
Nonlinear Analysis: Modelling and Control, Vol. 28, No. 2, 326–364
https://doi.org/10.15388/namc.2023.28.31549

Press

An ecoepidemic model with healthy prey herding
and infected prey drifting away

Md. Sabiar Rahmana,1 , Subhash Pramanika , Ezio Venturinob,c

aDepartment of Mathematics, Gobardanga Hindu College,
North 24 Parganas, 731235 West Bengal, India
sabiarrahman@gmail.com; subhashpramanik607@gmail.com
bDipartimento di Matematica “Giuseppe Peano”,
Università di Torino,
via Carlo Alberto 10, 10123 Torino, Italy
ezio.venturino@unito.it
cINdAM research group GNCS

Received: January 8, 2022 / Revised: February 1, 2023 / Published online: February 22, 2023

Abstract. We introduce here a predator–prey model where the prey are affected by a disease. The
prey are assumed to gather in herds, while the predators are loose and act on an individualistic basis.
Therefore their hunting affects mainly the prey individuals occupying the outermost positions in the
herd, which is modeled via a square root functional response. The conditions of boundedness and
uniform persistence are established. Stability and bifurcation analysis of all feasible equilibrium
are carried out. Conditions on the model parameters for the possible existence of limit cycles are
derived, global stability analysis is also shown in proper choice of suitable Lyapunov function.
Numerical simulation of the various bifurcations validate the theoretical results. It is found that
the system ultimate behavior depends mainly on two crucial parameters, the force of infection and
predator average handling time. A discussion of the biological significance of the investigation
concludes the paper.

Keywords: ecoepidemic model, herd behavior, disease in prey, bifurcations, limit cycle, uniform
persistence, global stability.

1 Introduction

In recent times, herd behavior was introduced in interacting population systems of var-
ious nature, of symbiotic, competing and predator–prey type, by [2], via a square root
functional response, which models the predator–prey interaction occurring mainly on the
perimeter of the prey herd. The main result appears to be the possible onset of persistent
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oscillations, which are not originated by the Holling type II functional response. Thus
a different mechanism, other than feeding saturation, entails as consequence the insur-
gence of limit cycles. It should be noted that in fact, the idea of a nonlinear response
involving a power law for the prey dates back a few decades, appearing indeed already
in the original work of Gause [8]. Anyway, after the appearance of [2], other researchers
undertook similar investigations based on the same idea. In particular, [4] considers a sim-
ple predator–prey model with interactions on the boundary, but in which also feeding
saturation through a Holling type II functional response appears. Note also that the shape
of the herd does not remain circular at all times so that, in general, the square root term
becomes inadequate. But [5] shows that the modification to account for this change via
a generic exponent in place of the square root do not lead to substantial modifications
in the results. Further, a minimal model combining ecoepidemics and group behavior is
introduced in [22], while an ecoepidemic model with prey herd behavior and an infection
in the predators appears in [3]. Ecoepidemic models with Holling type I and II responses
but without the group effect are, for instance, found in [12, 19]. In [24], they introduce
a pathogenic agent, which influences the force of infection. Also, a predator-only equilib-
rium exists, which not appear in our system. Biologically, this occurs due to the absence
of other food sources except for prey.

In [23] the alternative cases of infection remaining harmless for predators, infected
individuals being not predated and the infected prey being toxic for predators were con-
sidered. It is assumed that susceptible prey behave individually, while infected gather
together. Occasional contacts among the solitary susceptibles S and the herd of infected
lead to new contagions via interactions with the infected individuals I occupying the
outermost positions in the group, this being modeled by the term S

√
I .

Our basic assumption here is to revisit the assumptions of [23], exchanging the roles
of the two prey subpopulations. Thus susceptible prey group together, while infected
abandon the herd and behave individually. Still, the susceptibles can be infected via
interactions that occur on the herd boundary, modeled in this case via the term I

√
S.

The paper is organized as follows. In the next section, we formulate the model and
then discuss the boundedness and the persistence of the species. Next, we analyze the
different kinds of feasible equilibria and carry out their stability analysis as well as in-
vestigating the Hopf and other bifurcations. Using Bendixson’s criterion, we show the
conditions for nonexistence of limit cycles at E∗. Applying instead the center manifold
theorem, we also investigate the onset and nature of the bifurcating limit cycles. By
using the results on uniform persistence, the conditions for global stability are obtained,
constructing the suitable Lyapunov function. The fourth section contains the numerical
validation of the results as well as the bifurcation diagrams. A final comparison with the
earlier model of [23] concludes the paper.

2 Mathematical model formulation

We consider the situation in which prey are affected by an unrecoverable disease so that
their population X is partioned among susceptibles s and infected i, X = s+ i. Infected
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are assumed to be too weak to reproduce and compete with susceptibles for resources.
They also drift away from the herd of susceptible prey and therefore are hunted on a one-
to-one basis by predators. Also, the disease is assumed not to spread to the latter. The
predators furthermore hunt the susceptible prey herd by mainly capturing the individuals
occupying the perimeter of the herd and are subject to feeding satiation. Thus hunting on
susceptible prey obeys a law that is the combination of Holling type II and the square root
functions:

F (s) =
α
√
s

1 + Thα
√
s
, (1)

where Th represents the predator’s prey handling time, and α is the predator’s search
efficiency. Finally, infected prey with occasional contacts with the susceptible’s herd
could transmit the disease. Again, we assume that this process occurs mainly on the
boundary of the herd.

With these assumptions, the model reads:

ds

dt
= rs

(
1− s

K

)
− α

√
sp

1 + hα
√
s
− λi
√
s,

di

dt
= λi
√
s−mip− µi,

dp

dt
=

θ1α
√
sp

1 + hα
√
s

+ θ2mip− δp.

The first equation models the susceptible prey dynamics: they reproduce logistically with
reproduction rate r and carrying capacity K, are hunted on the perimeter of the herd by
predators with the functional response (1) and become infected with transmission rate λ,
again by contacts on the herd boundary.

The second equation describes the infected prey recruited by “successful” contacts
with susceptibles, hunted at ratem by predators and subject to natural plus disease-related
mortality µ.

Finally, the third equation contains the predators evolution. They are specialist on the
modeled prey, hunt the susceptible ones by predating on the herd perimeter with con-
version rate θ1, while capture the infected ones on an individual basis and with possibly
a different conversion rate θ2 due to the fact that the latter might be less palatable or
contain different, most likely less, nutrient than the susceptible ones. Their mortality rate
is δ.

Note that this model differs from other similar ones already published. In particular,
with respect to [16], here infected prey are also abandoned, but we assume that they
occasionally can still interact with the susceptible ones on the boundary of the herd, while
in [16], such contagion process is assumed to occur inside the herd, before the infected
abandon the it. A different mechanism is instead modeled in [6], where infected stay in
the herd and are subject to hunting as the susceptibles are, this predation occurring once
more on the perimeter of the herd.
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Letting
√
s = S, then the above system reduces to

dS

dt
=

1

2

[
rS

(
1− S2

K

)
− αP

1 + hαS
− λI

]
= F1,

dI

dt
= λIS −mIP − µI = F2,

dP

dt
=

θ1αSP

1 + hαS
+ θ2mIP − δP = F3,

(2)

which is now the subject of our investigation.

3 Mathematical analysis

3.1 Persistence

A system is persistent if a compact set Ψ ⊂ G = {(S, I, P ): S > 0, I > 0, P > 0}
exists so that all the solution of system (2) eventually enter and remain in it.

Theorem 1. System (2) is persistent if the following conditions hold:

(i) α > µ+ δ,

(ii) α+ hα2
√
K < µ+ δ − λ

√
K,

(iii) µ θ2m
(
Kλ3 + µhαKλ2 − µ2λ− µ3hα

)
r > Kλ4(−αλ+ δ λ+ δ hαµ),

(iv) θ1
(
δ5θ1h

4 + 6 δ3θ31h
2 − 4 δ4θ21h

3 + 10α θ21h
3δ3 − 5α θ1h

4δ4

+ 5α θ41hδ − 10α θ31h
2δ2 + δ θ51 − α θ1

5 − 4 δ2θ41h+ αh5δ5
)

< α4K
(
λ δ α3Kθ31 − 6µα4Kθ21h

2δ2

+ 4µα4Kθ1h
3δ3 − µα4Kh4δ4 +mrδ3θ1 − µα4Kθ41

+ 3λ δ3α3Kθ1h
2 − λ δ4α3Kh3 −mrδ θ31Kα2 − 3λ δ2α3Kθ21h

+ 2mrδ2θ21Kα
2h−mrδ3θ1Kα2h2 + 4µα4Kθ31hδ

)
.

Proof. The proof is given in Appendix C.

3.2 Boundedness

Proposition 1. The healthy prey population is uniformly bounded.

Proof. From system (2) we have

dS

dt
=

1

2

[
rS

(
1−S

2

K

)
− αP

1+hαS
−λI

]
<

1

2

[
rS

(
1−S

2

K

)]
<

rS

2K

(
K−S2

)
.

Therefore
lim sup
t→∞

S(t) <
√
K.

Now there exist a A1 > 0 such that for all t > A1, we have S(t) < K + ε = D.
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Proposition 2. The second equation of (2) can be bounded from above as follows:

dI

dt
= λIS −mIP − µI < I(λ

√
K − µ) = Iµ(R0 − 1), R0 ≡

λ
√
K

µ
.

Therefore when R0 > 1, then epidemic will spread, and if R0 6 1, then epidemics is
eradicated.

Theorem 2. All the solutions of system (2), which initiate in R+
3 , are uniformly bounded.

Proof. Let us define the function

T = S + I +
1

θ1
P. (3)

Differentiating with respect to time (3) and taking q < min{µ, δ}, we obtain

dT

dt
+ qT =

1

2

[
rS

(
1− S2

K

)
− αP

1 + hαS
− λI

]
+ λIS −mIP − µI

+
1

θ1

[
θ1αSP

1 + hαS
+ θ2mIP − δP

]
+ qS + qI +

qP

θ1

6
1

2

[
rS

(
1− S2

K

)]
+ qS − (µ− q)I − P (δ − q)

θ1
<

√
K(2q + r)

3r

= φ.

Applying the theory of differential inequalities [18], we obtain

0 < q(S, I, P ) <
φ

q

(
1− e−qt

)
+ q(S0, I0, P0)e−qt,

and for t → ∞, we have 0 < σ < φ/q, where, σ = {(S, I, P ): S > 0, I > 0,
P > 0}. Hence for any ε > 0, all solutions of the system are confined in the region
G = {(S, I, P ) ∈ R3

+: T 6 φ/q + ε}.

3.3 Equilibria and their feasibility

The reduced system of equation has following equilibria: the trivial equilibriumE0(0, 0, 0),
the susceptible prey-only point E1(

√
K, 0, 0), the predator-free equilibrium E2(µ/λ,

rµ(Kλ2−µ2)/Kλ4, 0), the infected prey-free equilibriumE3(S3, 0, P3), the coexistence
endemic equilibrium E∗(S∗, I∗, P∗). Here E2 is feasible when Kλ2 > µ2, that is,

R0 > 1. (4)
Further,

S3 =
δ

α(θ1 − hδ)
, P3 =

rδ θ1(Kα2θ21 − 2Kα2θ1δ h+Kα2δ2h2 − δ2)

α4(−θ1 + δ h)4K
.
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E3 is feasible if
h
[3]
0 < h < h

[3]
1 or δ

[3]
0 < δ < δ

[3]
1 , (5)

where

h
[3]
0 =

Kθ1α− δ
√
K

Kδα
, h

[3]
1 =

θ1
δ

and δ
[3]
0 =

Kθ1α

hKα+
√
K
, δ

[3]
1 =

θ1
h
.

