

Journal of Advances in Science and Engineering (JASE)

Journal homepage: www.sciengtexopen.org/index.php/jase

Comparative assessment of the phytochemicals of the leaves and seeds of pigeon pea (*Cajanus cajan (L.) Huth*) plant

V. M. Yilwa^(D), K. B. Dikwa, M. C. Emere, P. O. Airoboman^{(D)*}

Department of Biological Science, Faculty of Science, Nigerian Defence Academy, Nigeria

ARTICLE INFO

Article history: Received 22 October 2022

Received in revised form 7 January 2023

Accepted 28 January 2023

Available online 31 January 2023

Keywords: Comparative assessment Leaves Phytochemicals Pigeon pea Seeds

ABSTRACT

The pigeon pea plant is one of the plants cultivated in the semi-arid tropics; it is widely cultivated in Nigeria. It is utilized as food and serves medicinal purposes. This study was carried out with the aim of assessing the phytochemicals. Pigeon pea leaves and seeds were purchased from farmers in Uromi, Edo state, and Rumugbo phase-2, Obia Akpor Local government area of Port Harcourt, Nigeria. The phytochemical components of both the fresh and dried leaves and seeds were determined using the standard method and the results obtained from this study showed that in both the fresh and dried leaves of pigeon peas alkaloids, flavonoids, terpenoids, steroids, phytosteroids, saponins, tannins, phenol, anthraquinones, quinones, xanthoproteins, and phlobatannin were detected while the acidic compound was absent. While in the fresh and dried seeds of pigeon pea, results obtained revealed that alkaloids, flavonoids, terpenoids, steroids, phytosteroids, saponins, anthraquinones, and quinones were present while tannins, phenol, xanthoproteins, phlobatannin, and acidic compound were absent. Phytochemical compounds of the ethanolic extract of the fresh and dried leaves and seeds of pigeon peas were determined using Gas Chromatography - Mass Spectroscopy and a total of 30, 13, 32, and 38 bioactive constituents were detected in the fresh leaves, dried leaves, fresh seeds, and dried seeds respectively using their retention times (RT) and mass-to-charge ratios (m/z).

1. Introduction

The pigeon pea plant belongs to the kingdom Plantae, phylum Magnoliopsida, Class Magnoliopsida, Subclass Rosidae, Order Fabales, Family Fabaceae, Sub Family Faboideae, Genus *Cajanus* and has its species as *cajan* [1]. The name pigeon pea (Cajanus cajan) was coined in Barbados where the pigeon pea seeds were used as feeds for pigeons. It is a legume crop rich in protein that is mainly cultivated in the semi-arid and sub-tropical regions of the world. It is the sixth most cultivated crop in global pulse production after beans, chickpeas, broad beans, and lentils and it is the third most cultivated crop in Asia [2]. The pigeon pea is a woody perennial shrub, which can adapt to different types of soil, rainfall, and adverse temperature. It is a deep-rooted plant that can grow up to 2 m in the soil; it can reach up to a height of 4 m and can fix nitrogen to the soil through a symbiotic association with Bradyrhizobium species thereby improving the soil's

fertility. Its leaves are spirally arranged, pinnately trifoliate and lanceolate to oblong in shape. The stem branching pattern may vary from bush type. Pigeon pea flowers are usually yellow in colour with some variation; the flowers are zygomorphic, borne on a terminal or auxiliary racemes. The fruit of pigeon pea seeds varies in colours, it may be in shades of white, brown, or red and may be round or lens shape. Pigeon pea seed has been shown to provide essential amino acids such as lysine, tyrosine and arginine whereas cysteine and methionine are relatively low and the main stored protein is globulin protein [3]. Pigeon pea is enriched with 20-22% proteins and amino acids [4]. Pigeon pea dried seeds can be stored for a long period of time over 6 months, which makes it an important replacement for other food and serves as an alternative food during the shortage of cowpea and maize during the lean season which is May to June [5].

* Corresponding author

E-mail address: pairoboman@gmail.com https://doi.org/10.37121/jase.v8i1.205

2636-607X /2736-0652 © 2023 the authors. Published by Sciengtex. This is an open access article under CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Pigeon pea in Nigeria is one of the minor crops cultivated by subsistence and income-generating farmers and majorly for household consumption unlike other plant products such as maize, cassava, cowpea, yam, sorghum, rice, and oil palm which are mainly cultivated for commercial purposes. The dried seeds of pigeon peas are boiled with groundnut oil or palm oil and consumed with garri or with maize flour (pap) oil [6]. Research [2] stated the importance of using the by-products of pigeon plant seeds as a source of producing edible food rich in protein. The pigeon pea seeds have been used with cassava flour to produce protein-rich products in bakeries and pigeon pea flour can be added to cereals to produce products like biscuits, cookies, and bread in order to increase their nutritional value [7]. In India pigeon pea is one of the largest imported and produced crops; the fresh seeds are used as green peas in a salad or eaten as vegetables. Pigeon pea leaves can be used as a cover crop to compete with weeds, it can also serve as green manure to replenish soil nutrients and be used as forage rich in protein for livestock. The woody stems of pigeon peas are used to make thatched roofs, baskets, and charcoal, and the decoctions from the leaves and stem are used to treat sore throat, cough, intestinal worms, skin irritations, and sores [9].

Pigeon peas stems and leaves have been reportedly used for the treatment of malaria, dizziness, measles, and eye infection, and this is based on different ethnical groups and localities. The juice from pigeon peas has been used for the treatment of various skin diseases and even mouth diseases in the past. This reveals the potential use of this plant in skincare research and development and has made it attractive in cosmetic applications [9]. Pigeon pea plant can be used medically or industrially beside been used as food [10]. It has also been reportedly used as an antioxidant, antistatic, antibacterial, anticancer, and antitumor [11]. The pigeon pea plant has been reportedly used as a medicine that heals wounds and sore, serves as an astringent, a medicine that cures diseases of the lungs and chest and it works as an antihelminthic that expels internal worms [12]. Consequently, research [6] has described the various ways in which the pigeon pea plant can be used for the treatment of various ailments as follows:

- *Malaria* –Pulverized leaves of a pigeon pea plant are mixed with either lemon juice or citronella leaves or both have been used. In some cases, a decoction of pigeon pea leaves and acacia leaves has been used for the treatment of malaria.
- *Ulcer* Decoction of the leaves has also been used in the treatment of ulcers.

- *Measles* (children) Pulverized leaves are mixed with water and consumed or used in bathing the infected child.
- *Fever* Pulverized fresh leaves are mixed with water, filtered, and added to the vine or fermented water, this is consumed or used as bath water.
- *Snakebite* Pulverized fresh leaves are applied to the affected site.
- *Eye infections* Pulverized fresh leaves are mixed with water, filtered and the filtrate is dropped in the affected eye.
- *Dizziness* Pulverized fresh leaves are mixed with water, filtered, and consumed.

Fewer research works have been actively carried out on the identification of secondary metabolites of the leaves and the seeds of pigeon peas and are underutilized in Nigeria probably due to the lack of knowledge of their nutritional value, hence the need to conduct this study.

2. Materials and Methods

Pigeon pea leaves and seeds were both purchased from farmers from Rumugbo phase-2, Obia Akpor LGA, Port Harcourt and Uromi LGA Edo state. All samples were screened, washed and transported to the Laboratory, Biochemistry, Kaduna State University for analysis. The authenticity of the seeds and leaves was carried out in the Biology Department, at Kaduna State University.

