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Abstract. A new network-based SIR epidemic model, which incorporates the individual medical
resource factor and public medical resource factor is proposed. It is verified that the larger
the public medical resource factor, the smaller the control reproduction number, and the larger
individual medical resource factor can weaken the spread of diseases. We found that the control
reproduction number below unity is not enough to ensure global asymptotic stability of the disease-
free equilibrium. When the number of hospital beds or the individual medical resource factor
is small enough, the system will undergoes backward bifurcation. Moreover, the existence and
uniqueness of the optimal control and two time-varying variables’s optimal solutions are obtained.
On the scale-free network, the level of optimal control is also proved to be different for different
degrees. Finally, the theoretical results are illustrated by numerical simulations. This study suggests
that maintaining sufficient both public medical resources and individual medical resources is crucial
for the control of infectious diseases.

Keywords: medical resources, network, SIR model, backward bifurcation, optimal control.

1 Introduction

Medical resources have a significant impact on the prevention, control and treatment of
infectious diseases. For instance, during the outbreak of COVID-19, in order to treat many
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patients, Chinese government build rapidly Huoshenshan and Leishenshan hospital and
many cabin hospitals in Wuhan. When infected people are identified, take the measure of
universal nucleic acid testing timely can be effective in inhibiting the large-scale outbreak.
Because of the investment of these public medical resources, the COVID-19 has been well
controlled.

In addition, individual medical resources also play a vital role in disease controlling.
When infectious diseases occur, people will instinctively take some measures, which are
related to individual medical resources to protect themselves. During the late stage of the
SARS outbreak, some measures like wearing mask, quarantine, etc. have been proved to
be useful in reducing the infection rate [12, 27]. In [29], Xiao and Ruan proposed a non-
monotonous incidence rate to describe the psychological effect caused by the behavioural
changes of susceptible individuals. The problem of psychological effect is also studied
in [17] during the SARS outbreak, the protection measures taken by the susceptible
individuals can indeed inhibit the spread of disease. Zhang and Sun established a new SIS
epidemic model with feedback mechanism (people’s instinctive response to infectious
diseases) as well as birth and death. It is also proved that the feedback mechanism can
weaken the spread of diseases and reduce the level of endemic diseases [31].

Recovery rate is highly dependent on medical conditions, in particular, the amount
of medical resources invested. In most models of infectious diseases, the recovery rate is
assumed to be proportional to the number of infected individuals, which means that the
medical resources are plentiful [2]. In fact, the resources such as the number of health care
workers and hospital beds, etc. are very limited, especially, during the stage of diseases
outbreak [10,25,26]. Therefore, it is necessary to study the influence of medical resources
on the dynamics of epidemic models.

To study the impact of hospital beds, Shan and Zhu [25] proposed a nonlinear recovery
rate function γ(b, I) = γ0+b(γ1−γ0)/(b+I), where γ0 and γ1 are the minimum and
maximum recovery rates, respectively. b is the number of hospital beds, I is the number
of infected individuals. Abdelrazec et al. [1] applied the nonlinear recovery rate to explore
the impact of hospital beds on the spread of dengue fever. It is proved that when the
number of hospital beds is small enough, backward bifurcation and saddle-node bifurca-
tion may happen [8]. The impact of public medical resources on the spread of infectious
diseases is also studied in [19]. In general, these literatures involved theoretical analysis
on bifurcation, and the related numerical simulation results are all non-network studies.

To describe the heterogeneity of contact, complex networks are therefore incorporated
into the epidemic models. Pastor-Satorras and Vespignani proposed a popular network-
based SIS epidemic model [22, 23]. Since then, a large number of related researches on
network-based epidemic models have emerged, such as literatures [3, 4, 21]. A saturated
treatment function T (I) = rI/(1+αI) was introduced to describe a limited medical
capacity in [33], where r is the cure rate, α > 0 is used to describe the effect of delay due
to limited medical resources. Li and Yousef studied a network-based SIR epidemic model
with saturated treatment function in [18]. Huang and Li studied the complex dynamical
properties of a network-based SIS epidemic model with saturated treatment function [13].
A condition, which can determine the direction of bifurcation at R0 = 1, is derived
in [13, 18].
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The main problem of optimal control theory is to find the optimal control strategy so
that the objective function reaches a maximum or minimum value under some constraints.
In the past, optimal control theory was mainly applied to the study of low-dimensional
epidemic systems [5,14–16,30]. However, there are still relatively few studies on consid-
ering the optimal control problems on networks [6, 7, 20, 32].