In the coexistence equilibrium,

P∗ =
λS∗ − µ
m

, I∗ =
δ + αS∗(δh− θ1)

θ2m(1 + hαS∗)
,

S∗ is the real positive root of the equation
4∑
i=0

Aiτ
i = 0, (6)

where

A0 = −K(−λδ + µαθ2) < 0, A1 = (λα− rm)θ2K + λα(δh− θ1)K,

A2 = −rKθ2mhα < 0, A3 = rθ2m, A4 = rθ2mhα,

When
λ
[∗]
0 < λ < λ

[∗]
1 , h > h

[3]
1 , (7)

where

λ
[∗]
0 =

µ

S∗
, λ

[∗]
1 = θ2 min

{
µα

δ
,

rm

α(θ2 − θ1δh)

}
, h

[3]
1 =

θ1
δ
,

then A1 < 0 and A0 < 0, which satisfy Descartes rule of sign to have a unique positive
real root S∗ of (6). Moreover, by the above condition (7), I∗ and P∗ also feasibles. Hence
E∗(S∗, I∗, P∗) is feasible when (7) is satisfied.

3.4 Stability analysis

The system Jacobian matrix JB ≡ DF of system (2) is given by

JB =


r
2 (1− S2

K )− rS2

K + α2Ph
2(1+hαS)2 −λ2 − α

2(1+hαS)

λI λS −mp− µ −Im
θ1αP

(1+hαS)2 θ2mP
θ1αS

1+hαS + θ2mI − δ.


3.4.1 The behavior near E0(0, 0, 0)

The eigenvalues of the Jacobian matrix JE0
are

λ
[E0]
1 =

r

2
, λ

[E0]
2 = −µ, λ

[E0]
3 = −δ,

which shows that E0 is an unstable hyperbolic critical point, namely, a saddle with the
instability in the orthogonal direction to the IP -plane.
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3.4.2 The behavior near E1(
√
K, 0, 0)

3.4.2.1 Stability

At the equilibrium point E1, the eigenvalues of the Jacobian J1 are

λ
[E1]
1 = −r, λ

[E1]
2 = λ

√
K − µ, λ

[E1]
3 =

θ1α
√
K

1 + hα
√
K
− δ.

Thus E1 will be asymptotically stable if

R0 < 1, 0 < K < S2
3 . (8)

3.4.2.2 Bifurcations

Here and in what follows, to investigate local bifurcations, we use Sotomayor’s theorem
[10, 13].

The Jacobian J1 = (J ij1 ), i, j = 1, 2, 3, the eigenvalue −r, while the remaining ones
vanish if and only if det J1 = 0, which gives

λ = λ[te1] =
µ√
K
, α = α[te1] =

δ√
K(θ1−δh)

, θ1 = θ
[te1]
1 =

δ(
√
K+Khα)

Kα
,

K =
{
K [te1],K [te2]

}
, K [te1] =

µ2

λ2
, K [te2] =

δ2

α2(θ1−δh)
,

µ = µ[te1] = λ
√
K, h = h[te1] =

Kθ1α−
√
Kδ

Kδα
.

(i) Let µ1 and γ1 be the eigenvectors corresponding to the eigenvalue 0 of the matri-
ces J1 and its transpose JT

1 , respectively. For λ = λ[te1], we obtain γT1 = (0, g
[2]
1 , 0) and

µT
1 = (m

[1]
1 ,m

[2]
1 , 0), where

m
[1]
1 = −J

[12]
1

J
[11]
1

m
[2]
1 ,

and g[2]1 ,m
[2]
1 represent arbitrary nonzero real numbers. We find

γT1
[
Fλ
(
E1, λ

[te1]
)]

= 0, γT1
[
DFλ

(
E1, λ

[te1]
)
(µ1)

]
=
√
Km

[2]
1 g

[2]
1 6= 0,

γT1
[
D2F

(
E1, λ

[te1]
)
(µ1, µ1)

]
=
(
0, g

[2]
1 , 0

)(
−3rm

[1]2
1√
K

, 0, 0

)T

= 0,

γT1
[
D3F

(
E1, λ

[te1]
)
(µ4, µ4, µ4)

]
=
(
0, g

[2]
1 , 0

)(
−3rm

[1]3
1

K
, 0, 0

)T

= 0.

Hence the system will experience neither a saddle node nor a transcritical bifurcation
at E1 for λ = λ[te1].

(ii) For h= h[te1], let µ2 and γ2 be the eigenvectors of the eigenvalue 0 of the ma-
trix J1 and its transpose, respectively. Then γT2 =(0, 0, g

[3]
2 ), µT

2 =(m
[1]
2 , 0,m

[3]
2 ), where

m
[1]
2 = −J

[13]
1

J
[11]
1

m
[3]
2 ,
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Figure 1. Choosing K = r, for K < 0, there is one stable equilibrium at S = 0. For K > 0, there is an
unstable equilibrium at S = 0 and two stable equilibria at S = ±

√
K at E1.

and g[3]2 , m[3]
2 represent any two nonzero real numbers. Since

γT2
[
Fh
(
E1, λ

[te1]
)]

= 0, γT1
[
DFh

(
E1, h

[te1]
)
(µ2)

]
= −δ

2m
[3]
2 g

[3]
2

θ1
6= 0,

γT2
[
D2F

(
E1, h

[te1]
)
(µ2, µ2)

]
=
(
0, 0, g

[3]
1

)(
−3rm

[1]2
2√
K

, 0, 0

)T

= 0,

γT2
[
D3F

(
E1, h

[te1]
)
(µ2, µ2, µ2)

]
=
(
0, 0, g

[3]
2

)(
−3rm

[1]3
2

K
, 0, 0

)T

= 0,

system (2) will experience neither a saddle node nor a transcritical bifurcation at E1 for
h = h[te1].

(iii) For K = K [te1], let γ3 and µ3 be the eigenvectors respectively corresponding
to the 0 eigenvalues of the matrix J1 and its transpose. We obtain µT

3 = (m
[1]
3 ,m

[2]
3 , 0),

γT3 = (0, g
[2]
3 , 0) so that

m
[1]
3 = −J

12
1

J11
1

m
[2]
3 ,

where g[2]3 , m[2]
3 are two nonzero real numbers. Then

γT3
[
FK
(
E1,K

[te1]
)]

=
(
0, g

[2]
3 , 0

)( rλ
2µ
, 0, 0

)T

= 0,

γT3
[
DFK

(
E1,K

[te1]
)
(µ3)

]
= g

[2]
3 m

[2]
3

λ2

2
µ 6= 0,

γT3
[
D2F

(
E1,K

[te1]
)
(µ2, µ2)

]
=
(
0, g

[2]
3 , 0

)(
−3rm

[1]2
3√
K

, 0, 0

)T

= 0,

so that the system will experience neither a saddle node nor a transcritical bifurcation
at E1 for K = K [te1].

For K = K [te2], let µ4, γ4 respectively denote the eigenvectors corresponding to
the eigenvalue 0 of the matrix J1 and its transpose. Then we get µT

4 = (m
[1]
4 , 0,m

[3]
4 ),
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γT5 = (0, 0, g
[3]
4 ) so that

m
[1]
4 = −J

13
1

J11
1

m
[3]
4 ,

where g[3]4 , m[3]
4 are two arbitrary nonzero real numbers. Then

γT4
[
FK
(
E1,K

[te2]
)]

=
(
0, g

[2]
4 , 0

)(r√K
2

, 0, 0

)T

= 0,

γT4
[
DFK

(
E1,K

[te2]
)
(µ4)

]
=

(g
[3]
4 m

[3]
4 θ1α)√

K [te2](1 + hα
√
K [te2])2

6= 0,

γT4
[
D2F

(
E1,K

[te2]
)
(µ4, µ4)

]
=
(
0, 0, g

[3]
4

)(
−3rm

[1]3
4

K
, 0, 0

)T

= 0

for which the system have neither a saddle node nor a transcritical bifurcation at E1 for
K = K [te2].

3.4.2.3 Global stability analysis at E1

Theorem 3. The point E1(S1, 0, 0) is globally asymptotically stable.

We defer the proof to Appendix G.

3.4.3 The behavior near E2

3.4.3.1 Stability

One eigenvalue of the Jacobian J2 is

λ
[E2]
1 =

θ1αµ

λ+ hαµ
+
θ2mrµ

λ2
− θ2mrµ

3

Kλ4
− δ,

and the other two are the roots of the equation x2 + a1x+ a2 = 0, where

a1 =
1

2

(
r − 3rµ2

Kλ2

)
, a2 =

rµ(Kλ2 − µ2)

2Kλ2
.

E2 will be locally asymptotically stable if the Routh–Hurwitz conditions are met, a1 > 0
and a2 > 0, which explicitly become

µ2

λ2
< K < min

{
3µ2

λ2
,
θ2mrµ

3

τ ′λ4

}
, τ ′ =

θ1αµ

λ+ hαµ
+
θ2mrµ

λ2
− δ. (9)

3.4.3.2 Bifurcations

The matrix J2 = (J ij2 ), i, j = 1, 2, 3, has a zero eigenvalue if and only if det J2 = 0,
which provides λ = {λ[te2], λ[te2I ]}, K = {K [te2],K [te2I ]}, µ = {µ[te2], µ[te2I ]}, where

λ[te2] =
µ√
K
, K [te2] =

µ2

λ2
, µ[te2] = λ

√
K,

and the values of K [te2I ], λ[te2I ] and µ[te2I ] are reported in Appendix E.

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


An ecoepidemic model with healthy prey herding and infected prey drifting away 335

(i) For λ = λ[te2], let µ5, γ5 respectively be the eigenvectors corresponding to the
zero eigenvalue of the matrix J2 and its transpose. We obtain γT5 = (0, g

[2]
5 , 0), µT

5 =

(m
[1]
5 ,m

[2]
5 , 0) where

m
[1]
5 = −J

12
2

J11
2

m
[2]
5 ,

and m[2]
5 , g[2]5 are any two positive real numbers. Since

γT5
[
Fλ
(
E2, λ

[te2]
)]

=
rµ2(Kλ2 − µ2)g

[2]
5

λ[te2]5
= 0,

γT5
[
DFλ

(
E2, λ

[te2]
)
(µ5)

]
=

2rKm
[1]
5 g

[2]
5

µ
6= 0,

γT5
[
D2F

(
E2, λ

[te2]
i

)
(µ5, µ5)

]
= −rm[1]2

5 g
[2]
5 6= 0,

the system experiences a transcritical bifurcation at E2 for λ = λ
[te2]
i . Similarly, for

K = K [te2], µ = µ[te2], there will be a transcritical bifurcation around E2.
For λ = λ[te2I ], let µ6, γ6 respectively be the eigenvectors corresponding to the

zero eigenvalue of the matrix J2 and its transpose. We obtain γT6 = (0, 0, g
[3]
6 ), µT

6 =

(m
[1]
6 ,m

[2]
6 ,m

[3]
6 ), where

m
[1]
6 = −J

33
2

J21
2

m
[3]
6 = −J

13
2

J11
2

m
[3]
6 , m

[2]
6 = −J

13
2

J12
2

m
[3]
6 ,

and m[3]
6 , g[3]6 are any two positive real numbers. Since

γT6
[
Fλ
(
E2, λ

[te2I ]
)]

=
(
0, 0, g

[3]
6

)(
−I2

2
, S2I2, 0

)T

= 0,

γT6
[
DFλ

(
E2, λ

[te2I ]
)
(µ5)

]
= g

[3]
6 m

[3]
6

∂J33
2

∂λ

∣∣∣∣
λ=λ[te2I ]

6= 0,

γT6
[
D2F

(
E2, λ

[te2I ]
)
(µ6, µ6)

]
= 0,

the system will experiences neither saddle-node nor a transcritical bifurcation at E2 for
λ = λ[te2I ].

(ii) If λ[E2]
1 = 0 and the other eigenvalues of J2 are nonzero, we will getK = K [te2I ]

so that let µ7, γ7 respectively be the eigenvectors corresponding to the zero eigenvalue of
J2 and JT

2 . Then µT
7 = (m

[1]
7 ,m

[2]
7 ,m

[3]
7 ), γT7 = (0, 0, g

[3]
7 ) so that

m
[1]
7 = −J

33
2

J21
2

m
[3]
7 = −J

13
2

J11
2

m
[3]
7 , m

[2]
7 = −J

13
2

J12
2

m
[3]
7 ,
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where m[3]
7 , g[3]7 are two nonzero real numbers. Since

γT7
[
FK
(
E2,K

[te2I ]
)]

=
(
0, 0, g

[3]
7

)( rS2
2

2K [te2I ]
, 0, 0

)T

= 0,

γT7
[
DFK

(
E2,K

[te2I ]
)
(µ7, µ7)

]
= g

[3]
7 m

[3]
7

∂J33
2

∂µ

∣∣∣∣
K=K[te2I ]

6= 0,

γT7
[
D2F

(
E2,K

[te2I ]
)
(µ7, µ7)

]
=
(
0, 0, g

[3]
7

)(
−3rS2m

[1]2

7

K [te2I ]
, λm

[1]
7 m

[2]
7 , 0

)T

= 0,

system (2) will experience neither a saddle-node nor a transcritical bifurcation at E2 for
K = K [te2I ]. Similarly, there will be neither saddle-node nor transcritical bifurcations at
µ = µ[te2I ].