2.1. Preparation of Leaves and Seeds

Fresh leaves were separated from the plant and rinsed thoroughly in clean running tap water. All the washed leaves were dried in the laboratory oven at 60 °C overnight, while the dried leaves were additionally air dried. Using an Electric Blender, both leaves were then ground into a fine powder. The powder was sieved, each separately, through a 250 μ m mesh sieve to ensure homogeneity after which each was stored in different labelled air-tight containers before analysis.

The fresh seeds were carefully screened to remove all dirty and bad ones. Samples were dried in the laboratory oven at 60 °C overnight, the dried seeds were also screened to remove dirties and bad ones and were then ground respectively into a fine powder using an Electric Blender. The powder was sieved through a 250 μ m mesh sieve to ensure homogeneity after which each was stored in air-tight containers before analysis.

2.2. Preparation of Aqueous Extract

Fresh and dried ground plant leaves and seeds were extracted using distilled water. The aqueous extract was prepared for three days by soaking 20 g of the sample respectively in 450 ml of distilled water. The solution was filtered using Whatman No. 1 filter paper; the filtrates were concentrated by evaporation at a low temperature (45°C) using a water bath. The concentrated extracts were stored in airtight bottles in the refrigerator until when needed [13].

2.3. Preparation of Ethanolic Extract

Ethanolic extract of leaves and seeds both fresh and dried samples were prepared by macerating 80 g of the sample respectively with absolute ethanol (450 ml) for 24 h. Thereafter each solution was filtered separately using Whatman No. 1 filter paper. Using a water bath, the filtrates were concentrated by evaporation at a low temperature (45 °C). The concentrated extracts were stored in air-tight bottles in the refrigerator until when needed [13].

2.4. Experimental Design

2.4.1 Preliminary Phytochemical Analysis

Phytochemical analysis was carried out using the method described by [14]. The pulverized samples were analysed in order to determine secondary metabolites. Three millilitres (3 ml) of each sample was measured into each test tube and preliminary screenings of samples were carried out for the following phytochemical components according to standard methods [14]. Alkaloids, Phytosteroids, Steroids, Phenol, Tannin, Terpenoid, Xanthroprotein, Saponins, Flavonoids, Anthraquinone, Quinone, Phlobatanin, Acidic compound.

Alkaloids (Meyer's Test) - Three millilitres (3 ml) of Meyer's reagent was added to 3 ml of the extract (aqueous and ethanolic). A pale precipitate indicates the presence of Alkaloids.

Steroids/Phytosteroids (Lieberman Burchard Reaction) - To 3 ml of extract (aqueous and ethanolic), 1 ml of chloroform and a few drops of Concentrated Sulphuric acid were added inside the test tube; a reddish-brown coloured precipitate was observed at the bottom of the test tube which indicates the presence of Steroid/Pytosteroids

Phenol and Tannin (Ferric Chloride Test) - Few drops of 10 % Ferric Chloride were added to 3 ml of extracts (aqueous and ethanolic), and a blue or green colour precipitate indicates the presence of Phenol and Tannin

Terpenoids (Salkowski Test) - To 3 ml of extract (aqueous and ethanolic), 1 ml of chloroform, and a few drops of Conc. Sulphuric acid was carefully added inside the tube, and a reddish-brown coloured precipitate indicates the presence of Terpenoid

Flavonoids - To 3 ml of the extract (aqueous and ethanolic), 1 ml of 10 % ammonia, and 1 ml of concentrated. sulphuric acid was added. The disappearance of the yellow colour indicates the presence of Flavonoids [14].

Anthraquinones (Borntrager's Test) - 1 ml of Benzene and 1 ml of 10 % ammonia were added to 3 ml of extract (aqueous and ethanolic). The formation of pink, red or violet colour in the lower phase of ammonia indicates the presence of Anthraquinones.

Quinones - To 3 ml of the extract (aqueous and ethanolic), 1 ml of concentrated sulphuric acid was added. A red-to-blue colouration indicates the presence of Quinones.

Saponins (Froth Test) - Three millilitres (3 ml) of extract (aqueous and ethanolic), was added to 2 ml of distilled water in a test tube. The solution was vigorously shaken and observed for stable froth persistence.

Acidic compounds - One pinch of sodium bicarbonate was added to 3 ml of extract (aqueous and ethanolic). Effervescence indicates the presence of acidic compounds

Phlobatanin - Three millilitres (3 ml) of the extract (aqueous and ethanolic), was boiled with diluted HCl, deposition of a reddish precipitate indicates the presence of phlobatannins

Xanthroprotein - To 3 ml of the extract (aqueous and ethanolic) add a few drops of nitric acid and ammonia were added. A reddish-brown precipitate indicates the presence of xanthoproteins

2.4.2 Determination of Phytochemical Compounds using Gas Chromatography-Mass Spectroscopy (GC-MS)

The phytochemical compounds of the ethanolic extract of the fresh and dried leaves and seeds of pigeon peas were determined using GC-MS analysis. This was performed using a GC-MS of Hewlettt-Packard 6890/5973 operating at 1000 eV ionization energy, equipped with Agilent 7890A/5975 C GC HP-5. Capillary column (phenyl methyl siloxane, 25 $m \times 0.25$ mm i.d.) with Helium (He) was used as the carrier gas with a split ratio of 1:5. Oven temperature was 80 °C (2 min) to 280 °C at 1-40 °C/min, detector temperature 250-280 °C, and carrier gas He (0.9 ml/min). 2.0 µl of respective diluted samples were manually injected in the splitless mode, with a split ratio and with a mass scan of 50-600 amu. The total running time of GC-MS is 40 min; the relative percentage of each extract constituent was expressed as a percentage with peak area normalization [15]. Interpretation on the mass spectrum of GC-MS was carried out using the database of the National Institute of Standards and Technology (NIST) and Wiley library for mass spectra, having more than 62,000 patterns. The mass spectrum of the unknown component was compared with the spectrum of the known components stored in the NIST library. The name, molecular weight (MW), and structure of the components of the test materials were ascertained [15]. In Fig. 1, the map showing the study area is presented.

Phytochemicals	Fresh leaves	Dried Leaves	Fresh seeds	Dried Seeds
Alkaloids	+	+	+	+
Flavonoids	+	+	+	+
Terpenoids	+	+	+	+
Steroids	+	+	+	+
Phytosteroids	+	+	+	+
Saponins	+	+	+	+
Tannins	+	+	-	-
Phenol	+	+	-	-
Anthraquinones	+	+	+	+
Quinones	+	+	+	+
Xanthoproteins	+	+	-	-
Phlobatannin	+	+	-	-
Acidic compound	-	-	-	-

Table 1. Phytochemical compounds detected from the aqueous extract of the leaves and seeds of the pigeon pea	
(Cajanus Cajan) plant.	

Key: "+" = Present; "-" = Absent

Fig. 1 Map of Kaduna North Local Government Area.

3. Results

The results of the phytochemical compounds detected from the aqueous and ethanolic extracts of the leaves and seeds of the pigeon pea (*Cajanus Cajan*)

plant are presented in Tables 1 - 2 whereas the phytochemical constituents identified from ethanolic extracts of the fresh and dried leaves and seeds of pigeon pea plant using GC-MS are shown in Tables 3 - 6.

