(35)  

ε− 1 W −
NA

Ln
(
D2 − α2)Θ −

(
1

Ln
(
D2 − α2)+

1
σ iω

)

Σ = 0 (36)  

where a =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
l2 + m2

√
is the horizontal wave parameter and D ≡ d

dz. 
For the marginal stability where ω = 0, Eqs. (32)–(34) take the form 

[
σ2 − Kr

(
D2 − a2) ](D2 − a2)W = − a2RaΘ+ a2RnΣ (37)  

[(
D2 − a2)]Θ − W

dθb

dz
+FKexp(θb)Θ −

NB

Ln
DΣDΘ −

NANB

Ln
DΘDΘ = 0

(38)  

ε− 1 W −
NA

Ln
(
D2 − α2)Θ −

(
1

Ln
(
D2 − α2)

)

Σ = 0 (39) 

Eqs. (37)–(39) with the homogeneous border conditions (31a-c) and 
(32a-c) define an eigenvalue problem, with modified Ra being the 

eigenvalue. The Galerkin method, as described in detail by Finlayson 
[42] is utilized to find the approximate solutions. 

To, this end, we set 

W = A1W1,Θ = B1Θ1 and Σ = C1Σ1 (40) 

Here W1, Θ1 and Σ1 are the trial functions with border conditions 
(31a-c) and (32a-c). Substituting Eq. (40) into Eqs. (37)–(39), 

multiplying the obtained equations by W1, Θ1 and Σ1, respectively, 
integrating each equation from z = 0 to z = 1 we obtain:   

− A1

〈

Θ1W1
dθb

dz

〉

− B1
[〈
(DΘ1)

2
+ a2Θ1

2 − FKexp(θb)Θ1
2 〉 ] = 0 (42)  

ε− 1 A1〈W1Σ1〉 −
NA

Ln
(
D2 − α2)〈Θ1Σ1〉B1 −

(
1

Ln
(
D2 − α2)

)
〈
Σ1

2〉C1 = 0

(43)  

where 〈f〉 =

∫1

0

f dz. 

Eliminating A1, B1 and C1 between Eqs. (41)–(43) one can find an 
expression for the modified Ra as (after dropping the suffixes):   

Case (i). We choose the trial functions as 

W(z) = sin(πz),Θ(z) = sin(πz) and Σ(z) = sin(πz) (45) 

These satisfy the boundary conditions (31). Substituting Eq. (45) into 
Eq. (44) yields   

Case (ii). We select the trial functions as 

W(z) = sin(πz),Θ(z) = sin
(π

2
z
)

and Σ(z) = sin
(π

2
z
)

(47) 

These relations satisfy to the boundary conditions (32). Substituting 
these trial functions into the Eq. (44) yields 

A1

[(
σ2 + 2a2Kr

)
〈DW1〉

2
+ a2( a2Kr + σ2)〈W1

2〉+ Kr
〈(

D2W1
)〉2
]
− a2RaB1〈W1Θ1〉+

a2RnC1〈W1Σ1〉 = 0
(41)   

Ra = −
Ln

a2〈WΘ〉
〈

WΘ dθb
dz

〉

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
(DΘ)

2
+ a2Θ2 − FKeθb Θ2 〉〈(DΣ)2

+ (aΘ)
2 〉

[(
σ2 + 2a2Kr

)
〈DW〉2 + a2( σ2 + a2Kr

)〈
W2〉+ Kr

〈(
D2W

)2
〉 ]

+a2Rn〈WΣ〉
NA

Ln

〈

WΘ
dθb

dz

〉
〈
ΘΣ
(
D2 − a2) 〉

− ε− 1WΘ
[( 〈

(DΘ)
2
+ (aΘ)

2 〉 )
−
〈
FKeθb Θ2〉 ]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(44)   

Ra =

Ln
ε (π

2 + a2 − X) − (π2+a2)
2

2

[
σ2(π2 + a2) + Kr(π2 + a2)

2
]
− a2Rnπ4NA

Ln Y(a2 − 4π)
a2Y(π2 + a2)

(46)   
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Fig. 3. Rc versus FK for various Kr (isothermal case).  

Fig. 4. Rc versus FK for various Rn (isothermal case).  

Fig. 5. Rc versus FK for various Ln (isothermal case).  

Fig. 6. αc versus FK for various σ (isothermal case).  

Fig. 7. αc versus FK for various Kr (isothermal case).  

Fig. 8. αc versus FK for various Rn (isothermal case).  
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Fig. 9. αc versus FK for various Ln (isothermal case).  

Fig. 10. Rc versus FK for various σ (adiabatic case).  

Fig. 11. Rc versus FK for various Kr (adiabatic case).  

Fig. 12. Rc versus FK for various Rn (adiabatic case).  

Fig. 13. Rc versus FK for various Ln (adiabatic case).  