3.4.3.3 Global stability analysis at E2

Theorem 4. The equilibrium point E2 is globally asymptotically stable if

k0r
√
K + λ 6

k0rL√
K

+
λ
√
Kk0
2

,
2√
K

< k0.

The proof is given in Appendix G.

3.4.4 The behavior near E3(S3, 0, P3)

3.4.4.1 Stability

At E3 the eigenvalues of the Jacobian J3 = (J ij3 ), i, j = 1, 2, 3, are roots of the cubic
equation x3 − (J11

3 + J22
3 )x2 + (J11

3 J22
3 − J31

3 J13
3 )x + J31

3 J13
3 J22

3 = 0, where the
expressions of J11

3 , J22
3 , J31

3 , J13
3 are reported in Appendix A. By applying Routh–

Hurwitz criterium, the equilibrium is asymptotically stable if

h < h
[3]
1 , G1 < K < G2, G1 = max{l1, l2, l3}, (10)

where h[3]1 = θ1/δ, and the values of li, i = 1, . . . , 3, and G2 are given in Appendix A.

3.4.4.2 Bifurcations

The matrix J3 = (J ij3 ), i, j = 1, 2, 3, has a zero eigenvalue if det J2 = 0, which gives
K = {K [te3],K [te3I ]}, h = {h[te3], h[te3I ]}. The eigenvalues of J3 are

λ
[E3]
1 = J22

3 , λ
[E3]
2,3 =

1

2

[
J11
3 ±

√
J112
3 + 4J31

3 J13
3

]
.

When λ[E3]
1 = 0, we will get K = K [te3], h = h[te3], and h[E3]

2,3 = 0 gives K = K [te3I ],
h = h[te3I ]. Here

K = K [te3I ] =
δ2

(θ21 − 2θ1δh+ δ2h2)α2
,
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and h[te3I ] is the positive value of

Kθ1α± δ
√
K

Kδα
.

The values of K = K [te3], h = h[te3] are mentioned in Appendix E.

(i) For K = K [te3], there exist eigenvectors µ8, γ8 corresponding to the vanishing
eigenvalue of J3 and its transpose, respectively. Then µT

8 = (m
[1]
8 ,m

[2]
8 ,m

[3]
8 ), γT8 =

(0, g
[2]
8 , g

[3]
8 ) so that

m
[1]
8 = −J

32
3

J31
3

m
[2]
8 , m

[3]
8 =

J11
3 J32

3 − J31
3 J12

3

J31
3 J13

3

m
[2]
8 ,

where m[2]
8 , g[2]8 are nonzero real numbers. Since

γT8
[
FK
(
E3,K

[te3]
)]

=
(
0, g

[2]
8 , 0

)( rS3
3

2K [te3]
, 0, 0

)T

= 0,

γT8
[
DFK

(
E3,K

[te3]
)
(µ8)

]
= 0,

the system will experiences neither saddle-node nor transcritical bifurcations at E3 for
K = K [te3].

ForK = K [te3I ], there exist eigenvectors µ9, γ9 corresponding to the vanishing eigen-
value of J3 and its transpose, respectively. Then µT

9 = (m
[1]
9 , 0,m

[3]
9 ), γT9 = (0, 0, g

[3]
9 )

so that

m
[1]
9 = −J

13
3

J11
3

m
[3]
9 ,

where m[3]
9 , g[3]9 are nonzero real numbers. Since

γT9
[
FK
(
E3,K

[te3I ]
)]

=
(
0, g

[2]
9 , 0

)( rS3
3

2K [te3I ]
, 0, 0

)T

= 0,

γT9
[
DFK

(
E3,K

[te3I ]
)
(µ9)

]
=
α

δ
r(θ1 − δh)2g

[3]
9 m

[1]
9 6= 0,

γT9
[
D2F

(
E3,K

[te3I ]
)
(µ9, µ9)

]
=

1

θ1
g
[3]
9 m

[1]
9 m

[3]
9 (θ1 − δh)2 6= 0,

the system experiences a transcritical bifurcation at E3 for K = K [te3I ].

(ii) For h = h[te3], there exist eigenvectors µ8, γ8 corresponding to the vanishing
eigenvalue of J3 and its transpose, respectively. We find µT

10 = (m
[1]
10 ,m

[2]
10 ,m

[3]
10), γT10 =

(0, g
[2]
10 , 0) so that

m
[1]
10 = −J

32
3

J31
3

m
[2]
10 , m

[3]
10 =

J11
3 J32

3 − J31
3 J12

3

J31
3 J13

3

m
[2]
10 ,
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where m[2]
10 , g[2]10 are any nonzero real numbers. Since

γT10
[
Fh
(
E3, h

[te3]
)]

= 0,

γT10
[
DFh

(
E3, h

[te3]
)
(µ10)

]
=
(
0, g

[2]
8 , 0

)( α2S3P3

2(1+h[te3]αS3)2
, 0,

−θ1α2S2
3P3

(1+h[te3]αS3)2

)T
= 0,

γT10
[
D2F

(
E3, h

[te3]
)
(µ10, µ10)

]
= 0,

the system will experiences neither saddle-node nor transcritical bifurcations at E3 for
h = h[te3].

For h = h[te3I ], there exist eigenvectors µ11, γ11 corresponding to the vanishing
eigenvalue of J3 and its transpose, respectively. Then µT

11 = (m
[1]
11 , 0,m

[3]
11), γT8 =

(0, 0, g
[3]
11 ) so that

m
[1]
11 = −J

13
3

J11
3

m
[3]
11 ,

where m[3]
11 , g[3]11 are nonzero real numbers. The system will experiences transcritical

bifurcation at E3 for h = h[te3I ] in view of the following results:

γT11
[
Fh
(
E3, h

[te3I ]
)]

=
(
0, 0, g

[3]
11

)( α2S3P3

2(1 + h[te3I ]αS3)2
, 0,− θ1α

2S2
3P3

(1 + h[te3I ]αS3)2

)T
= − g11θ1α

2S2
3P3

(1 + h[te3I ]αS3)
= 0,

γT11
[
DFh

(
E3, h

[te3I ]
)
(µ11)

]
= 2δr

√
Kg

[3]
11m

[1]
11 6= 0,

γT11
[
D2F

(
E3, h

[te3I ]
)
(µ11, µ11)

]
=
g
[3]
11m

[1]
11m

[3]
11δ

2

θ1αK
6= 0.

3.4.4.3 Global stability analysis at E3

Theorem 5. The equilibrium E3(S3, 0, P3) is globally asymptotically stable if the fol-
lowing conditions hold:

r <
1√
K

(
Nk3√
K

+
αk3
√
K

2
− θ1α

)
, k3 >

2θ1√
K
.

The proof is contained in Appendix G.

3.4.5 The behavior near E∗(S∗, I∗, P∗)

3.4.5.1 Stability

Proposition 3. The coexistence equilibrium is asymptotically stable if and only if b1 > 0,
b3 > 0, b1b2 > b3 hold.

The proof and the values bi, i = 1, 2, 3, are given in Appendix B.
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3.4.5.2 Hopf bifurcation

Proposition 4. System (2) undergoes a Hopf bifurcation at coexistence E∗ when the
critical parameter λ = λcr ∈ DHB = {λcr ∈ R+: a1(λcr)a2(λcr) = a3(λcr)} with

a1(λcr), a2(λcr), a3(λcr) > 0,

[
d

dλ
Re
{
xj(λ)

}]
λ=λcr

6= 0.

The proof is once more written in Appendix D.

3.4.5.3 Other bifurcations

We rewrite system (2) as

dX

dt
= F (X), X = (S, I, P )t, F = (F1, F2, F3)t, J ≡ DF (X), (11)

where F is a C1 function in some open subset of RN . One of the eigenvalues of J∗ =
(J ij∗ ), i, j = 1, 2, 3, vanishes if and only if det J∗ = 0, i.e., m = m4 with

m4 =
λ1α(θ2q − θ1)

2J11
∗ θ2t

2
, J11

∗ =
r(K − 3S2

∗)

2K
+

α2P∗h

2(1 + hαS∗)2
,

q = 1 + hαS∗.

Let U = (γ′1, γ
′
2, γ
′
2)T, V = (µ′1, µ

′
2, µ
′
3)T respectively denote the two eigenvectors

corresponding to the zero eigenvalue of J and its transpose JT, then we have

−J
23
∗ γ
′
1

J21
∗

=
J31
∗ J

23
∗ γ
′
2

J21
∗ J

32
∗

= γ′3, −J
32
∗ µ
′
1

J12
∗

=
J13
∗ J

32
∗ µ
′
2

J12
∗ J

23
∗

= µ′3

with γ′1, γ′2, µ′1, µ′2 being arbitrary nonvanishing real numbers. Since V TFm(E∗,m4) 6=0
and V TDFm(E∗,m4)(U) 6= 0, there are three cases:

Case 1. There exist a Turing-saddle node bifurcation node if the following conditions
hold:

α2P∗h

2(1 + hαS∗)
+ r <

3S2
∗

K
, λ =

2J11
∗ mθ2q

2

α(θ2q − θ1)
. (12)

Case 2. There is a Turing-transcritical bifurcation if conditions (12) hold along with

h =
I∗(P∗α+ I∗λ)

λαS∗
. (13)

Case 3. There is a Turing-pitchfork bifurcation if conditions (12) and (13) hold to-
gether with the critical value ofm and the variational matrices being reported
in Appendix E.
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3.4.5.4 Global stability at E∗

Theorem 6. The coexistence equilibriumE∗(S∗, I∗, P∗) is globally asymptotically stable
if it satisfies conditions similar to the ones of [12, 20] and [19], i.e.,

1

θ2(2hα+3)
6 min

{
αK− 2r

Kα(2hθ2m+3θ1−3hδ)
,

α+m

3θ2m+ 3 θ1α+2hαθ2m−3hαδ

}
,

δ < min

{
1

3αh
(3θ2m+3θ1α+2hαθ2m),

1

3h
(2hθ2m+3θ1)

}
,

K >
2r

α
.

(14)

The proof is given in Appendix G.

3.4.5.5 Nonexistence of periodic solutions near E∗(S∗, I∗, P∗)

To show the nonexistence of periodic orbits of the system near E∗(S∗, I∗, P∗), we apply
the technique of Li and Muldowney mentioned in [19]. Recalling the notation in (11),
we denote by J[2] the

(
N
2

)
×
(
N
2

)
second additive compound matrix associated with the

Jacobian J [19]. Explicitly,

J[2] =

ϑ11 + ϑ22 ϑ23 −ϑ13
ϑ32 ϑ11 + ϑ33 ϑ12
−ϑ31 ϑ21 ϑ22 + ϑ33

 .

We now use the results of [17] on Bendixson’s criterion in Rn to analyse closed orbits.

Theorem 7. A simple closed rectifiable curve that is invariant with respect to system (2)
cannot exist if the following condition holds [12]:

sup

{
∂Fr
∂xr

+
∂Fs
∂xs

+
∑
q 6=r,s

(∣∣∣∣∂Fq∂xr

∣∣∣∣+

∣∣∣∣∂Fq∂xs

∣∣∣∣): 1 6 r < s 6 n

}
< 0. (15)

Proof. Let us reduce the system dimension by setting

S′′ =
S

K
, I ′′ =

I

K
, P ′′ =

P

K
, t′′ = rt, m′′ =

m

K
, µ′′ =

µ

K
,

λ′′ =
λ

K
, α′′ =

α

K
, δ′′ = δK2, θ′′1 = Kθ1, θ′′2 = K2θ2, ζ =

P ∗

1 + hαS∗

to obtain

dS

dt
=

1

2

[
S∗
(
1− S2

∗
)
− αζ − λI∗

]
= F ′1,

dI

dt
= λI∗S∗ −mI∗P∗ − µI∗ = F ′2,

dP

dt
= θ1S∗αζ + θ2mI∗P∗ − δP∗ = F ′3.
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Now (15) becomes

m(−1 + θ2)P∗ +
1

2

[
1− 3S2

∗ ] + λS∗ − µ+ θ1α(ζ) < 0,

(−P∗ + θ2I∗)m+ λS∗ − µ− δ < 0,(
(−1 + θ2)m+ λ

)
I∗ +

1

2

[
1− 3S2

∗
]
− δ < 0.