Phytochemicals	Fresh leaves	Dried Leaves	Fresh seeds	Dried Seeds
Alkaloids	+	+	+	+
Flavonoids	+	+	+	+
Terpenoids	+	+	+	+
Steroids	+	+	+	+
Phytosteroids	+	+	+	+
Saponins	+	+	+	+
Tannins	+	+	-	-
Phenol	+	+	-	-
Anthraquinones	+	+	+	+
Quinones	+	+	+	+
Xanthoproteins	+	+	-	-
Phlobatannin	+	+	-	-
Acidic compound	-	-	-	-

Table 2. Phytochemical compounds detected from the ethanolic extract of the leaves and seeds of the pigeon pea	ı
(Cajanus Cajan) plant	

Key: "+" = Present; "-" = Absent

	Table 3. Phytochemical	l constituents identified	from ethanolic extr	acts of the fresh leave	es of pigeon pea plant GC-
--	------------------------	---------------------------	---------------------	-------------------------	----------------------------

S/no Retention time (min)		Peak area (%)	Compound	Molecular weight	Molecular formula
1	8.386	0.42	Phenol	94.11g/mol,	C ₆ H ₆ O
2	18.5136	1.5959	Benzenepropanol	150.22 g/mol	C10H14O
3	28.7249	0.4769	Heptacosane	380.74 g/mol	C 27H56
4	30.1891	0.7068	Octadecane	254.494 g/mol	C18H38
5	31.2619	0.4459	Tridecane	184.37 g/mol	C13H28
6	31.3405	26.5121	Hexadecanoic acid (Methyl palmitate)	270.45 g/mol	C17H34O2
7	31.9318	0.992	Hexadecanoic acid (Ethyl palmitate)	284.5 g/mol	C18H36O2
8	32.1108	0.6246	Methoxyacetic acid, 2-tetradecyl ester	286.4 g/mol	C17H34O3
9	32.6447	3.6219	9,12-Octadecadienoic acid (Z,Z)-, methyl ester	294.4721	C19H34O2
10	32.7069	32.8484	13-Octadecenoic acid, methyl ester	296.5 g/mol	C19H36O2
11	32.8036	1.0078	Methylguanidine	73.1 g/mol	C ₂ H ₇ N ₃
12	32.8379	1.5057	Phytol	128.1705 g/mol	$C_{20}H_{40}O$
13	32.9023	10.169	Methyl stearate	298.50	CH ₃ (CH ₂) ₁₆ CO ₂ CH
14	33.5347	0.5179	Eicosane	282.5475 g/mol	C20H4200
15	33.9137	1.0552	Octasiloxane, 1,1,3,3,5,5,7,7,9,9,11,11,13,13, 15, 15-hexadecamethyl-	577.2g/mol,	C ₁₆ H ₄₈ O ₇ Si ₈ ,
16	33.9694	1.2998	Methyl(3oxodecahydroquinoxalin-2-yl) acetate	226.27 g/mol	$C_{11}H_{18}N_2O_3$
17	34.2625	0.6973	Octadecane,3-ethyl-5-(2-ethylbutyl)-	366.7 g/mol	C26H54
20	34.3458	0.9725	Eicosanoic acid, methyl ester	326.5570	C21H42O2
21	34.413	0.82	2-Mercaptoethanol	78.13 g/mol	C ₂ H ₆ OS
22	34.7366	1.3193	5-Methyl-2-phenyl-1H-indole	207.27 g/mol	C15H13N
24	35.054	0.6531	Di-n-decylsulfone	346.61100g/mol	$C_{20}H_{42}O_2S$
25	35.1728	0.4201	Decamethyltetrasiloxane	310.68 g/mol	$C_{10}H_{30}O_{3}Si_{4}$
27	35.9595	0.9615	6,6-Diethylhoctadecane	310.6 g/mol	C22H46
28	36.1143	3.5655	Bis(2-ethylhexyl) phthalate	390.564 g/mol	$C_{24}H_{38}O_4$
29	36.8479	3.1597	Quinoline-2-carboxylic acid	173.17 g/mol	C10H7NO2
30	37.0303	0.707	Methyl1-nitro-9,10-dioxoanthracene-2- carboxylate	311.24 g/mol	C ₁₆ H ₉ NO ₆

S/ no	Retention time (min)	Peak area (%)	Compound	Molecular weight	Molecular formula
1	8.3785	2.4841	Phenol, Phosphonic acid	192.11g/mol	C ₆ H ₉ O ₅ P
2	18.5167	9.4844	Phenol, 4-cyclohexyl-phenol	176.25g/mol	$C_{12}H_{16}O$
3	31.337	8.8989	Hexadecanoic acid (Palmitic Acid)	256.4 g/mol	$C_{16}H_{32}O_2$
4	32.6453	3.6046	9,12-Octadecadienoic acid,	280.4 g/mol	$C_{18}H_{32}O_2$
5	32.6707	1.3029	[1,2,4] Triazolo [1,5-a] pyrimidine-6-carboxylic acid, 4,7-dihydro-7-imino-, ethyl ester	207.19 g/mol	C8H9N5O2
6	32.7058	9.9878	9-Octadecenoic acid, methyl ester, (E)-	282.47 g/mol	$C_{18}H_{34}O_2$
7	32.8385	2.7986	1,2-Bis(trimethylsilyl)benzene	222.47 g/mol	$C_{12}H_{22}Si_2$
8	32.9015	4.3599	Heptadecanoic acid (Margarinic acid)	270.5 g/mol	$C_{17}H_{34}O_2$
9	33.1279	2.4966	Hexanoic acid (Caproic acid)	116.1583 g/mol	$C_6H_{12}O_2$
10	33.1845	4.7137	(t-Butyl-dimethylsilyl)[2-methyl-2-(4-methyl- pent-3-enyl)-cyclopropyl]-methanol	282.5 g/mol	C ₁₇ H ₃₄ OSi
11	34.8359	3.2141	Octasiloxane, 1,1,3,3,5,5,7,7,9,9, 11,11,13,13,15,15-hexadecamethyl-	577.2g/mol	C16H48O7Si8
12	36.1176	14.9381	Bis (2-ethylhexyl) phthalate	390.564g/mol	$C_{24}H_{38}O_4$
13	36.8443	9.1187	Indole-2-one, 2,3-dihydro-N-hydroxy-4- methoxy-3,3-dimethyl-	207.23g/mol	C ₁₁ H ₁₃ NO ₃

Table 4. Phytochemical constituents identified from ethanolic extracts of the dried leaves of pigeon pea plant using GC-MS.

Table 5. Phytochemical	constituents identified f	rom ethanolic extracts	of the fresh seeds	of the pigeon pea plant