Fig. 14. αc versus FK for various σ (adiabatic case).  
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where X = 〈2FKeθbΘ2〉, 
〈
Y = WΘ ∂θb

∂z

〉
, and are computed by numerical 

integration. The minimum value of Ra for a reacting fluid is at the 
critical wave parameter a = ac. Solving this equation for a2 yields critical 
wave number ac, which on substituting in Eq. (44), Rac is obtained. 

4. Results and discussion 

Rayleigh number has been computed for particular values of 
permeability parameter, viscosity ratio, nanoparticle concentration Ra, 
Lewis and Frank–Kamenetskii numbers. All the computations are visu
alized in Figs. 2–17 with default data. 

Figs. 2–9 depict the isothermal wall conditions layouts. The change 
of critical Ra with Frank–Kamenetskii parameter for the isothermal 
condition for σ and Kr is depicted in Figs. 2 and 3 respectively. We 
monitor from these figures that Rac is reduced as Frank–Kamenetskii 

number increases, attains a minimum value and subsequently increases 
by rising FK. A critical magnitude of Frank–Kamenetskii parameter FK =
(FK)c = 0.32 has been determined at which the system is most unstable. 
This critical value (FK)c is independent of both σ and Kr. Furthermore, in 
a small range of FK (0 < FK < 0.1) Rac diminishes exponentially. Fig. 2 
presents that increasing σ, Rac is boosted, prompting that porous 
parameter stabilizes the system (i.e. decreasing permeability), which is a 
classical result. We observe from Fig. 3 that developing Kr is to improve 
Rac indicating that large viscosity ratio is to delay convection to set on. 
Thus, the viscosity ratio also stabilizes the system. The outcome of Rn 
and Lewis number is shown in Figs. 4 and 5 respectively. Evidently 
increasing Rn and Ln reduces Rac suggesting that Rn and the Lewis 
number both advance the onset of convection. Thus, larger values of Rn 
and Ln destabilize the system. 

Figs. 6–9 demonstrate the repercussion of αc with Frank–Kamenetskii 
number FK on σ, viscosity ratio Kr, concentration Rayleigh number Rn 
and the Lewis number Ln. Figs. 6 and 7 demonstrate the enact of vari
ation of critical wavenumber with Frank-Kamenetskii number on the 
porous parameter σ, viscosity ratio Kr, respectively. It is acquired that αc 
increases with Frank–Kamenetskii number FK as σ is increased, hence 

the porous characteristic stabilizes the onset of convection. However, 
the viscosity ratio Kr is suppressed by elaborating αc implying that the 
system is destabilized. The deviation of critical wave number with FK on 
Rn and Ln is shown in Figs. 8 and 9 respectively. The impact of Rn is 
presented in Fig. 8. These figures suggest that as Rn is accelerated, αc 
also increases i.e. greater concentration Rayleigh stabilizes the system. 
Fig. 9 tells that as Lewis number is gained, αc continues to plummet, 
hence destabilizing or suppressing the system. The response of αc on σ 
and Kr is similar to that computed earlier by Malashetty and Gaikwad 
[40]. By employing a nanoliquid, we find an enhancement in Rac and the 
wave parameter, indicating that the system is stabilized. For pure 
viscous fluid (i.e. when Rn = 0, Ln = 0, NA = 0), the results of Malashetty 
and Gaikwad [40] are restored. 

Figs. 10–17 depict the evolution of Rc with FK on σ, Kr, Rn and Ln for 
the case of an adiabatic lower boundary. It is clear that Rac declines as 

Fig. 15. αc versus FK for various Kr (adiabatic case).  

Fig. 16. αc versus FK for various Rn (adiabatic case).  

Ra = −
3π
4

(π2 + 4a2 − 4X)
a2Y( − π2 + a2)

×

⎡

⎢
⎢
⎢
⎣

− Ln
(
σ2 + 2a2Kr

)
π2 + a2( a2Kr + σ2)+

Krπ4

4
(
π2 + 4a2)

−
X(π2 + 4a2)

8
+

4a2RnNAY
3π Ln

−
1

ε3π
(
π2 + 4a2 − 4X

)

⎤

⎥
⎥
⎥
⎦

(48)   

Fig. 17. αc versus FK for various Ln (adiabatic case).  

J.C. Umavathi and M.A. Sheremet                                                                                                                                                                                                          



International Communications in Heat and Mass Transfer 138 (2022) 106353

10

FK raises and attains a minimum value. This behavior is similar to the 
isothermal wall conditions though the changes of Rac is not as excessive, 
indicating that adiabatic conditions at the base boundary lead to a less 
prominent modification in stability characteristics. 