(16)

Sufficient conditions to satisfy (16) are

θ2 < 1,
1√
3
< S∗ <

µ− θ1αζ
λ

,

θ2 <
P∗
I∗
, S∗ <

µ+ δ

λ
,

λ < m(1− θ2), S∗ >

√
1− 2δ

3
.

In these conditions, system (2) admits no periodic solutions.

3.4.5.6 Stability of bifurcating limit cycle

We now establish the stability of the limit cycle arising from the Hopf bifurcation. To this
end, we apply the center manifold theorem [15,20]. Since the Jacobian J∗(S∗, I∗, P∗) has
purely imaginary eigenvalues leading to the Hopf bifurcation, we can analyze the present
system just on a two-dimensional manifold, where the flow is exponentially contracting.

We translate E∗ to the origin by S̄ = S − S∗, Ī = I − I∗ and P̄ = P − P∗. The
original system becomes

d

dt

S̄Ī
P̄

 = J∗

S̄Ī
P̄

+

φ1φ2
φ3

 , (17)

where the Jacobian J∗ is

J∗ =


G −λ2

T
2

λI∗ 0 −I∗m
θ1P∗T

2

α θ2mP∗ 0


with

G =
r(K − 3S2

∗)

2K
+
T 2P∗h

2
, T =

α

1 + hαS∗
,

and

φ1 =
1

2
hT 2S̄P̄ − T1S̄2,

φ2 = λS̄Ī −mĪP̄ ,
φ3 =

(
θ1T − θ1T 2hS∗

)
S̄P̄ − θ2mĪP̄

+
(
2θ1T

3h2S∗P∗ − 2θ1T
2hP∗

)
S̄2.

(18)
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We neglect the higher-order term such as S̄3 and the ones containing

T1 =
1

2

[
3S∗r

K
+

α3h2P∗
(1 + hαS∗)3

]
.

At the Hopf bifurcation, the characteristic equation has the eigenvalues λ1 = −a1 = η
for some η, and λ2,3 = ±ı√a2 = ±ıω, where

ω2 = a2 = I∗θ2m
2P∗ +

1

2
I∗λ

2 +
θ1α

2P∗
2 + 2hαS∗

.

Let the eigenvector of J∗ associated with λ1 be η1, and the ones corresponding to λ2,3
be η2 ± ıη3, where η1, η2, η3 denote real vectors. Then it can be shown that the matrix
B = [Uij ] = [η3η2η1] is nonsingular and

B−1J∗B =

 0 −ω 0
ω 0 0
0 0 η

 , B =

 −ωT2
λmI∗

2
λmI∗

2 − ηT
2

−ωI∗m (Gm− λT
2 )I∗ (Gm− λT

2 − ηm)I∗
−ωG −ω2 + λ2I∗

2 η2 − ηG+ λ2I∗
2

,
and Qij = B−1 = (1/∆)[qij ], where ∆ = detB.

Next, letting ¯̄Y = (S̄, Ī, P̄ )T, we use the following linear transformation: ¯̄Y = BW
with W = B−1 ¯̄Y = (I1, I2, I3)T. Explicitly,S̄Ī

P̄

 = B

I1I2
I3

 . (19)

Substituting (19) into (17), we get

d

dt
(BW ) = J∗UW + F1(BW ),

dw

dt
=
(
B−1J∗B

)
W +B−1F1(BW ). (20)

Now (20) can be rewritten as

l̇ = Hl + F1(l, z), ż = Nz +G1(l, z), (21)

where l = (I1, I2)T, z = (I3). H and N are the constant matrices

H =

(
0 −ω
ω 0

)
, N = (η),

and F1 and G1 are C2 functions. System (20) can now be written as

d

dt

I1I2
I3

 =

0 −ω 0
ω 0 0
0 0 η

I1I2
I3

+B−1

φ1φ2
φ3

 . (22)

Now system (22) has a local center manifold z = f(l), l < ε, where f is in C2. The
function f(l) can be approximated arbitrarily closely by a Taylor series as shown in the
next theorem.
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Theorem 8. Let φ : Rn → Rm be C1 in a neighborhood of the origin, φ(0) = 0,
φ′(0) = 0 and Mφ(l) = O(|l|κ) as l → ∞, where Mφ(l) = φ′(l)[Nl + G1(l, φ(l))] −
Hφ(l)− F1(l, φ(l)) and κ > 1. Then f(l) = φ(l) +O(|l|κ) as l→∞.

Hence in the present case the center manifold up to a quadratic approximation is
described by

I3 = f(I1, I2) =
1

2

(
b11I

2
1 + 2b12I1I2 + b22I

2
2

)
.

It follows
dI3
dt

=

(
df

dI1
,

df

dI2

)(dI1
dt
dI2
dt

)
,

which leads to
dI3
dt

=
(
b11I1 + b12I2, b12I1 + b22I2

)(0 −ω
ω 0

)(
I1
I2

)
. (23)

Calculating φ1, φ2, φ3 of (19), we have

S̄ = U11I1 + U12I2 + U13I3,

Ī = U21I1 + U22I2 + U23I3,

P̄ = U31I1 + U32I2 + U33I3.

(24)

Now from (18) and (24) we get

φ1 = T 2h

[
(U11I1 + U12I2)

(
U31I1 + U32I2 + U33

Λ

2

)
+ U13

Λ

2
(U31I1 + U32I2)

]
− T1

[
(U11I1 + U12I2)2 + U13Λ(U11I1 + U12I2)

]
,

φ2 = λ

[
(U11I1 + U12I2)

(
U21I1 + U22I2 + U23

Λ

2

)
+ U13

Λ

2
(U21I1 + U22I2)

]
−m

[
(U31I1 + U32I2)

(
U21I1 + U22I2 + U23

Λ

2

)
+ U33

Λ

2
(U21I1 + U22I2)

]
,

φ3 =
(
2θ1T

3h2S∗P∗ − 2θ1T
2P∗h

)[
(U11I1 + U12I2)2 + U13Λ(U11I1 + U12I2)

]
+
(
θ1T − θ1T 2hS∗

)[
(U11I1 + U12I2)

(
U31I1 + U32I2 + U33

Λ

2

)
+ U13

Λ

2
(U31I1 + U32I2)

]
− θ2m

[
(U31I1 + U32I2)

(
U21I1 + U22I2 + U23

Λ

2

)
+ U33

Λ

2
(U21I1 + U22I2)

]
,

Λ = 2I3 = b11I
2
1 + 2b12I1I2 + b22I

2
2 .

From (22) the left-hand side of (23) becomes(
b11I1 + b12I2, b12I1 + b22I2

)(0 −ω
ω 0

)(
I1
I2

)
= ωb12I

2
1 + b22I1I2ω − ωb11I1I2 − ωb12I22

Nonlinear Anal. Model. Control, 28(2):326–364, 2023

https://doi.org/10.15388/namc.2023.28.31549


344 Md.S. Rahman et al.

=
η

2

(
b11I

2
1 + 2b12I1I2 + b22I

2
2

)
+

1

∆
(q31φ1 + q32φ2 + q33φ3)

=
η

2

(
b11I

2
1 + 2b12I1I2 + b22I

2
2

)
+

1

∆
(Q31φ1 +Q32φ2 +Q33φ3),

which equals the right-hand side of (23). Comparing both sides, the coefficients of I21 ,
I1I2, I22 , we get

Γ1 ≡ ωb12 −
η

2
b11 = Q31

[
T 2hU31U11 − T1U2

11

]
+Q32[λU11U21 −mU31U21]

+Q33

[
θ1
α
T 2U11U31 + θ2mU31U21 −

θ1
α
P ∗hT 3U2

11

]
,

Γ2 ≡ ω(b22 − b11)− ηb12 = Q31

[
T 2h(U11U32 + U12U31)− 2T1U11U12

]
+Q32

[
λ(U11U22 + U12U21)−m(U31U22 + U32U21)

]
+Q33

[
θ1
α
T 2(U11U32+U12U31) + θ2m(U31U21+U32U21)− 2θ1

α
P∗hT

3U11U12

]
,

Γ3 ≡ −
η

2
b22 − ωb12 +Q31

[
T 2hU12U32 − TU2

12

]
+Q32[λU12U22 −mU32U22]

+Q33

[
θ1
α
T 2U12U32 + θ2mU32U22 −

θ1
α
P∗hT

3U2
12

]
.

Here [Qij ] = [(1/∆)qij ], i, j = 1, 2, 3. It can be easily shown that

b11 = −1

2

4ω2Γ3 + 2 η ω Γ2 + η3 + 2 η2Γ1 + 2ω2η + 4ω2Γ1

ω2η
,

b12 =
1

2

η + 2Γ1

ω
, b22 = −2Γ3 + η + 2Γ1

η
.

Then the flow on the center manifold is governed by the two-dimensional system

Ṙ = HR+ F
(
R, f(R)

)
. (25)

The central manifold theorem tell us that (25) contains all the information needed to
determine the asymptotic behavior of the solution of (21).

Theorem 9. Suppose the zero solution of (25) is asymptotically stable (unstable), then
zero solution of (21) is asymptotically stable (unstable).

In detailed form, (25) can be written as

d

dt

(
I1
I2

)
=

(
0 −ω
ω 0

)(
I1
I2

)
+

(
Π
Σ

)
,

where, letting h.o.t. standing for higher-order terms,

Π =
1

∆
[Q11φ1 +Q12φ2 +Q13φ3 + h.o.t.],

Σ =
1

∆
[Q21φ1 +Q22φ2 +Q23φ3 + h.o.t.].
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The stability of the limit cycle arising from a Hopf bifurcation is determined by the
sign of Ω:

Ω = Π111 +Σ112 +Π122 +Σ222 +
1

ω

[
Π12(Π11 +Π22)

−Σ12(Σ11 +Σ22)−Π11Σ11 +Π22Σ22

]
,

Πij =
∂2Π(0, 0)

∂Ii∂Ij
, Πijk =

∂3Π(0, 0)

∂Ii∂Ij∂Ik
.

(26)

If Ω < 0, the Hopf bifurcating limit cycle is stable, and the Hopf bifurcation is super-
critical; if Ω > 0, the bifurcating limit cycle is unstable, and the Hopf bifurcation is
subcritical. The sign of Ω can be obtained by substituting into (26) the values of Π111,
Σ112, Π122, Σ222, Π11, Π12, Π22, Σ11, Σ22, Σ12 given in Appendix F.

4 Simulations

4.1 Numerical settings

For the convenience of the reader, all the conditions found and the numerical data used in
the following are listed in Tables 1–6.

Table 1. Conditions of equilibrium global stability.

Equilibrium Global stability condition
E1 Unconditionally globally stable

E2 k0r
√
K + λ 6 k0rL√

K
+ λ
√
Kk0
2

, 2√
K
< k0

E3 r < 1√
K
(Nk3√

K
+ αk3

√
K

2
− θ1α), k3 >

2θ1√
K

E∗ K > 2r
α

δ < min{ 1
3αh

(3θ2m+ 3θ1α+ 2hαθ2m), 1
3h

(2hθ2m+ 3θ1)} 3
θ2(2hα+3)

6 min{ 3(−2r+αK)
Kα(2hθ2m+3θ1−3hδ)

,
3(α+m)

3θ2m+3θ1α+2hαθ2m−3hαδ
}

Table 2. Changes of various parameters values in the different equilibrium points.