S/no	/no Retention Peak area time (min) (%)		1		Molecular formula	
1	18.507	0.1634	Benzene, 1-isocyanato-4-methyl-	78.11g/mol	C ₆ H ₆	
2	31.1082	0.4723	(Z)-9-Hexadecenoic acid, methyl ester	254.41 g/mol	$C_{16}H_{30}O_2$	
4	31.4318	0.113	Myristic acid	228.37 g/mol	$C_{14}H_{28}O_2$	
5	31.6665	0.3619	Undecanoic acid	186.29 g/mol	$C_{11}H_{22}O_2$	
8	31.9309	0.9238	Ethyl palmitate	284.5 g/mol	$C_{18}H_{36}O_2$	
9	32.1795	0.1988	Hexadecanehydrazide (Palmitic Acid Hydrazide)	270.45 g/mol	C16H34N2O	
11	32.5014	0.1851	Oleic Acid	282.5 g/mol	$C_{18}H_{34}O_2$	
13	32.6538	27.7527	9,12-Octadecadienoic acid	280.4 g/mol	$C_{18}H_{32}O_2$	
14	32.7176	43.291	13-Octadecenoic acid, methyl ester	296.5 g/mol	C19H36O2	
15	32.9052	6.6418	Methyl stearate	298.5 g/mol	$C_{19}H_{38}O_2$	
16	32.9758	2.682	Vaccenic acid	282.5 g/mol	$C_{18}H34O_2$	
17	33.1252	0.8089	Ethyl linoleate	308.5 g/mol	C20H36O2	
18	33.1813	0.6029	Ethyl Oleate	310.5 g/mol	$C_{20}H_{38}O_2$	
19	33.3762	0.1613	Pentanoic acid (ethyl esteEthyl valerater)	130.18 g/mol	$C_7H_{14}O_2$	
20	33.6085	0.1384	Squalene	410.73 g/mol	C30H50	
21	33.9157	0.1027	Diethyl 3-chloro-2-hydroxypropylmalonate	252.69198 g/mol	$C_{10}H_{17}ClO_5$	
22	33.9601	0.1889	N-Benzylidene-m-nitroaniline	226.23 g/mol	$C_{13}H_{10}N_2O_2$	
23	34.1457	0.258	1-Cyclohexylnonene	208.38 g/mol	$C_{15}H_{28}$	
24	34.3475	0.8058	Eicosanoic acid, methyl ester	326.5570	$C_{21}H_{42}O_2$	
25	34.4147	0.1122	Octasiloxane, 1,1,3,3,5,5,7,7,9,9, 11,11,13,13,15,15-hexadecamethyl-	577.2g/mol,	C ₁₆ H ₄₈ O ₇ Si ₈	
27	34.7382	0.1336	5-hydroxy-7-methoxyflavanone	270.28 g/mol	$C_{16}H_{14}O_{4}$	
28	35.6614	0.1648	Trisiloxane	124.32 g/mol	$H_8O_2Si_3$	
29	35.7107	0.1525	Fumaric acid, heptyl tridecyl ester	396.6 g/mol	C24H44O4	
30	36.1	0.8425	Bis(2-ethylhexyl) phthalate	390.564 g/mol	C24H38O4	
31	36.8425	0.1988	trans-3-Methoxy-4-propoxy-beta-methyl- beta-nitrostyrene	251.28 g/mol	C13H17NO4	
32	37.2332	0.1861	2,5-Dihydroxybenzoic acid	154.12 g/mol	C7H6O4	