To our knowledge, there are few results on the bifurcation theory on networks. Be-
sides, few people combined individual and public medical resources to consider the dy-
namics and optimal control problem of network-based epidemic models. So the research
of this paper is still valuable, the highlights are summarized as follows:

• A new network-based SIR epidemic model with the impact of both individual med-
ical resources and public medical resources on diseases transmission is established;

• Due to high dimensionality of the network model, the bifurcation theory of low-
dimensional systems cannot be directly generalized to networks. The condition for
the existence of the backward bifurcation is given by judging the sign of
∂θ/∂R0|(R0,θ)=(1,0). It is proved that when the number of hospital beds in public
medical resources or the individual medical resource factor is small enough, the
model will exhibit the phenomenon of backward bifurcation;

• An optimal solution which can minimise the sum of infected density and the cost
of medical resources is given, and the level of optimal control is also confirmed to
be different for different degrees on the scale-free network.

The structure of this paper is as follows. In Section 2, a new network-based SIR
epidemic model is proposed. The stability of the disease-free and endemic equilibrium is
studied in Section 3. In Section 4, a condition, which decides the direction of bifurcation,
is given. In Section 5, the optimal medical resources control strategy is discussed. The
numerical simulations are performed in Section 6. Lastly, the conclusions and discussions
are presented in Section 7.

2 Model description

A new network-based SIR epidemic model with birth and death will be proposed in this
section. On the scale-free network, all the nodes are classified into n groups, and the
nodes in the same group have the same degree. Besides, each node is assumed to have
one of three states: susceptible, infected, or recovered. Suppose that Sk(t), Ik(t), Rk(t),
Nk(t) be the densities of susceptible, infected, recovered and total nodes with degree k
at time t, respectively. The dynamical mean-field equations of network-based SIR model
are written as

S′k(t) = Λ− βk
(
1− αθ(t)

)
Sk(t)θ(t)− dSk(t),

I ′k(t) = βk
(
1− αθ(t)

)
Sk(t)θ(t)− dIk(t)−

(
γ0 +

b(γ1 − γ0)
b+ θ(t)

)
Ik(t),

R′k(t) =

(
γ0 +

b(γ1 − γ0)
b+ θ(t)

)
Ik(t)− dRk(t).

(1)
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Assume that the network is uncorrelated. Then θ(t)=(1/〈k〉)
∑n
k=1 kp(k)Ik(t) is the

probability that any given edge is connected to an infected node, and 〈k〉=
∑n
k=1kp(k)

denotes the mean degree of the network, where p(k) is the probability that a node is
connected to k other nodes. The parameters in model (1) are described as follows: the
birth rate is Λ; β denotes the transmission rate; d stands for the natural death rate;
b represents the number of hospital beds in public medical resources; γ0 is the recovery
rate when people rely on their autoimmunity to fight infectious diseases; γ1 is called
public medical resource factor. More specifically, γ1 denotes the maximum recovery rate
when the amount of public medical resources invested increases.

α is called individual medical resource factor and is depended on the degree of self-
protection to epidemic diseases. In other words, when epidemic diseases arrive, people
will take some preventive measures, which related to individual medical resources (e.g.,
wear mask, wash hands frequently, get vaccinated and maintain social distance, etc.) to
reduce the infection rate. Compared to the general form βkSk(t)θ(t), we consider the
influence of individual medical resource on the spread of infectious diseases. With the
increase of infection density, the individual medical resource factor α will become larger,
so that (1− αθ(t)) will be smaller, thus the spreading speed will decrease.

It is supposed that newborns are balanced by deaths, hence Λ = d. We note the
solution set of system (1) as the bounded region Ω = {(S1, I1, R1, . . . , Sn, In, Rn):
0 6 Sk 6 1, 0 6 Ik 6 1, 0 6 Rk 6 1, Sk + Ik +Rk = 1, k = 1, 2, . . . , n}.
Remark 1. Ω is a positive invariant set of system (1). The proof is similar to the proof
of Lemma 1 in [18], so it is omitted here.