Equilibrium points α λ µ θ1 θ2 δ r K h m

E1 0.7 0.2 2 0.6 0.4 2.1 0.6 50 0.1 0.5
E2 0.7 0.24 2 0.19 0.39 0.4 0.8 80 1.5 0.2
E3 0.9 0.2 0.899 0.998 0.89 2.8 2.4 100 0.2 3

Table 3. Analytic conditions for feasibility.

Equilibrium Feasibility condition Sufficient condition
E0 – –

E1 – 0 < K < min{µ
2

λ2 , S
2
3}

E2 Kλ2 > µ2 min{ 3µ
2

λ2 ,
θ2mrµ

3

τ ′λ4 } > K > µ2

λ2

E3
Kθ1α−δ

√
K

Kδ α
< h < θ1

δ
θ1 > δh, G1 < K < G2

E∗ λ > µ
S∗
, θ1 < δh K > max{y1, y2, y3}

Nonlinear Anal. Model. Control, 28(2):326–364, 2023

https://doi.org/10.15388/namc.2023.28.31549


346 Md.S. Rahman et al.

Table 4. Stability conditions (LAS := locally asymptoically stable,
US := unstable saddle point, GAS := globally asymptotically stable).

Point Local nature Sufficient condition Global nature
E0 US
E1 LAS – –
E2 LAS a21 − 4a2 < 0 GAS
E3 LAS – GAS
E∗ LAS – GAS

Table 5. Variables and parameters used during simulations.

Definitions Units Value
S Susceptible prey density v –
I Infected prey density v –
P Predator density v –
r Prey growth rate t−1 3.1
K Prey carrying capacity v 120
α Predator search efficiency t−1 0.9
h Predator average handling time v−1t−1 –
λ Force of infection t−1 –
m Predation rate on infected prey t−1 –
µ Infected prey natural plus disease-related mortality rate t−1 –
θ1 Susceptible prey conversion factor – 0.9998
θ2 Infected prey conversion factor – 0.89
δ Predator natural mortality rate t−1 2.8

Table 6. Summary of the equilibria numerical results of system (2) (LAS := locally
asymptotically stable, US := unstable saddle point, HB := Hopf bifurcation, GAS := globally
asymptotically stable).

λ θ2 Solutions Eigenvalues Result
E1 0.2 0.2 (7.071067, 0, 0) (−0.3, 0,−1.891304) LAS
E2 0.24 0.39 (8.33, 3.66, 0) (−0.00044,−0.319± ı0.058) GAS
E3 0.2 0.9 (7.1029, 0, 21.3839) (−0.1413± ı0.843,−63.63) GAS

The disease-free equilibrium E1 = (7.1, 0, 0) can be achieved with the parameters of
Table 2, which satisfy the feasibility condition K < min{100, 59.2}.

The equilibrium E2 = (8.33, 3.66, 0) is obtained with the values of Table 2 satisfying
the global stability condition

k0r
√
K + λ = 3.69 <

k0rL√
K

+
λ
√
Kk0
2

= 10.55.

See Appendix G with the eigenvalues in Table 6.
E3 = (7.1029, 0, 21.3839) arises by the parameter values from Table 2 satisfying the

global stability condition

r <
1√
K

(
Nk3√
K

+
αk3
√
K

2
− θ1α

)
= 2.575.

See Appendix G with the eigenvalues provided in Table 6.
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(a) (b) (c)

Figure 2. (a) Stable phase portrait for λmin = 1.8 < λcr. (b) Phase portrait for h = 0.513, m = 1.2,
µ = 0.01 and other parameter values taken from Table 5. (c) Limit cycle for λ = 3.7 > λcr showing the Hopf
bifurcation.

(a) h = 0.198 (b) h = 0.2

(c) h = 0.207 (d) h = 0.213

Figure 3. Sequence of changes in the stability of E3 as function of the predator average handling time h for
h = 0.2. There is a stable limit cycle arising from a Hopf bifurcation in frame (b). In frame (d), it becomes
a stable spiral using the parameter values λ = 1, µ = 0.1, m = 3, K = 120 and the other ones from Table 5.

E∗ = (10.06, 0.78, 16.77) is obtained by the choice λ = 2, h = 0.4, m = 1.2, µ =
0.01 and the other parameters from Table 5 satisfying the global stability conditions in
Section 3.4.5: 0.9061254081<min{5.726564961, 1.352970737}, δ<min{6.178166667,
3.211500000} and K > 6.888888888.

The Hopf bifurcation discussed in Section 3.4.5.1 is numerically validated by the
parameters h = 0.513, m = 1.2, µ = 0.01 and the other ones from Table 5. By varying
the values of λ we obtain Figure 2. Increasing the value of λ to 1.8 while keeping the
same values for the remaining parameters, all the feasibility conditions of the coexistence
equilibrium are satisfied, giving E∗(8.989, 1.151, 27.708). Here λmin = 1.8, λcr = 3
and λmax = 4.4. E∗ is asymptotically stable when λmin = 1.8 < λcr. When λ lies
between λcr and the maximum value of λcr, a bifurcating limit cycle occurs from a Hopf
bifurcation; Fig. 2. Here Ω = 10.49; see Section 3.4.5.6. Therefore the Hopf bifurcation
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is subcritical. An extensive numerical simulation shows that when the value of λ is very
close to λcr, the three populations S, I and P take long time to stabilize whereas when λ
crosses the value λcr coming very close to λmax, the three populations become unstable.
Thus in summary we have the following proposition.

Proposition 5. The interval [λmin, λmax] contains a critical value λcr, where a subcritical
Hopf bifurcation occurs. For the Hopf bifurcation in the interval [λmin, λmax], the interior
equilibrium point is asymptotically stable between λmin and λcr, and for λ lying between
λcr and λmax, a limit cycle occurs. On the other hand, for λ > λmax, the equilibrium
does not exist.

The basic reproduction number depends on the ratio between infection and prey mor-
tality multiplied by the square root of the system carrying capacity K. The disease will
not die out if the prey mortality increases due just to infection rather than the natural
predation rate.

4.2 Interpretation

Note that the trivial equilibrium is always unstable. This indicates that each subpopulation
cannot disappear, thereby preserving the ecosystem.

The equilibrium E1 is locally asymptotically stable if (8) holds, which biologically
can be expressed by saying that the carrying capacity is bounded by a combination of
the prey mortality rate and disease transmission. The bound is directly proportional to
the former and inversely to the latter. In addition, it contains the equilibrium level of the
predator-free point, which indicates the possibility of a transcritical bifurcation among the
two equilibria.

Asymptotic stability of E1 occurs for R0 < 1; see (8). E2 is feasible for R0 > 1;
see (4). These are opposite conditions so that a transcritical bifurcation occurs for which
E2 emanates fromE1 when the latter becomes unstable. Also, E2 is stable for λ[2]0 < λ <

λ
[2]
1 , which gives a condition for disease control.

The disease-free equilibrium E3 is feasible when the predator search efficiency h =
(α
√
K)−1 lies in the interval (h

[3]
0 , h

[3]
1 ); see (5). We find numerically the disease-free

system experiences a Hopf bifurcation with bifurcation parameter h.
E3 is stable for h < h

[3]
1 (see (10)), and the coexistence equilibrium is feasible for

h > h
[3]
1 (see (7)) so that there exists a transcritical bifurcation for which the coexistence

equilibrium E∗ emanates from the disease-free equilibrium E3 when the latter becomes
unstable; recall Section 3.4.5.4. Also, for feasibility condition of the interior equilibrium,
the force of infection must lie in the interval (λ

[∗]
0 , λ

[∗]
1 ); see (7). This gives the condition

for disease control. Based on these results, for all the equilibrium points, we underline
the relevant role played by the parameter λ for the stability of points E1 and E2, while
the parameter h is critical for achieving the disease-free equilibrium. The coexistence
equilibrium evolution is regulated by the force of infection. Below a certain value of λ,
the system may become extinct; Section 4.3.

In addition, the equilibria global stability conditions reported in Table 3 are obtained
using Lyapunov and Lasalle theorem of Section 3.4.5.4.

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


An ecoepidemic model with healthy prey herding and infected prey drifting away 349

The crucial role of the parameters λ, µ, θ2, δ, h and r in the control of the dynamical
behavior of the system is therefore apparent. A future direction of the present work
therefore can be well extended by introducing recovery of disease incorporating the prey
refuge.

4.3 Bifurcations

We now investigate the bifurcations and corresponding limit point diagrams with respect
to the disease transmission λ.

The parameter values are taken from Table 5 with initial conditions S(0) = 7, I(0) =
0.7, and P (0) = 16 and λ = 1, h = 0.213, µ = 0.1, m = 3. Using MATCONT, we find
the stable (blue) and unstable (red) branches of the bifurcations; see Figs. 4–5.

In each bifurcation diagram in the λS, λI , λP -planes, there exists a complete loop
on the right half part. It has two branches, one of which is stable (blue), and the other is
unstable (red) branch. The loop joins two different equilibria, thereby, it is a heteroclinic
loop. This can be interpreted by saying that the heteroclinic point has different past and
future. Also, the existence of a heteroclinic orbit for the critical parameter value related

(a) (b)

Figure 4. (a) All bifurcation situations of (2) for susceptible prey S at all possible equilibria E0, E1, E2, E3

and E∗ for the parameter values given in Table 5 and λ = 1, h = 0.213, µ = 0.1, m = 3. (b) The bifurcation
diagram with the stable (blue) and unstable (red) branches in the λS-plane.

(a) (b)

Figure 5. (a) All bifurcation situations of (2) for the infected prey I at all equilibria E0, E1, E2, E3 and E∗
for the parameter values in Table 5 and λ = 1, h = 0.213, µ = 0.1, m = 3. (b) Bifurcation diagram with the
stable (blue) and unstable (red) branches in the λI-plane.
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(a) (b)

Figure 6. (a) All bifurcation situations of (2) for the predators P at all equilibria E0, E1, E2, E3 and E∗ for
the parameter values in Table 5 and λ = 1, h = 0.213, µ = 0.1, m = 3. (b) View of the bifurcation diagram
with the stable (blue) and unstable (red) branches in the λP -plane.

to the force of infection implies biological overexploitation by the disease [21]. This
shows that the force of infection affects the ultimate behavior of both system populations,
determining their survival or extinction.

5 A comparison

The model presented here is closely related to the one of [23], where instead of the
infected, it is the susceptible prey that behave individually. In both cases, the ecosystem
cannot disappear, a result that from the biodiversity point of view is good. It is mainly due
to the fact that environment has always means to support the prey, in particular healthy
prey, by providing them enough feeding resources.

In [23] the predator-free point harbors always the disease endemically. In addition,
we find the coexistence equilibrium in which also predators thrive, but where again the
disease is not eradicated.

In this system, however, the disease can be eradicated, while the healthy prey is
preserved at equilibrium E1. Its feasibility and stability conditions provide the theoretical
tools to achieve such goal if needed.

On the other hand, if the predators constitute a nuisance and should be eliminated,
both here and [23] contain the predator-free point. The role of the relevant parameters in
controlling the possible system outcomes have been elucidated and can be obtained from
the tables provided in the previous sections.

The predator-free equilibrium becomes unstable for a very low predator mortality rate
δ < δ[1], where δ[1] = θ1α

√
K(1 + hα

√
K)−1; see (8). A similar result is found for the

disease in predators [4, 9], where environmental carrying capacity K and the predation
rate play an essential role. We find a supercritical pitchfork bifurcation around E1 at K.
In addition, the predator’s average handling time h influences the threshold level. In [3],
it is shown that the stability of the prey-only equilibrium in a predator–prey model with
disease in predator changes when the predator mortality rate exceeds a threshold value.
We have also similar results but for a large enough prey mortality rate, µ > µ[1], where λ
influences the threshold value, which represents a different result from [3].
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The predator-free point becomes unstable in the presence of the disease in [23]. But
in this system the predator-free point is stable for 1 < R0 < R

[3]
0 , where R[3]

0 =
min{

√
3, [θ2mrµ(τ ′λ2)−1]1/2}; see (9).

In [2, 4, 9] the disease-free equilibrium is stable if the deaths of infected predator lie
above a threshold value, where only susceptible predators thrive. A similar situation arises
in [23], where the stability of the disease-free system required the predator mortality rate
must fall below a threshold so that the predators invade the environment permanently. In
this system, we find both upper and lower threshold value for predator mortality rate δ.
For the feasibility of the equilibrium point, it must lie in the interval (δ

[3]
0 , δ

[3]
1 ); see (5).