S/ no Retention Peak area (%) Compound Molecular weight Molecular formula 1 18.512 0.7048 Benzyl isocyanate 133.15 g/mol Call:NO 2 20.7541 1.0644 Methyl Ephenylalaninate 179.22 g/mol Cial:IsNO: 3 24.6622 0.3539 alpha.L-Galactopyranoside, methyl 6-deoxy 394.72 g/mol Call:NO: 4 24.7138 0.1339 beta-D-Ribopyranosic 150.13 g/mol Call:ASOSii 5 30.1894 0.4677 Hexacosane 366.71 g/mol Call:ASOSii 6 31.2595 0.7882 7-Hexylicosane 366.71 g/mol Call:ASNO 7 31.3392 8.866 Methyl palmitate 270.45 g/mol Call:ASNO 9 31.7297 0.8644 Oleic Acid 282.5 g/mol Call:ASNO 11 31.8193 1.2412 Estra-13.5(10)-trien-17.beta-ol 334.4 g/mol Call:AsO 13 32.0458 1.7634 Undec-10-ynoic acid, methyl estr 350.6 g/mol Call:AsO <	using GC-MS.						
1 18.512 0.7048 Berzyl isocyanate 13.15 g/mol CuH+NO 2 20.7541 1.0644 Methyl l-phenylalaninate 179.22 g/mol CuH1NO; 3 24.6622 0.3539 alphaL-Galactopyranosice, methyl 6-deoxy. 394.72 g/mol CuH1xO; 4 24.7138 0.1339 beta-D-Ribopyranose 150.13 g/mol CaH4xO; 5 30.1894 0.4677 Hexacosane 366.71 g/mol CaHsi 6 31.2595 0.7882 7-Hexylicosane 366.71 g/mol CaHsi 7 31.3392 8.8636 Methyl palmitate 270.45 g/mol CuHiaO; 8 31.6811 1.4142 1-(4-Bromobutyl)-2-piperidinone 234.13 g/mol CuHiaO; 10 31.7297 0.8644 Oleic Acid 282.5 g/mol CuHiaO; 11 31.8393 1.2412 Extra-1.3.5(10)-trine-17.beta-ol 334.44 g/mol CuHaO; 13 22.0458 1.7634 Undec-10-yonic acid, dodecyl ester 350.6 g/mol CuHaO; 13 2	S/ no	Retention		Compound	Molecular weight	Molecular formula	
2 20.7541 1.0644 Methyl I-phenylalaninate 17.922 g/mol CubHisO2 3 24.6622 0.3539 alphaL.Galactopyranoside, methyl 6-dexxy- 394.72 g/mol CubHisOSis 4 24.7138 0.1339 beta-D-Ribopyranose 150.13 g/mol CxHuOS 5 30.1894 0.4677 Hexacosane 366.7 g/mol CxAHs 6 31.2392 8.8636 Methyl planitate 270.45 g/mol CrHisO2 8 31.6811 1.1412 1-(4-Bronobutyl)-2-piperidinone 234.13 g/mol CrHisO2 10 31.7822 0.5664 m-Hexadecanoic (acid/Palmitic acid) 256.4 g/mol CrHisO2 11 31.8393 1.2412 Estrat-1.3(cl (odeey) ester 350.6 g/mol CrHisO2 12 31.9313 4.0862 Ethyl palmitate 284.5 g/mol CrHisO2 13 32.0458 1.7634 Undee-10-ynoic acid, dodeeyl ester 296.5 g/mol CrHisO2 13 32.0458 1.664 Propyl tetradecyl ether 296.5 g/mol CrHisO2		time (min)	(%)				
3 24 6622 0.5539 alpha-L-Galactopyranoside, methyl 6-deoxy- 190,132 190,172 Cmmol Signal Cmmol Colling Co						C ₈ H ₇ NO	
4 24,7138 0.1339 beta-D-Ribopyranose 150.13 g/mol CcHnoS 5 30.1894 0.4677 Hexacosane 366.71 g/mol CcaHs4 6 31.2395 0.7882 7-Hexylicosane 366.71 g/mol CcaHs4 7 31.3392 8.8636 Methyl palmitate 270.45 g/mol CrHsBNO 9 31.7297 0.8644 Oleic Acid 282.5 g/mol CuHsBNO 10 31.7822 0.5064 n-Hexadecanoic acid(Palmitic acid) 286.4 g/mol CuHsBNO 11 31.8393 1.2412 Estar-1.53(0) trien-17.beta0 334.4 g/mol CuHsBo2 12 31.9313 4.0862 Ethyl palmitate 284.5 g/mol CuHsBo2 14 32.112 2.06 Tetratetracontane 619.2 g/mol CuHsBo2 14 32.112 2.06 Tetratetraceyl ester 296.5 g/mol CuHsBo2 17 32.762 6.2561 11-Octadecenio: acid, nethyl-ster 294.5 g/mol CuHs00 18 32.866 4.3603 Oxalic acid, cyclobutyl tetradecyl ester 396.5 g/mol CuHs00		20.7541	1.0644			C10H13NO2	
5 30.1894 0.4677 Hexacoane 366.71 g/mol CaHa 6 31.2595 0.7882 7-Hexylicesane 366.7 g/mol CaHa 7 31.3392 8.8636 Methyl palmiate 270.45 g/mol CaHa 8 31.6811 1.4142 1-(4-Bromobutyl)-2-piperidione 234.13 g/mol CoHaBNO 9 31.7297 0.8644 Oleic Acid 282.5 g/mol CuHaO2; 10 31.7822 0.5064 n-Hexadecanoic acid(Palmitic acid) 256.4 g/mol CaHasO2; 11 31.8393 1.2412 Estra-1,3,5(10)-trien-17.beta-ol 334.4 g/mol C2HaSO2; 13 32.0458 1.7634 Undec-10-ynoic acid, dodecyl ester 350.6 g/mol CaHaoO; 14 32.1112 2.06 Tetrateracontane 619.2 g/mol CuHaO; 15 32.1772 1.564 Propyl tetradccyl etter 296.5 g/mol CuHaO; 16 32.6445 12.6864 9.15-Octadecanic acid methyl ester 294.5 g/mol CuHaO; 17 32.7052 6.2561 11-Octadecenoic acid, methyl ester 294.5 g/mol CuHaO; <td></td> <td>24.6622</td> <td>0.3539</td> <td></td> <td>394.72 g/mol</td> <td>C16H38O5Si3</td>		24.6622	0.3539		394.72 g/mol	C16H38O5Si3	
	4	24.7138	0.1339	beta-D-Ribopyranose		$C_5H_{10}O_5$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	30.1894	0.4677	Hexacosane	366.71 g/mol	C26H54	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6	31.2595	0.7882	7-Hexylicosane	366.7 g/mol	C26H54	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		31.3392	8.8636	Methyl palmitate	270.45 g/mol	C17H34O2	
	8	31.6811	1.4142	1-(4-Bromobutyl)-2-piperidinone		C9H16BrNO	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	9	31.7297	0.8644		282.5 g/mol	$C_{18}H_{34}O_2$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	31.7822	0.5064	n-Hexadecanoic acid(Palmitic acid)	256.4 g/mol	C16H32O2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11	31.8393	1.2412	Estra-1,3,5(10)-trien-17.betaol	334.4 g/mol	C23H26O2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	31.9313	4.0862	Ethyl palmitate	284.5 g/mol	C18H36O2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	32.0458	1.7634	Undec-10-ynoic acid, dodecyl ester		C23H42O2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	32.1112	2.06	Tetratetracontane	619.2 g/mol	C44H90	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	32.1772	1.564	Propyl tetradecyl ether		C17H36O	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	32.6445	12.6864		294.5 g/mol	C19H34O2	
19 32.9065 5.8619 Heptadecanoic acid, 16-methyl-, methyl ester (Methyl isostearate) 298.5 g/mol C19H38O2 20 32.9481 5.3891 9-Octadecenal 266.5 g/mol C18H34O 21 33.125 5.0923 2-Chloroethyl linoleate 342.9 g/mol C0H1sO6 23 33.5766 1.5745 2,3,4-Tri-O-methyl-d-glucose 222.24 g/mol C18H34O 24 33.8619 2.4675 (Z,E)-7,11-Hexadecadien-1-yl acetate 280.4 g/mol C18H32O2 25 33.9641 1.37 1,2-Benzenedicarboxylic acid, 276.33 g/mol C16H20O4 26 34.1718 1.5267 trans-1,2-Diethoxycyclohexane 112.21 g/mol C8H16 27 34.2614 2.337 Tricosane 324.6 g/mol C23H48 28 34.3549 0.9381 2,2-Dimethyl-3-hexanol 130.23 g/mol C8H16 29 34.7243 4.0705 5-hydroxy-7-methoxyflavanone 270.28 g/mol C16H14O4 30 35.055 1.6121 Eicosane 282.5475 g/mol C16H140 31 35.1672 0.7813 Cyclohexane, 1,1'-(2-propyl-1,3-	17	32.7052	6.2561	11-Octadecenoic acid methyl ester	296.5 g/mol	C19H36O2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18	32.8366	4.3603	Oxalic acid, cyclobutyl tetradecyl ester	340.5 g/mol	C20H36O4	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19	32.9065	5.8619	Heptadecanoic acid, 16-methyl-, methyl ester	298.5 g/mol	C19H38O2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				(Methyl isostearate)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	32.9481	5.3891	9-Octadecenal	266.5 g/mol	C18H34O	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	33.125	5.0923	2-Chloroethyl linoleate	342.9 g/mol	C20H35ClO2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	33.3766	1.5745	2,3,4-Tri-O-methyl-d-glucose	222.24 g/mol		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	33.5369	2.148	Docosane	310.6 g/mol	$C_{22}H_{46}$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	24	33.8619	2.4675	(Z,E)-7,11-Hexadecadien-1-yl acetate	280.4 g/mol	C18H32O2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	33.9641	1.37	1,2-Benzenedicarboxylic acid,	276.33 g/mol	$C_{16}H_{20}O_{4}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				mono(dimethylcyclohexyl) ester-			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	34.1718	1.5267	trans-1,2-Diethoxycyclohexane	112.21 g/mol	C8H16	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	34.2614	2.337	Tricosane	324.6 g/mol	C23H48	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	34.3549	0.9381	2,2-Dimethyl-3-hexanol		$C_8H_{18}O$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	34.7243	4.0705	5-hydroxy-7-methoxyflavanone	270.28 g/mol	$C_{16}H_{14}O_4$	
$\begin{array}{c ccccc} & & & & & & & & & & & & & & & & &$	30	35.055	1.6121				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31	35.1672	0.7813	Cyclohexane, 1,1'-(2-propyl-1,3-	222.41 g/mol	C16H30	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					c		
33 35.7156 2.2401 15-Hydroxypentadecanoic acid 258.4 g/mol C15H30O3 34 35.7954 0.9136 Octasiloxane, 1,1,3,3,5,5,7,7,9,9, 577.2 g/mol C16H48O7Si8 35 35.9626 1.3762 Methoxyacetic acid, 2-tetradecyl ester 286.4 g/mol C17H34O3 36 36.1181 1.8706 Diisooctyl phthalate 390.6 g/mol C24H38O4 37 36.845 1.8123 8-Hydroxy-4-oxo-2,3-dihydro-1H-quinoline-2- carboxylic acid 207.18 g/mol C10H9NO4	32	35.3548	1.678	Rotoxamine	290.79 g/mol	C ₁₆ H ₁₉ ClN ₂ O	
34 35.7954 0.9136 Octasiloxane, 1,1,3,3,5,5,7,7,9,9, 577.2 g/mol C ₁₆ H ₄₈ O ₇ Sis 35 35.9626 1.3762 Methoxyacetic acid, 2-tetradecyl ester 286.4 g/mol C ₁₇ H ₃₄ O ₃ 36 36.1181 1.8706 Diisooctyl phthalate 390.6 g/mol C ₂₄ H ₃₈ O ₄ 37 36.845 1.8123 8-Hydroxy-4-oxo-2,3-dihydro-1H-quinoline-2- carboxylic acid 207.18 g/mol C ₁₀ H ₉ NO ₄	33	35.7156	2.2401	15-Hydroxypentadecanoic acid		C15H30O3	
11,11,13,13,15,15-hexadecamethyl- 35 35.9626 1.3762 Methoxyacetic acid, 2-tetradecyl ester 286.4 g/mol C ₁₇ H ₃₄ O ₃ 36 36.1181 1.8706 Diisooctyl phthalate 390.6 g/mol C ₂₄ H ₃₈ O ₄ 37 36.845 1.8123 8-Hydroxy-4-oxo-2,3-dihydro-1H-quinoline-2- carboxylic acid 207.18 g/mol C ₁₀ H ₉ NO ₄	34	35.7954	0.9136				
35 35.9626 1.3762 Methoxyacetic acid, 2-tetradecyl ester 286.4 g/mol C ₁₇ H ₃₄ O ₃ 36 36.1181 1.8706 Diisooctyl phthalate 390.6 g/mol C ₂₄ H ₃₈ O ₄ 37 36.845 1.8123 8-Hydroxy-4-oxo-2,3-dihydro-1H-quinoline-2- carboxylic acid 207.18 g/mol C ₁₀ H ₉ NO ₄					5		
36 36.1181 1.8706 Diisooctyl phthalate 390.6 g/mol C24H38O4 37 36.845 1.8123 8-Hydroxy-4-oxo-2,3-dihydro-1H-quinoline-2- carboxylic acid 207.18 g/mol C10H9NO4	35	35.9626	1.3762		286.4 g/mol	C17H34O3	
37 36.845 1.8123 8-Hydroxy-4-oxo-2,3-dihydro-1H-quinoline-2- 207.18 g/mol C10H9NO4 carboxylic acid	36	36.1181	1.8706				
carboxylic acid	37						
					e		
	38	37.0371	0.9101	•	302.966g/mol	C19H39Cl	