3 Existence and stability of equilibrium points

3.1 Stability of the disease-free equilibrium

System (1) has a unique disease-free equilibrium given by E0 = (1, 0, 0, . . . , 1, 0, 0) ∈
R3n, and the total density Nk(t) are constant, k = 1, 2, . . . , n, so we can only study the
following system:

S′k(t) = d− βk
(
1− αθ(t)

)
Sk(t)θ(t)− dSk(t),

I ′k(t) = βk
(
1− αθ(t)

)
Sk(t)θ(t)− dIk(t)−

(
γ0 +

b(γ1 − γ0)
b+ θ(t)

)
Ik(t).

(2)

We can obtain the control reproduction number R0 = ρ(FV −1) by using the next
generation matrix method [9]. For model (2), the Jacobian matrices F and V are given by

F =

(
O O
O F22

)
(2n)×(2n)

, V =

(
V11 V12
O V22

)
(2n)×(2n)

,

F22 = V12 =
β

〈k〉


p(1) 2p(2) · · · np(n)
2p(1) 22p(2) · · · 2np(n)

...
...

. . .
...

np(1) 2np(2) · · · n2p(n)


n×n

,
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V11 = dE, V22 = (d + γ1)E, E represents the n × n unit matrix, and O represents the
n × n zero matrix. So, the control reproduction number is R0 = β〈k2〉/((d + γ1)〈k〉),
where 〈k2〉 =

∑n
k=1 k

2p(k).

Remark 2. The control reproduction number is not related to the parameter α, in other
words, the individual medical resource factor cannot change the control reproduction
number R0.

Remark 3. The larger the public medical resource factor γ1, the smaller the control
reproduction number R0.

Furthermore, the Jacobian matrix of system (2) at E0 is

J(E0) := F − V =

(
−dE −F22

O J22

)
(2n)×(2n)

,

where

(J22)ij =

{
βi2p(i)
〈k〉 − d− γ1, i = j,

βijp(j)
〈k〉 , i 6= j.

Next, we will prove the local stability of the disease-free equilibrium E0.

Theorem 1. If R0 < 1, then the disease-free equilibrium E0 of system (2) is locally
asymptotically stable, whereas if R0 > 1 it is unstable.

Proof. The local stability of E0 depends on the sign of the real parts of the eigenvalues
of the Jacobian matrix J(E0). Obviously, there is a n-multiple eigenvalue −d. The other
eigenvalues depend on the block matrix J22. In order to use the results of Lemma 1
in [28], we denote the (i, j)-entries of the matrix J22 − λE by

−(d+ γ1 + λ)δij +
βijp(j)

〈k〉
.

Further, let σ = −(d+ γ1 + λ) and pi = βi, qj = jp(j)/〈k〉. Then we can obtain

det(J22 − λE) = (−1)n−1(d+ γ1 + λ)n−1

(
−(d+ γ1 + λ) +

n∑
i=1

βi2p(i)

〈k〉

)
.

So, λ = −(d+γ1) is another (n−1)-multiple negative eigenvalue. Thus, the stability
of E0 is determined by the sign of the eigenvalue

λ =

n∑
i=1

βi2p(i)

〈k〉
− d− γ1 = (d+ γ1)(R0 − 1).

Therefore, we can conclude that the eigenvalues of the matrix J(E0) are all negative
when R0 < 1, E0 is locally asymptotically stable. On the other hand, if R0 > 1, E0 is
unstable.

The proof of the global stability of E0 will be given in the following theorem.

Nonlinear Anal. Model. Control, 28(2):209–227, 2023
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Theorem 2. Denote

R̂0 =
β(1 + b)〈k2〉

(d+ bd+ γ0 + bγ1)〈k〉
.

Then E0 is globally asymptotically stable if R̂0 < 1.