The stability of E3 holds for small enough predator’s mortality rate, δ < δ
[3]
1 ; see (10).

The predator average handling time h plays a role in both δ[3]0 and δ[3]1 . A healthy predator–
prey system becomes stable for predation rate above a threshold value in [3], but we get
an opposite condition: the disease-free system is feasible for low prey search efficiency
α < α[3], where α[3] = δ[

√
K(θ1 − δh)]−1.

Both prey-only and predator-free equilibria are unconditionally unstable in [24]. In-
stead, we get suitable stability conditions.

The different roles of the various parameters are shown in different equilibrium points.
However, λ has the most crucial role for which a heteroclinic orbit in the coexistence
equilibrium arises. It leads to extinction when the force of infection falls below the thresh-
old λ

[∗]
0 ; see (7). From the ecological point of view such a situation can arise due to

overexploitation of force of infection discussed in Section 4.3. Both the theoretical and
numerical analysis are found important to draw conclusions on a general level.

Acknowledgment. The authors are grateful to the reviewers for their beneficial com-
ments and recommendations in the development of the manuscript.

Appendix A: The Jacobian JB

A.1 Entries of J3 = (J ij
3 ), i, j = 1, 2, 3

J11
3 =

N11
3

2D11
3

, J13
3 = (−θ1 + δh)

α

θ1
, J22

3 =
N22

3

D22
3

,

J31
3 =

rδKα(−θ1 + δh)2

K(−θ1 + δh)2α2 − δ2
, J32

3 =
θ2mrδθ1K

α2Kθ21 − 2α2Kθ1δh+ α2Kδ2h2 − δ2
,

N11
3 =

(
α4K2θ51 − 3α4K2θ41δh+ 2α4K2θ31δ

2h2 − 4α2Kθ31δ
2 + 2α4K2θ21δ

3h3

+ 8α2Kθ21δ
3h
)(
−3θ1α

4K2δ4h4 − 4θ1α
2Kδ4h2 + 3θ1δ

4 + α4δ5K2h5
)
r,

D11
3 = θ1K(−θ1 + δh)2α2

(
α2Kθ21 − 2α2Kθ1δh

)
+
(
α2Kδ2h2 − δ2

)
,

N22
3 = −Kµ(−θ1 + δh)3α3 −Kδλ(−θ1 + δh)2α2

− δ(−θ1 + δh)(−µδ +mrθ1K)α+ λδ3,

D22
3 =

(
K(−θ1 + δh)2α2 − δ2

)
(−θ1 + δh)α.
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A.2 Values of l1, l2, l3

l1 =
N l1

Dl1
, l2 =

δ2

θ21α
2 − 2θ1α2δh+ α2δ2h2

,

l3 =
δ2(3θ1 + δh)

α2(θ31 − θ21δh− θ1δ2h2 + δ3h3)
,

N l1 = r
(
3α2θ31 − 5(2/5m+ hα2)δθ21 + θ1α

2δ2h2 + δ3h3α2
)
δ2,

Dl1 = α2(δh− θ1)2
(
α2(r − 2µ)θ31

)(
−
(
h(−4µ+ r)α2 − 2λα+ 2rm

)
δθ21

−
(
h(2µ+ r)α+ 2λ

)
hαδ2θ1 + rα2δ3h3

)
,

G2 = mrδ3θ1
[
α2
(
rmδθ31 − 2rmδ2θ21h

)
+
(
rmδ3θ1h

2 − αλδθ31 + 3αλδ2θ21h

− 3αλδ3θ1h
2 + λδ4αh3 + θ41α

2µ− 4α2θ31µδh+ 6θ21α
2µδ2h2

)
×
(
−4θ1α

2µδ3h3 + α2µδ4h4
)]−1

.

Appendix B: Proof of Proposition 3

The Jacobian eigenvalues atE∗ are the roots of the cubic equation L3+b1L
2+b2L+b3 =0,

where

b1 = −1

2

r(K − 3S2
∗)

K
− 1

2

α2P∗h

(1 + hαS∗)2
, b2 = I∗θ2m

2P∗ +
1

2
I∗λ

2 +
θ1α

2P∗
(2 + 2hαS∗)3

,

b3 = −I∗θ2m
2P∗

2

[
r(K − 3S2

∗)

K
+

α2P∗h

(1 + hαS∗)2

]
− I∗mθ1αP∗λ

2(1 + hαS∗)2
− αλθ2mI∗P∗

2(1 + hαS∗)
.

By the Routh–Hurwitz criteria asymptotic stability is achieved whenever b1 > 0, b2 > 0,
b1b2 > b3, i.e., K > max{y1, y2, y3}, where

y1 =
1

r

[
3rS2
∗
(
1 + 2hαS∗ + h2α2S2

∗
)]

+ 2rhαS∗ + rh2α2S2
∗ + α2P∗h,

y2 =
1

θ2mr

(
3θ2mrS

2
∗
(
1 + 2hαS∗ + h2α2S2

∗
))

+ 2θ2mrhαS∗ + θ2mrh
2α2S2

∗

+ λαθ1 + λαθ2 + α2λθ2hS∗ + θ2mα
2P∗h,

y3 =
z1
z2
,

z1 = 3rS2
∗
(
θ1α

2P∗ + 20I∗λ
2hαS∗ + 40I∗λ

2h2α2S2
∗
)

+ 40I∗λ
2h3α3S3

∗

+ 20h4α4S4
∗I∗λ

2 + 2hα3S∗θ1P∗ + 4h5α5S5
∗I∗λ

2 + h2α4S2
∗θ1P∗ + 4I∗λ

2,

z2 = rθ1α
2P∗ + 20rI∗λ

2hαS∗ + 40rI∗λ
2h2α2S2

∗ + 40rI∗λ
2h3α3S3

∗

+ 20rh4α4S4
∗I∗λ

2 + 2rhα3S∗θ1P∗ + 4rh5α5S5
∗I∗λ

2 + rh2α4S2
∗θ1P∗

+ 12α3P∗h
2I∗λ

2S∗ + 12α4P∗h
3I∗λ

2S2
∗ + 4α5P∗h

4I∗λ
2S3
∗ − 8I∗mθ1αP∗λ

− 8αλθ2mI∗P∗ + 4rI∗λ
2 + 4α2P∗hI∗λ

2 + α4P∗hθ1P∗ − 24α2λmI∗P∗θ1hS∗
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− 24α3λmI∗P∗θ1h
2S2
∗ − 8α4λmI∗P∗θ1h

3S3
∗ − 32α2λmI∗P∗θ2hS∗

− 48α3λmI∗P∗θ2h
2S2
∗ − 32α4λmI∗P∗θ2h

3S3
∗ − 8α5λmI∗P∗θ2h

4S4
∗ .

Appendix C: Proof of Theorem 1

We prove the persistence of system (2), applying average Lyapunov function method
[7, 14]. Consider the Lyapunov function V (S, I, P ) = Sj0Ij1P j2 , where j0, j1 and j2
are positive real numbers such that in the interior of R3

+,

Θ(S, I, P ) =
V̇ (S, I, P )

V (S, I, P )
= j0

Ṡ

S
+ j1

İ

I
+ j2

Ṗ

P
=
NΘ
DΘ

,

NΘ = j0rSK + j0rS
2Khα− j0rS3 − j0rS4hα− j0αPK − Ij0λK

+ 2Ij2Kθ2mhαS + 2j1KλS + 2j1KλS
2hα− 2j1KmP

− 2j1KmPhαS − 2j1Kµ− 2j1KµhαS + 2j2Kα+ 2Ij2Kθ2m

− Ij0λKhαS − 2j2Kδ − 2j2KδhαS,

DΘ = 2K(1 + hαS).

(i) At the trivial equilibrium pointE0(0, 0, 0),Θ(0, 0, 0) = α−µ−δ > 0 if α > µ+δ
when we choose j0 = j1 = j2.

(ii) At the boundary equilibrium point,

Θ(
√
K, 0, 0) =

j1λ
√
K+j1λKhα−j1µ−j1µhα

√
K+j2α−j2δ−j2δhα

√
K

1+hα
√
K

> 0

if α > (µ+ δ − λ
√
K)(1 + hα

√
K).

(iii) Similarly, at the predator-free equilibrium,

Θ(S2, I2, 0) =
1

Kλ4(λ+ hαµ)
j2
(
K(α− δ)λ5 − δhαµKλ4 + rµθ2mλ

3K

+ rµ2θ2mhαKλ
2 − rµ3θ2mλ− rµ4θ2mhα

)
> 0

if
µθ2m

(
Kλ3 + µhαKλ2 − µ2λ− µ3hα

)
r > Kλ4(−αλ+ δλ+ δhαµ),

and the infected prey-free equilibrium is positive, that is,

Θ(S3, 0, I3) =
1

θ1α4(−θ1 + hδ)4K

(
−Kα4(−j2α+ j1µ+ j2δ)θ

5
1

+ 4
(
−5/4j2hα

3 + h(j1µ+ j2δ)α
2 + 1/4j1λα− 1/4j1mr

)
δα2Kθ41

− 6hδ2α2K
(
−5/3j2hα

3 + h(j1µ+ j2δ)α
2 + 1/2j1λα− 1/3j1mr

)
θ31

+ 4δ3
(
−5/2j2α

5Kh3 +Kh3(j1µ+ j2δ)α
4

+ 3/4j1λα
3Kh2 − 1/4j1mrKα

2h2 + 1/4j1mr
)
θ1

2

− h3δ4α3K
(
−5j2hα

2 + h(j1µ+ j2δ)α+ j1λ
)
θ1 − j2α5Kh5δ5

)
> 0
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if we choose j0 = j1 = j2 for all cases when

θ1
(
δ5θ1h

4 + 6δ3θ31h
2 − 4δ4θ21h

3 + 10αθ21h
3δ3 − 5αθ1h

4δ4 + 5αθ41hδ

− 10αθ31h
2δ2 + δθ51 − αθ51 − 4δ2θ41h+ αh5δ5

)
< α4K

(
λδα3Kθ31 − 6µα4Kθ21h

2δ2 + 4µα4Kθ1h
3δ3 − µα4Kh4δ4

+mrδ3θ1 − µα4Kθ41 + 3λδ3α3Kθ1h
2 − λδ4α3Kh3 −mrδθ31Kα2

− 3λδ2α3Kθ21h+ 2mrδ2θ21Kα
2h−mrδ3θ1Kα2h2 + 4µα4Kθ31hδ

)
.

Since the value of Θ(S, I, P ) is positive at all boundary points, system (2) is persistent.

Appendix D: Proof of Proposition 4

Bifurcation analysis deals with structurally unstable systems. The characteristic equation
of (2) at E∗ is

x3 + a1x
2 + a2x+ a3 = 0, (D.27)

where a1 = − tr(J∗), a2 = MJ∗ , a3 = −det(J∗). Now when λ = λcr so that a1a2 =
a3, the characteristic equation (D.27) factorizes as (x2 + a2)(x + a1) = 0. Its roots
are x1 = ı

√
a2, x2 = −ı√a2, x3 = −a1. In a neighborhood of λcr, the roots of

the characteristic equation (D.27) for all λ are of the form x1 = τ1(λ) + ıτ2(λ), x2 =
τ1(λ)− ıτ2(λ), x3 = −τ3(λ), where τ1(λ), τ2(λ), τ3(λ) are real.

To verify the transversality condition, we substitute x(λ) = τ1(λ)+ıτ2(λ) into (D.27)
to get

(τ1 + ıτ2)3 + a1(τ1 + ıτ2)2 + a2(τ1 + ıτ2) + a3 = 0.