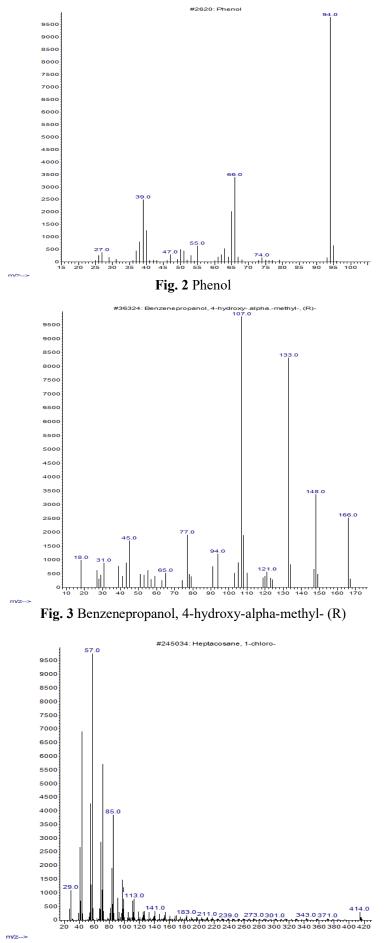
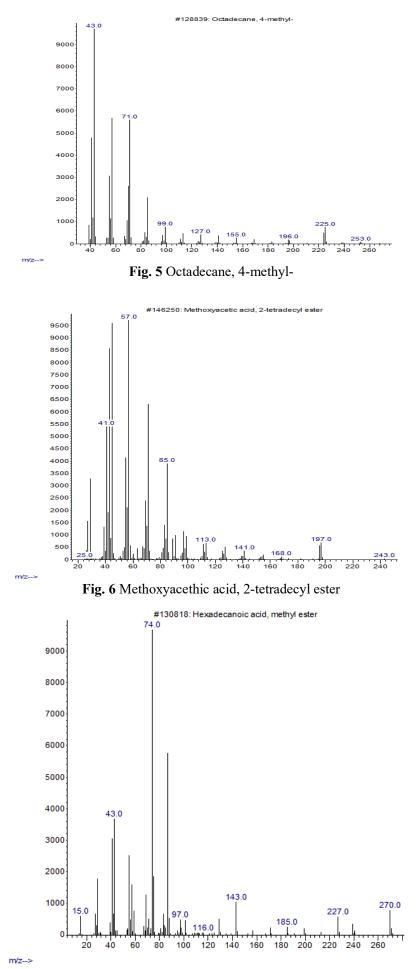
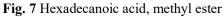
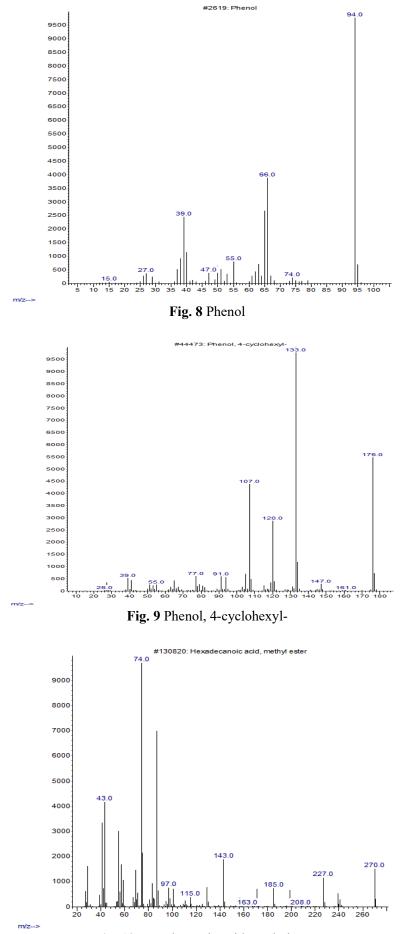
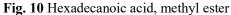
The chromatogram of some phytochemical constituents identified from ethanolic extracts of the fresh leaves (Figs. 2-7) and dried leaves (Figs. 8-13) of the pigeon pea plant using GC-MS are presented,

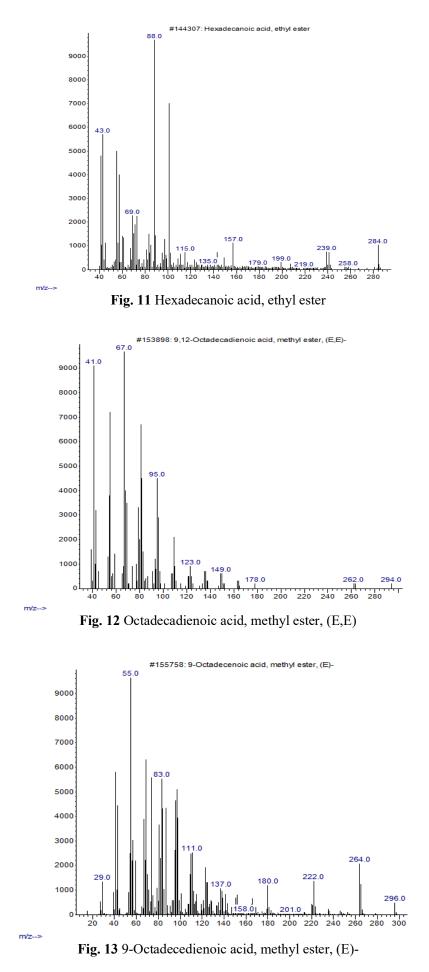
_

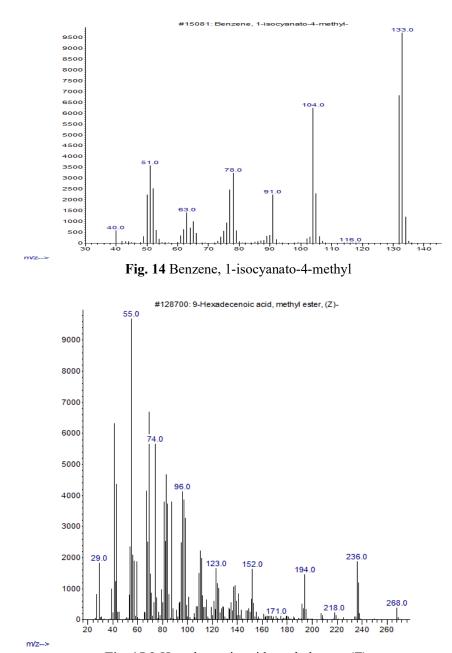
_

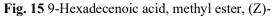
_

while the phytochemical constituents identified from ethanolic extracts of the fresh seeds (Figs. 14 - 19) and dried seeds (Figs. 20 - 25) of the pigeon pea plant using GC-MS are presented.