The Rayleigh number is assessed for separate values the porous 
parameter, viscosity ratio, Rn, Ln and FK for the adiabatic condition and 
the outcome are presented in Figs. 10–13. The variation of Rc with FK on 
σ and Kr is shown in Figs. 10 and 11. The Rc is reduced noticeably by 
intensifying as Frank–Kamenetskii number FK, decline to a minimum 
value and then rises by escalating the value of FK. This critical value 
(FK)c is independent of σ and Kr. It can also be noted that small range of 
FK (0 < FK < 0.1) Rac drops exponentially. Clearly the strength of the 
exothermic reaction has a marked impact on the convection and 
significantly alters the stability of the regime. Fig. 10 implies that the 
large values of σ enhances Rac i.e. it stabilizes the system, which as noted 
earlier, is a classical pattern computed in many studies of porous me
dium convection flows. We observe from Fig. 11 that promoting Kr, Rac 
is also promoted, informing that Kr hinder the onset of convection. Thus, 
greater viscosity ratio also contributes a stabilizing role on the system. 
The enforcement of Rn and Ln is shown in Figs. 12 and 13 respectively. 
From these figures, the implication is that a boost in nanoparticle con

centration Rayleigh number i.e. Rn =
(

ρp
ρ0
− 1
)

βgH3Tr
ν κ is to put down Rac. 

Greater nanoparticle presence therefore is counter-productive in the 
adiabatic case, since it advances the onset of convection i.e. stabilizes 
the regime, whereas greater Lewis number constrain the onset of con
vection i.e. stabilizes the system. 

The enact of αc with FK on σ, Kr, Rn and Ln have been shown in 
Figs. 14–17. Figs. 14 and 15 model the importance of critical wave 
number with FK on σ and viscosity ratio Kr. The critical wave number is 
found to develop with Frank–Kamenetskii number as the porous 
parameter is enhanced; hence σ has a stabilizing effect. Kr is reduced for 
large αc implying that higher Kr destabilizes the system. The response of 
αc with Frank–Kamenetskii number on Rn and Ln is visualized in Figs. 16 
and 17 respectively. From these, it appears that as the values of Rn and 
Ln are expanded, the critical wave number also increases; both con
centration Rayleigh and Lewis number therefore stabilize the system. 

The effects of Rac on σ and Kr concur with the computations of 
Malashetty and Gaikwad [40]. By using a nanofluid, we observe an 
enhancement in Rac and αc, and hence stabilize the system. For pure 
viscous fluid (i.e. when the parameters Rn = 0, Ln = 0, NA = 0), the 
results of Malashetty and Gaikwad [40] for the adiabatic case are 
retrieved. 

5. Conclusions 

The enforcement of chemical reaction on the onset of natural con
vection in a horizontal sparsely packed porous layer occupied by a 
nanoliquid, with a wall having constant temperature or thermally- 
insulated wall as the lower border was studied. The stability analysis 
was performed and the obtained eigenvalue problems were worked our 
approximately, using a single-term Galerkin technique with appropriate 
trial functions. Rac and its corresponding αc are derived for distinct 
magnitudes of FK, σ, Kr, Rn and Ln. It was attained that the presence of 
multiple conductive states and the exponential dependence of the 
thermal production intensity on the temperature results to marked 
changes between reaction-driven convection and the classical Lapwood- 
Brinkman and Benard-type convection owing to an applied temperature 
drop. The chemical reaction results in a distributed energy source which 
causes for the nonlinear temperature distribution in the base state. 
Hence chemical reaction advances the onset of convection when corre
lated with no chemical reaction. The following conclusions are drawn:  

(i) The exothermic chemical reaction is to accelerate the onset of 
convection for a certain range of FK. The critical magnitude of FK 

exists FK = (FK)c where the system is most unstable which is 
independent on Kr and σ.  

(ii) Increasing the viscosity ratio is to postpone the onset of 
convection.  

(iii) The influence of Rac on the porous medium parameter σ and the 
viscosity ratio Kr is the similar observations mady by Malashetty 
and Gaikwad [40] for both isothermal and adiabatic cases.  

(iv) The critical wave number on the porous medium parameter σ and 
the viscosity ratio Kr is the same as defined by Malashetty and 
Gaikwad [40] for both isothermal and adiabatic cases.  

(v) For pure viscous fluid (i.e. Rn = 0, Ln = 0, NA = 0), we obtain the 
same results of Malashetty and Gaikwad [40] for isothermal and 
the adiabatic case.  

(vi) By using a nanofluid i.e. doping viscous fluid with nanoparticles, 
an enhancement is achieved on Rac and αc, thereby augmenting 
the stability of the regime. 

The present investigation has acknowledged the interesting ther
mosolutal fluid dynamic stability characteristics of relevance to 
geothermal energy systems and chemical reactors. However, simula
tions have been confined to Newtonian flows. Future investigations may 
consider non-Newtonian models (Giraldo et al., [43]) for nanofluid 
thermal ignition reaction flows, which are also useful in geothermal 
systems and reactor designs. 
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