Separating the real and imaginary parts, we find

τ31 − 3τ1τ
2
2 + a1

(
τ21 − τ22

)
+ a2τ1 + a3 = 0,

3τ21 τ2 − τ32 + 2a1τ1τ2 + a2τ2 = 0.
(D.28)

From the second equation of (D.28), as τ2 6= 0, we can set

f(τ1) = τ22 = 3τ21 + 2a1τ1 + a2, (D.29)

and substituting the value of τ22 into the first equation of (D.28), we get

τ31 − 3τ1f(τ1) + a1
(
τ21 − f(τ1)

)
+ a2τ1 + a3 = 0. (D.30)

Differentiating (D.30) with respect to λ, we get

3τ21
dτ1
dλ
− 3τ1f

′(τ1)
dτ1
dλ
− 3f(τ1)

dτ1
dλ

+
da1
dλ

(
τ21 − f(τ1)

)
+ a1

(
2τ1 − f ′(τ1)

)dτ1
dλ

+ τ1
da2
dλ

+ a2
dτ1
dλ

+
da3
dλ

= 0.
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Since τ1(λcr) = 0, from (D.29) we get f(0) = a2 and f ′(0) = 2a1. Thus[
dτ1
dλ

]
λ=λcr

= − 1

2(a21 + a2)

[
da3
dλ
− a2

da1
dλ

]
= λcr 6= 0,

x3(λcr) = −τ3(λcr).

Now [dτ1/dλ]λ=λcr
< 0 when the condition of Proposition 3 is satisfied. Hence, E∗ is

unstable when λ < λcr, and stable when λ > λcr. Thus a Hopf bifurcation occurs at
λ = λcr.

Appendix E: Notations used in other bifurcations

The variational matrix is as follows:

D2F (x,m)(U,U)

=
∂2F

∂x2
u21 +

∂2F

∂x∂y
u1u2 +

∂2F

∂x∂z
u1u3 +

∂2F

∂y∂x
u2u1 +

∂F

∂y2
u22

+
∂2F

∂y∂z
u2u3 +

∂2F

∂z∂x
u3u1 +

∂2F

∂z∂y
u3u2 +

∂2F

∂z2
u23,

D3F (x,m)(U,U, U)

=
∂3F

∂x3
u31 +

∂3F

∂x2∂y
u21u2 +

∂3F

∂x2∂z
u21u3 +

∂3F

∂y∂x2
u2u

2
1 +

∂3F

∂x∂y2
u1u

2
2

+
∂3F

∂x∂y∂z
u1u2u3 +

∂3F

∂x∂x2
u3u

2
1 +

∂3F

∂x∂y∂z
u1u3u2 +

∂3F

∂x∂z2
u1u

2
3

+
∂3F

∂y∂x2
u2u

2
1 +

∂3F

∂x∂y2
u1u

2
2 +

∂3F

∂y∂x∂z
u2u1u3 +

∂3F

∂y2∂x
u22u1 +

∂3F

∂y3
u32

+
∂3F

∂y2∂z
u22u3 +

∂3F

∂y∂z∂x
u2u3u1 +

∂3F

∂z∂y2
u3u

2
2 +

∂3F

∂y∂z2
u2u

2
3 +

∂3F

∂z∂x2
u3u

2
1

+
∂3F

∂z∂x∂y
u3u1u2 +

∂3F

∂x∂z2
u1u

2
3 +

∂3F

∂z∂y∂x
u3u2u1 +

∂3F

∂z∂y2
u3u

2
2

+
∂3F

∂y∂z2
u2u

2
3 +

∂3F

∂x2∂x
u23u1 +

∂3F

∂z2∂y
u23u2 +

∂3F

∂z3
u23,

where F = (F1, F2, F3)T, and

V TFm(E∗,m4) =
θ2P∗(P∗α+ I∗λ+ I∗λhαS∗)µ

′
3

(1 + hαS∗)λ
,

V TDF (E∗,m4)(U) = − η1
K(1 + hαS)2)λ

,

V TD2F (E∗,m4)(U,U) = − η2
K(1 + hαS∗)3λ

,

V TD3F (E∗,m4)(U,U, U) =
η3

K(1 + hαS∗)4λ
;
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η1 = µ′3
(
−θ2mP∗γ′1rK + 3θ2mP∗γ

′
1rS

2
∗ −Kλθ1αP∗γ′1 −Kλµ′3θ1αS∗

+ αθ2P∗Kλγ
′
1+Kλµ′3δ−θ2mP 2

∗ γ
′
1α

2hK−Kλµ′3θ1α2S2
∗h+2Kλµ′3δhαS∗

+Kλµ′3δh
2α2S2

∗ + I∗α
2θ2P∗Kµ

′
2µhS∗ + I∗α

2θ2P
2
∗Kµ

′
2mhS∗

− I∗α2θ2P∗Kµ
′
2λS

2
∗h+I∗αθ2P∗Kµ

′
2µ+I∗αθ2P

2
∗Kµ

′
2m+α2θ2P∗Kλγ

′
1hS∗

+ 6θ2mP∗γ
′
1rS

3
∗hα− 2θ2mP∗γ

′
1rKhαS∗ − θ2mP∗γ′1rKh2α2S2

∗

− I∗αθ2P∗Kµ′2λS∗ − I∗Kλµ′3θ2mh2α2S2
∗ − 2I∗Kλµ

′
3θ2mhαS∗

− I∗Kλµ′3θ2m+ 3θ2mP∗γ
′
1rS

4
∗h

2α2
)
,

η2 = µ′3(6θ2mP∗γ
′
1
2
rS∗ + 18θ2mP∗γ

′
1
2
rS2
∗hα+ 18θ2mP∗γ

′
1
2
rS3
∗h

2α2

+ 6θ2mP∗γ
′
1
2
rS4
∗h

3α3 + 2θ2mP
2
∗ γ
′
1
2
α3h2K − θ2mP∗γ′1α2µ′3hK

− θ2mP∗γ′1α3µ′3h
2KS∗ + I∗µ

′
2α

3θ2P∗Kmµ
′
3h

2S2
∗ − I∗γ′1µ′2αθ2P∗Kλ

+ I∗µ
′
2αθ2P∗Kmµ

′
3 − I∗γ′1µ′2α3θ2P∗Kλh

2S2
∗ − 2I∗γ

′
1µ
′
2α

2θ2P∗KλhS∗

+ 2I∗µ
′
2α

2θ2P∗Kmµ
′
3hS∗ + 2Kλθ1α

2P∗hγ
′
1
2 −Kλθ2mµ′3µ′2

− 3Kλθ2mµ
′
3µ
′
2hαS∗ − 3Kλθ2mµ

′
3µ
′
2h

2α2S2
∗ −Kλθ2mµ′3µ′2h3α3S3

∗

−Kλθ1αγ′1µ′3 −Kλθ1α2γ′1µ
′
3hS∗

)
,

η3 = 2γ′1
2
µ′3
(
−3θ2mP∗γ

′
1r − 12θ2mP∗γ

′
1rhαS∗ − 18θ2mP∗γ

′
1rh

2α2S2
∗

− 12θ2mP∗γ
′
1rh

3α3S3
∗ − 3θ2mP∗γ

′
1rh

4α4S4
∗ + 3θ2mP

2
∗ γ
′
1α

4h3K

− 2θ2mP∗α
3h2µ′3K − 2θ2mP∗α

4h3µ′3KS∗ + 3θ1α
3h2KλP∗µ

′
1

− 2θ1α
2hKλµ′3 − 2θ1α

3h2Kλµ′3S∗
)
,

m =
Nm
Dm

,

Nm = I∗µ
′
1µ
′
2αθ2P∗Kλ+ 2I∗µ

′
1µ
′
2α

2θ2P∗KλhS∗ + I∗µ
′
1µ
′
2α

3θ2P∗Kλh
2S2
∗

− 2Kλθ1α
2P∗hµ

′
1
2

+Kλθ1αµ
′
1µ
′
3 +Kλθ1α

2µ′1µ
′
3hS∗

Dm = 18θ2P∗µ
′
1
2
rS2
∗hα+ 18θ2P∗µ

′
1
2
rS3
∗h

2α2 + 6θ2P∗µ
′
1
2
rS4h3α3

− θ2P∗µ′1α2µ′3hK − θ2P∗µ′1α3µ′3h
2KS∗ + I∗µ

′
2α

3θ2P∗Kµ
′
3h

2S2
∗

+ I∗µ
′
2αθ2P∗Kµ

′
3 + 2I∗µ

′
2α

2θ2P∗Kµ
′
3hS∗ − 3Kλθ2µ

′
3µ
′
2hαS∗

− 3Kλθ2µ
′
3µ
′
2h

2α2S∗
2 −Kλθ2µ′3µ′2h3α3S3

∗ + 2θ2P
2
∗µ
′
1
2
α3h2K

+ 6θ2P∗µ
′
1
2
rS∗ −Kλθ2µ′3µ′2,

K [te2I ] =
θ2mrµ

3(λ+ hαµ)

λ2(−δλ3 + λ2θ1µα− λ2δhαµ+ θ2mrµλ+ θ2mrµ2hα)
,

K [te3] =
mrδ3θ1
Ξ

,

Ξ = α2
(
µα2θ41−4µα2θ31δh+6µα2θ21δ

2h2−4µα2θ1δ
3h3+µα2δ4h4−λδαθ31

+ 3λδ2αθ21h−3λδ3αθ1h
2+λδ4αh3+mrδθ31−2mrδ2θ21h+mrδ3θ1h

2
)
.
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Now λ[te2I ] is the positive root of the equation
∑5
i=0 biX

i = 0, where

b0 = θ2mrµ
4hα, b1 = θ2mrµ

3, b2 = −θ2mrµ2Khα,

b3 = −θ2mrµK, b4 = Kαµ(δh− θ1), b5 = δK,

µ[te2I ] is the positive root of the equation
∑4
i=0 ciY

i = 0, where

c0 = δKλ, c1 = −λθ1αK + λδKhα− θ2mrK,
c2 = −θ2mrKhα, c3 = θ − 2mr, c4 = θ2mrhα,

and K [te3] is the positive root of the equation
∑4
i=0 diZ

i/(δα) = 0, where

d0 = µα4Kθ41 − λδα3Kθ31 −mrδ3θ1 +mrδθ31Kα
2,

d1 = 3δλKθ21α
2 − 2δmKrθ21α− 4µKθ31α

3,

d2 = −3δλθ1α+mKrδθ1 + 6µKθ21α
2,

d3 = λKδ − 4µKθ1α, d4 = µK.

Appendix F: Notations used in Section 3.4.5.6

Π = Q11

[
T 2h

{
(U11I1+U12I2)

(
U31I1+U32I2+U33

Λ

2

)
+ U13

Λ

2
(U31I1+U32I2)

}
− T1

{
(U11I1 + U12I2)2 + U13Λ(U11I1 + U12I2)

}]
+Q12

[
λ

{
(U11I1+U12I2)

(
U21I1+U22I2+U23

Λ

2

)
+ U13

Λ

2
(U21I1+U22I2)

}
−m

{
(U31I1 + U32I2)

(
U21I1 + U22I2 + U23

Λ

2

)
+ U33

Λ

2
(U21I1 + U22I2)

}]
+Q13

[(
θ1T − θ1T 2hS∗

){
(U11I1 + U12I2)

(
U31I1 + U32I2 + U33

Λ

2

)
+ U13

Λ

2
(U31I1 + U32I2)

}
− θ2m

{
(U31I1 + U32I2)

(
U21I1 + U22I2 + U23

Λ

2

)
+ U33

Λ

2
(U21I1 + U22I2)

}
+
(
2θ1T

3h2S∗P∗ − 2θ1T
2P∗h

){
(U11I1 + U12I2)2 + U13Λ(U11I1 + U12I2)

}]
,

Π11 = Q11

[
T 2h{2U11U31} − T1

{
2U2

11

}]
+Q12

[
λ{2U11U21} −m{2U31U21}

]
+Q13

[(
θ1T − θ1T 2hS∗

)
{2U11U31} − θ2m{2U31U21}

+
(
2θ1T

3h2S∗P∗ − 2θ1T
2hP∗

)
{2U2

11}
]
,
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Π22 = U11

[
T 2h{2U12U32} − T1

{
2U2

12

}]
+Q12

[
λ{2U12U22} −m{2U32U22}

]
+Q13

[(
θ1T − θ1T 2hS∗

)
{2U12U32} − θ2m{2U32U22}

+
(
2θ1T

3h2S∗P∗ − 2θ1T
2hP∗

){
2U12

2
}]
,

Π12 = U11

[
T 2h{U11U32 + U12U31} − T1{2U12U11}

]
+Q12

[
λ{U11U22 + U12U21}

−m{U31U22 + U32U21}
]