Fig. 4 Heptacosane, 1-chloro





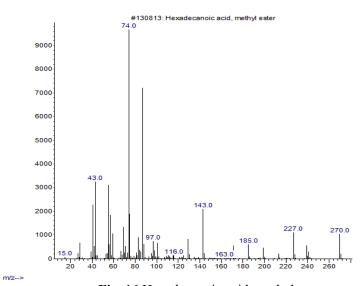


Fig. 16 Hexadecanoic acid, methyl ester

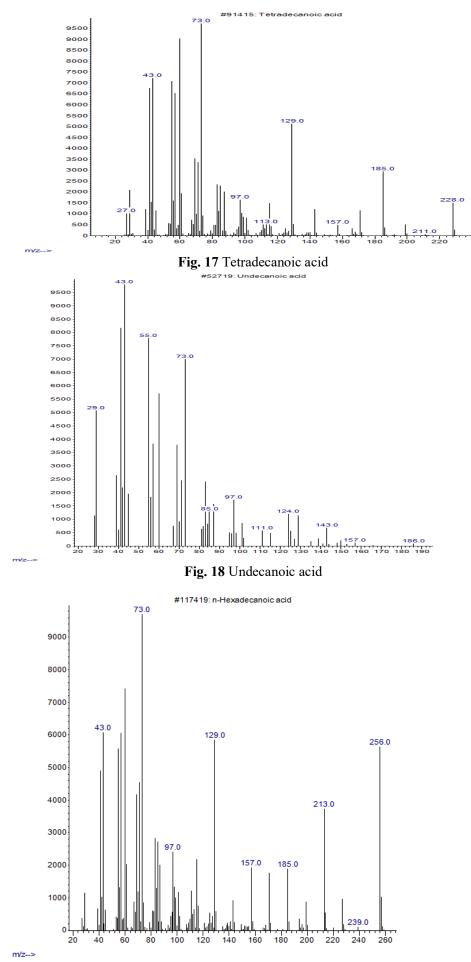
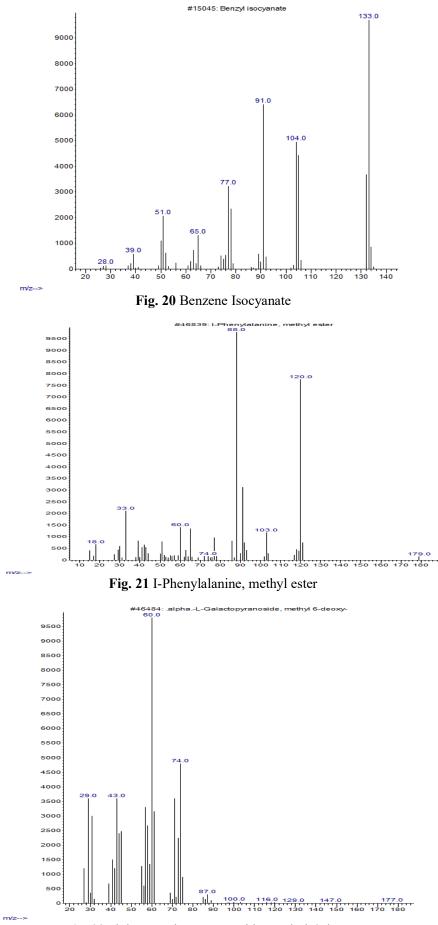
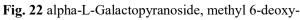




Fig. 19 n-Hexadecanoic acid

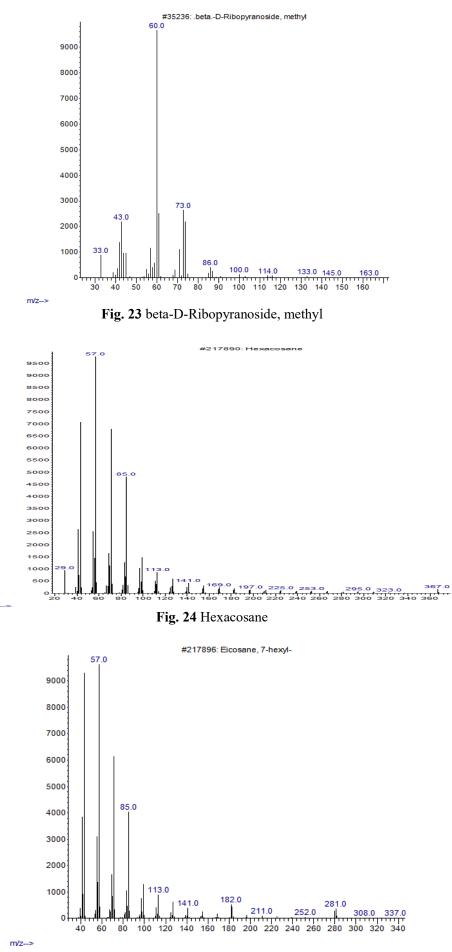


Fig. 25 Eicosane, 7-hexyl-

4. Discussion

In this study, the high number of phytochemicals obtained in the leaves compared to the seeds is similar to the findings of [16] affirmed that studied aqueous and ethanolic extract of the leaves of pigeon pea and revealed the following phytochemicals constituents; Alkaloids, Flavonoids, Terpenoids, Steroids, Saponins, Tannins, Phenol, were present in the leaves of pigeon pea while in the aqueous and ethanolic extract of the seeds Alkaloids, Flavonoids, Steroids, Saponins, Tannins, Phenol, and anthraquinones were present. The presence of secondary metabolites shows that this plant can be used medically or industrially aside been used as food.

Research [10] reported that the presence of tannins in the extract indicates that it can be used as an astringent. The astringent activities of tannins are by precipitating proteins which will lead to safeguarding the underlying tissues thereby improving the healing of wounds.

The presence of phenols and flavonoids in the leaf extract indicated that they could be used as antioxidant, anticancer, anti-allergic, anti-inflammatory and gastroprotective properties [17]. Phenolic compounds are the best active antioxidant in plants such as foods, grains, vegetables and fruits [18]. Flavonoids are also known to be inducers for nitrogen-fixing bacteria, phytoalexin and phytoprotectors [19].

The presence of terpenoids indicated its potential in drug products used in the treatment of different illnesses, anti-malarial, artemisinin and its derivatives are terpenoids [20]. Saponins showed its potential in the production of detergent; in medicine, it is used in hypercholesterolaemia, used to reduce body weight, hyperglycaemia, and antioxidant. It has been found to kill cancer cells without causing harm to the normal cell (anti-cancer), and anti-inflammatory [20].

The differences in phytochemicals among the plants could be as result of geographical conditions, the extraction method or the type of solvent used during the plant extraction. The ethanolic extract of the fresh and dried leaves and seeds of pigeon peas was used for the GC-MS in this study. The investigation revealed different useful compounds having medicinal and nutritional are value, some of which Octasiloxane, 1, 1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 13, 13, 15, 15hexadecamethyl-, Diisooctyl phthalate, Ethyl palmitate 11-Octadecenoic acid methyl ester which are used as antimicrobial and antioxidant [21]. Eicosane is used as cosmetic, lubricants, plasticizer Squalene is used as an antioxidant, antistatic, antibacterial, anticancer, and antitumor according to [11]. 13-Octadecenoic acid, methyl ester, 9, 12-Octadecadienoic acid, methyl ester, (E,E) are used as anti-inflammatory, antiandrogenic, dermatitigenic, cancer, preventive, irritant, 5-alphareductase hypocholesterolemic, inhibitor, anemiagenic, insectifuge, flavour Oleic Acid is used as anti-inflammatory, anti-androgenic, anti-cancer, preservative and hypocholesterolemic [21]. Vaccenic acid is a trans-fatty acid which may regulate gluconeogenesis and Liver fat accumulation. Ethyl serves as an antioxidant. hemolvtic. hypocholesterolemic, flavour nematicide, and Methyl antiandrogenic. stearate serves as an antioxidant; Phytol is used as an antinociceptive, antioxidant, anticancer, anti-inflammatory, antimicrobial, diuretic, and chemopreventive properties. Phenol, Phosphonic acid is used as an antioxidant, anticancer, anti-inflammation, antidiabetic, and skin care product [22].

5. Conclusion

In conclusion, the phytochemical compounds obtained from the aqueous and ethanolic extract of the fresh and dried leaves of the pigeon pea plant are Flavonoids, Alkaloids, Terpenoids, Steroids, Phytosteroids, Saponins, Tannins, Phenol, Anthraquinones, Quinones, Xanthoproteins and Phlobatannin while the Acidic compound was absent. However, in the aqueous and ethanolic extract of the fresh and dried seeds of the pigeon pea plant, it was observed that Alkaloids, Flavonoids, Terpenoids, Steroids, Phytosteroids, Saponins, Anthraquinones, Quinones were present while Tannins, Phenol, Xanthoproteins and Phlobatannin, Acidic compound were absent.

The phytochemical constituents identified from ethanolic extracts showed that the dried seeds of the pigeon pea plant had more bioactive compounds and it was followed by the fresh seeds and fresh leaves while the dried leaves showed the lowest number of bioactive compounds, some of which are useful in medicinal lubricants, activities, cosmetic, plasticizers, antioxidant, antistatic, antibacterial, anticancer, antitumor, anti-inflammatory, antiandrogenic, antidiabetic and skin care product.

Conflict of Interests

The authors declare that there is no conflict of interest regarding the publication of this paper.

ORCID

V. M. Yilwa b https://orcid.org/0000-0002-6491-3314 P. O. Airoboman b https://orcid.org/0000-0001-8723-9759

References

- C.V.S. Kumar, S.J.S. Naik, N. Mohan, R.K. Saxena, R.K. Varshney, Botanical Description of Pigeon Pea [Cajanus Cajan (L.) Millsp], The Pigeonpea Genome, 17-29, 2017.
- [2] R.K. Vasavi, N. Nirmala, "Pigeon pea (*Cajanus cajan l.*) by-products as potent natural resource to produce protein rich edible food products", *Int. Journal of Current Agricultural Sciences*, vol. 7, no. 7, pp. 229-236, 2017.
- [3] A. Pazmiňo, G. Vasquez, W. Carrillo, "Protein concentration of pigeon pea (*Cajanus cajan*) grown in Ecuador functional properties", *Asian Journal of Pharmaceutical & Clinical Research*, vol. 11, no. 6, pp. 430-435, 2018.
- [4] R. Alonoso, E. Orue., M.J. Zabalza, "Effect of extrusion cooking on the structure and functional properties of pigeon

pea and kidney bean protein", *Journal of Science, Food & Agriculture*, vol. 80, pp. 397-403, 2000.

- [5] K.B. Saxena, R.V. Kumar, C.L. Gowda, "Vegetable pigeon pea – A review", *Journal of Food Legumes*, vol. 23, no. 2, pp. 91-98, 2010.
- [6] M.T. Ayenan, D. Agyemang, E. Léonard, O. Kwadwo, "Utilization and farmers' knowledge on pigeon pea diversity in Benin, West Africa", *Journal of Ethnobiology* & *Ethnomedicine*, vol. 13, pp. 3-7, 2017.
- [7] P.J. Kanu, Z. Kerui, Z. Huiming, Q. Haifeng, J.B. Kanu, Z. Kexue, "Sesame protein 11: Functional properties of sesame (*Sesamum indicum L.*) protein isolate as influenced by pH, temperature, time and ratio of flour to water during its production", *Asian Journal of Biochemistry*, vol. 2, pp. 289-301, 2007.
- [8] United State Department of Agriculture Natural Resource Conservation Service, 2012. Retrieved from https://www.nrcs.usda.gov (Accessed: Jan 7, 2023).
- [9] T. Duangjai, H. Christophe, "Cosmetic potential of *Cajanus cajan (L.) Millsp*: Botanical data, traditional uses". *Phytochemistry and Biological Activities Review*, MDPI 7, 0084, 2020
- [10] K. Abdulfatai, B. Abdullahi, I. Jaafaru, I. Rabiu, "Antibacterial activity of pigeon pea (*Cajanus cajan*) leaf extracts on salmonella and shigella species isolated from stool sample in patients attending barau Dikko Pediatric Unit Kaduna", *European Journal of Biotechnology and Bioscience*, vol. 5, no. 3, pp. 1-8, 2018.
- [11] W. Peggy, A. Edak, P. Uyoh, O. Aikpokpodion, "Gas chromatography-mass spectrometry (gc-ms) assay of bioactive compounds and phytochemical analyses in three species of *Apocynaceae*", *Pharmacogn Journal*, vol. 13, no. 2, pp. 383-392, 2021.
- [12] C. Egbuna, J.C. Ifemeje, "Biological functions and antinutritional effects of phytochemicals in living system", *Journal of Pharmacy and Biological Sciences*, vol. 10, pp. 10-19, 2015.
- [13] G.O. Ezeifika, M.U. Orji, T.I. Mbata, A.O. Patrick, "Antimicrobial activities of *Cajanus cajan, Garcinia kola*

and *Xylopia arthropica* on Pathogenic microorganisms", *Biotechnology*, vol. 3, no. 1, pp. 41-43, 2004.

- [14] V. Balamurugan, M.A. Sheerin, S. Veluraja, "A guide to phytochemical analysis", *Int. Journal of Advance Research* & *Innovative Ideas in Education*, vol. 5, no. 1, pp. 236-245, 2019.
- [15] K.C. Praveen, M. Gargi, "Evaluation of secondary metabolites in wheat grain (*Triticum Sp.*) grown in humid south eastern plain zone of Rajasthan (India)", *Int. Journal* of Agriculture, Environment & Biotechnology, vol. 12, no. 3, pp. 249-260, 2019.
- [16] R.D. Raveena, R. Premalatha, A. Saranya, "Comparative analysis of phytochemical constituents and antibacterial activity of leaf, seed and root extract of *cajanus cajan (l.) mill sp", Int. Journal of Current Microbiology & Applied Science*, vol. 5, no. 3, pp. 485-494, 2016.
- [17] E.Y. Ladjal, M. Chibane, "Some physicochemical and functional properties of pea, chickpea and lentil whole flours", *Int. Food Research Journal*, vol. 22, no. 3, pp. 987-996, 2015.
- [18] S.T. Satishkumar, L.B. Dama, V.P. Manohar, "Qualitative and quantitative analysis of secondary metabolites of *cajanus cajan*", *Trends in Life Sciences*, vol. 6, no. 1, pp. 19-23, 2017.
- [19] A. Nix, C.A. Paul, M. Colgrave, "The flavonoid profile of pigeon pea, *cajanus cajan*: A review", *SpringerPlus*, vol. 4, no. 125, 2015.
- [20] G.D. Oke, "Proximate and phytochemical analysis of canjanus cajan (pigeon pea) leaves", Chemistry Science Transaction, vol. 3, no. 3, pp. 1172-1178, 2014
- [21] L. Mudiganti, L.R. Sundaram, "Preliminary phytochemical and GCMS analysis of different extracts of *psophocarpus tetragonolobus* leaves", *Indo American Journal of Pharmaceutical Sciences*, vol. 5, no. 3, pp. 1649-1656, 2018.
- [22] T. Tyagi, A. Mala, "GC-MS analysis of invasive aquatic weed, pistia stratiotes l. and *eichhornia crassipes (mart.)* solms", Int. Journal of Current Pharmaceutical Research, vol. 9, no. 3, pp. 111-117, 2017.