+Q13

[(
θ1T − θ1T 2hS∗

)
{U11U32 + U12U31}

− θ2m{U31U22 + U32U21}+
(
2θ1T

3h2S∗P∗ − 2θ1T
2hP∗

)
{2U12U11}

]
,

Σ11 = Q21

[
T 2h{2U11U31} − T1

{
2U11

2
}]

+Q22

[
λ{2U11U21} −m{2U31U21}

]
+Q23

[(
θ1T − θ1T 2hS∗

)
{2U11U31

}
− θ2m{2U31U21}

+ (2θ1T
3h2S∗P∗ − 2θ1T

2hP∗)
{

2U11
2
}]
,

Σ22 = Q21

[
T 2h{2U12U32} − T1

{
2U12

2
}]

+Q22

[
λ{2U12U22} −m{2U32U22}

]
+Q23

[(
θ1T − θ1T 2hS∗

)
{2U12U32} − θ2m{2U32U22}

+
(
2θ1T

3h2S∗P∗ − 2θ1T
2hP∗

){
2U12

2
}]
,

Σ12 = Q21

[
T 2h{U11U32 + U12U31} − T1{2U12U11}

]
+Q22

[
λ{U11U22 + U12U21}

−m{U31U22 + U32U21}
]

+Q23

[(
θ1T − θ1T 2hS∗

)
{U11U32 + U12U31}

− θ2m{U31U22 + U32U21}+
(
2θ1T

3h2S∗P∗ − 2θ1T
2hP∗

)
{2U12U11}

]
,

Σ222 = Q21

[
T 2h{3U12U33b22 + 3U13U32b22}

]
+Q22

[
λ{3U12U23b22 + 3U13U22b22} −m{3U32U23b22 + 3U33U22b22}

]
+Q23

[(
θ1T − θ1T 2hS∗

)
{3U12U33b22 + 3U13U32b22}

− θ2m{3U32U23b22 + 3U33U22b22}
+
(
2θ1T

3h2S∗P∗ − 2θ1T
2hP∗

)
{6b22U13U12}

]
,

Σ112 = Q21

[
T 2h{2U11U33b12 + U12U33b11 + 2U13U31b12 + U13U32b11}

]
+Q22[λ{2U11U23b12 + U12U23b11 + 2U13U21b12 + U13U22b11}
−m{2U31U23b12 + U32U23b11 + 2U33U21b12 + U33U22b11}]
+Q23

[(
θ1T − θ1T 2hS∗

)
× {2U11U33b12 + U12U33b11 + 2U13U31b12 + U13U32b11}
− θ2m{2U31U23b12 + U32U23b11 + 2U33U21b12 + U33U22b11}
+
(
2θ1T

3h2S∗P∗ − 2θ1T
2hP∗

)
{2b11U13U12 + 4b12U13U11}

]
,

Π111 = Q11

[
T 2h{3U11U33b11 + 3U13U31b11}

]
+Q12

[
λ{3U11U23b11 + 3U13U21b11} −m{3U31U23b11 + 3U33U21b11}

]
+Q13

[(
θ1T − θ1T 2hS∗

)
{3U11U33b11 + 3U13U31b11}

− θ2m{3U31U23b11 + 3U33U21b11}
+
(
2θ1T

3h2S∗P∗ − 2θ1T
2hP∗

)
{6b11U13U11}

]
,
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Π122 = Q11

[
T 2h{U11U33b22 + 2U12U33b12 + U13U31b22 + 2U13U32b12}

]
+Q12

[
λ{U11U23b22 + 2U12U23b12 + U13U21b22 + 2U13U22b12}

−m{U31U23b22 + 2U32U23b12 + U33U21b22 + 2U33U22b12}
]

+Q13

[
(θ1T−θ1T 2hS∗){U11U33b22+2U12U33b12+U13U31b22+2U13U32b12}

− θ2m{U31U23b22 + 2U32U23b12 + U33U21b22 + 2U33U22b12}
+
(
2θ1T

3h2S∗P∗ − 2θ1T
2hP∗

)
{4b12U13U12 + 2b22U13U11}

]
.

Appendix G: Proof of global stability

G.1 At E1

Let R3 = [(S, I, P ) ∈ R3: S > 0, I > 0, P > 0] and consider the scalar function
defined in [1, 11]

Z1 =

(
S − S1 − S1 ln

S

S1

)
+ I + P. (G.31)

The derivative of (G.31) along the solution trajectories of (2) is

dZ1

dt
=

(
1− s1

S

)
dS

dt
+

dI

dt
+

dP

dt
=

(
1− S1

S

)(
1

2
rS

(
1− S2

K

))
. (G.32)

At the equilibrium point E1 of system (2), we have K = S2
1 , and using it in (G.32), we

obtain

dZ1

dt
=

1

2
r(S − S1)

(
1− S2

S2
1

)
= − r

2S2
1

(S − S1)2(S + S1) 6 0 (G.33)

with the derivative vanishing when (S, I, P ) = (S1, 0, 0). The proof follows from (G.33)
and Lyapunov–Lasalle’s invariance principle [11].

G.2 At E2

Let R3
+ = [(S, I, P ) ∈ R3

+: S > 0, I > 0, P > 0] and consider the scalar function
Z2 : R3

+ → R defined by

Z2 = k0

(
S − S′2 − S′2 ln

S

S′2

)
+

(
I − I ′2 − I ′2 ln

I

I ′2

)
. (G.34)

The derivative of equation (G.34) along the solution of system (2) is given by

dZ2

dt
= k2

(
1− S′2

S

)
dS

dt
+

(
1− I∗

I

)
dI

dt

=
k0
2

(
1− S′2

S

)(
rS − rS3

K
− λI

)
+ (I − I ′2)(λS − µ). (G.35)
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At the equilibrium point E2 of system (2), we have

rS′2 −
rS
′3
2

K
− λI ′2 = 0, µ = λS′2. (G.36)

Then equations (G.36) reduce (G.35) to

dZ2

dt
=
k0
2

S−S′2
S

[
rS− rS

3

K
−λI−

(
rS′2−

rS′32
K
−λI ′2

)]
+λ(I−I ′2)(S−S′2)

=
k0
2S

(S−S′2)

[
r(S−S′2)− r

K

(
S3−S′32

)
−λ(I−I ′2)

]
+λ(I−I ′2)(S−S′2)

=
k0r

2S
(S−S′2)2− rk0

2KS
(S−S′2)2

(
S2+SS−2+S′22

)
− λk0

2S
(S−S′2)(I−I ′2)+λ(S−S′2)(I−I ′2)

6

[
k0r

2S
− k0r

2KS

(
S2+SS′2+S′22

)
− λk0

4S
+
λ

2

]
(S−S′2)2+

[
λ

2
− λk0

4S

]
(I−I ′2)2

<

[
k0r
√
K

2
− k0rL

2
√
K
− λk0

√
K

4
+
λ

2

]
(S−S′2)2+

[
λ

2
− λk0

√
K

4

]
(I−I ′2)2 (G.37)

so that the above derivative is nonpositive if

k0r
√
K + λ 6

k0rL√
K

+
λ
√
Kk0
2

,
2√
K

< k0,

and it vanishes when (S, I, P ) = (S′2, I
′
2, 0), where

L = K +

√
Kµ

λ
+
µ2

λ2
,

and S′2 = µ/λ, I ′2 = rµ(Kλ2 − µ2)/Kλ4. The proof follows from equation (G.37) and
Lyapunov–Lasalle’s invariance principle [11].

G.3 At E3

Let R3
+ = [(S, I, P ) ∈ R3

+: S > 0, I > 0, P > 0] and consider the scalar function
Z3 : R3

+ → R defined by

Z3 = k3

(
S − S3 − S3 ln

S

S3

)
+

(
P − P3 − P3 ln

P

P3

)
. (G.38)

At the equilibrium point E3, we have

rS3 −
rS3

3

K
− αP3

1 + hαS3
= 0, δ =

θ1αS3

1 + hαS3
. (G.39)
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Equations (G.39) reduce (G.38) to

dZ3

dt
=

1

2
k3

(
1− S3

S

)(
rS − rS3

K
− αP

1 + hαS
− rS3 +

rS3
3

K
+

αP3

1 + hαS3

)
+ (P − P3)

[
θ1αS

1 + hαS
− θ1αS3

1 + hαS3

]
6
k3
2S

(S − S3)

[
r(S − S3)− r

K

(
S3 − S3

3

)
− α(P − P3)

]
+ θ1α(S − S3)(I − I3)

=
rk3
2S

(S − S3)2 − rk3
2KS

(S − S3)2
(
S2 + SS3 + S2

3

)
− rk3

2S
(S − S3)(P − P3) + θ1α(S − S3)(I − I3)

6

[
rk3
2S
− rk3(S2 + SS3 + S2

3)

2KS
+
αk3
4S

+
θ1α

2

]
(S − S3)2

+

[
θ1α

2
− αk3

4S

]
(P − P3)2

<

[
rk3
√
K

2
− rk3N

2
√
K
− αk3

√
K

4
+
θ1α

2

]
(S − S3)2

+

[
θ1α

2
− αk3

√
K

4

]
(P − P3)2. (G.40)

Again, the above derivative is nonpositive if

r <
1√
K

(
Nk3√
K

+
αk3
√
K

2
− θ1α

)
, k3 >

2θ1√
K
,

and it vanishes when (S, I, P ) = (S3, 0, P3), where N = K +
√
KS3 + S2

3 . The proof
follows from (G.40) and Lyapunov-Lasalle’s invariance principle.

G.4 At E∗

Let R3 = {(S, I, P ) ∈ R+: S > 0, I > 0, P > 0} and consider the scalar function
Z : R3 → R defined by

Z(t) = k1

S∫
S∗

S − S∗
S

dS +

I∫
I∗

I − I∗
I

dI + k2

P∫
P∗

P − P∗
P

dP. (G.41)

The derivative of equation (G.41) along the solution trajectories of (2) is

dZ(t)(S, I, P )

dt
=

dZ1(t)(S, I, P )

dt
+

dZ2(t)(S, I, P )

dt
+

dZ3(t)(S, I, P )

dt
.
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Now

dZ1(t)

dt
(S, I, P ) = k1

(
1− S∗

S

)(
r(S − S∗)

(
1− (S − S∗)2

K

)
− α(P − P∗)

1 + hα(S − S∗)
− λ(I − I∗)

)
,

dZ2(t)

dt
(S, I, P ) =

(
1− I∗

I

)(
λ(S − S∗)−m(P − P∗)− µ

)
,

dZ3(t)

dt
(S, I, P ) = k2

(
1− P∗

P

)(
θ1α(S − S∗)

1 + hα(S − S∗)
+ θ2m(I − I∗)− δ

)
.

Therefore, letting S − S∗ = x, I − I∗ = y, P − P∗ = z, we get

dZ(t)

dt
(S, I, T )

=
k1x

KS

[
rx(K − x2)−Kαz −Kλy(1 + hαx)

]
+ y(λx−mz − µ)

+
k2z

P (1 + hαx)

[
θ1αx+ (1 + hαx)(θ2my − δ)

]
6 −k1rx4 + k1rx

2 − k1Khαλx2y + k2hαθ2mxyz + λ(1− k1K)xy

+m(k2θ2 − 1)yz + (k2θ1α− k1Kα− k2hαδ)zx− µy − δk2z

<

[
k1r +

1

3
hαm+

1

2
λ(1− k1K) +

1

2
K2θ1α−

1

2
k1Kα−

1

2

hαδ

θ2

]
x2

+

[
1

3
hαm+

1

2
λ(1− k1K)

]
y2 +

[
1

3
hαm+

1

2
K2θ1α−

1

2
k1Kα−

1

2

hαδ

θ2

]
z2,

having taken

k1 =
1

K
, k2 =

3

θ2(2hα+ 3)
,

k1 6
3(−2r + αK)

Kα(2hθ2m+ 3θ1 − 3hδ)
, k2 6

3(α+m)

3θ2m+ 3θ1α+ 2hαθ2m− 3hαδ
,

which correspond to assumptions (14). Also, the derivative vanishes only at the equilib-
rium E∗. Thus Z(t) is a Lyapunov function and by Lasalle’s theorem global stability
follows.
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