Proof. Since

θ′(t) =
1

〈k〉

n∑
k=1

kp(k)

[
βk
(
1− αθ(t)

)
Sk(t)θ(t)− dIk(t)−

(
γ0 +

b(γ1 − γ0)
b+ θ(t)

)
Ik(t)

]

6
1

〈k〉

n∑
k=1

kp(k)

[
βkθ(t)− dIk(t)−

(
γ0 +

b(γ1 − γ0)
b+ θ(t)

)
Ik(t)

]
6 θ(t)

[
β
〈k2〉
〈k〉
− d− γ0 −

b(γ1 − γ0)
b+ 1

]
= θ(t)

[
d+ γ0 +

b(γ1 − γ0)
b+ 1

]
(R̂0 − 1),

when R̂0 < 1,

θ′(t) 6 θ(t)

[
d+ γ0 +

b(γ1 − γ0)
b+ 1

]
(R̂0 − 1) < 0,

and hence, limt→∞ θ(t) = 0. Therefore, it can be concluded that limt→∞ Ik(t) = 0.
Consequently, the disease-free equilibrium E0 is globally attractive when R̂0 < 1. Com-
bined with the result of Theorem 1, we can conclude that when R̂0 < 1, E0 is globally
asymptotically stable.

Remark 4. Since γ0 < γ1, it can be verified that

R0 =
d+ bd+ γ0 + bγ1
d+ bd+ γ1 + bγ1

R̂0 < R̂0.

Remark 5. If R̂0 < 1, that is,

R0 <
d+ bd+ γ0 + bγ1
d+ bd+ γ1 + bγ1

< 1,

then E0 is globally asymptotically stable.

Remark 6. It seems that R0 < 1 is not enough to guarantee the global asymptotic
stability of E0. So system (1) may exist backward bifurcation, which will be proved in
Section 4.

3.2 Existence of the endemic equilibrium

In this subsection, we will prove the existence of the positive equilibrium if R0 > 1.

Theorem 3. If R0 > 1, system (1) admits at least an endemic equilibrium.

https://www.journals.vu.lt/nonlinear-analysis
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Proof. Assume that E∗ = (S∗1 , I
∗
1 , R

∗
1, S
∗
2 , I
∗
2 , R

∗
2, . . . , S

∗
n, I
∗
n, R

∗
n) is an endemic equi-

librium of system (1), here each E∗k = (S∗k , I
∗
k , R

∗
k), k = 1, 2, . . . , n. Then E∗k satisfy

βk(1− αθ∗)S∗kθ∗ − dI∗k −
(
γ0 +

b(γ1 − γ0)
b+ θ∗

)
I∗k = 0,(

γ0 +
b(γ1 − γ0)
b+ θ∗

)
I∗k − dR∗k = 0.

Then we can obtain

S∗k =
(d+ γ0)θ

∗ + b(d+ γ1)

βkθ∗(1− αθ∗)(b+ θ∗)
I∗k , R∗k =

γ1b+ γ0θ
∗

bd+ dθ∗
I∗k .

Substituting them into equation S∗k + I∗k +R∗k = 1 yields

I∗k =
dβkθ∗(1− αθ∗)(b+ θ∗)

M
,

where
M = d(d+ γ0)(b+ θ∗) + bd(γ1 − γ0) + βkθ∗(1− αθ∗)

[
(γ0 + d)θ∗ + b(γ1 + d)

]
.

Since θ∗ = (1/〈k〉)
∑n
k=1kp(k)I

∗
k , then a self-consistency equation is obtained as fol-

lows:

θ∗ =
1

〈k〉

n∑
k=1

k2p(k)dβ(1− αθ∗)(b+ θ∗)θ∗

M
.

We note the function

F (θ) =
1

〈k〉

n∑
k=1

k2p(k)dβ(1− αθ)(b+ θ)

M
.

Hence, endemic equilibrium should satisfy the equation F (θ) = 1. Since F (0) > 1,
F (1) < 1. This implies that system (1) admits at least an endemic equilibrium.

4 Bifurcation analysis

In many of the literatures on network-based epidemic models, the disease-free equilibrium
is globally asymptotically stable if R0 < 1. However, from the result of Theorem 2 it
seems that R0 < 1 is not enough to ensure the global asymptotic stability of E0. The
dynamical behavior of system (1) is complex. So, in this section, we will analyse whether
the system admits a transcritical backward bifurcation at R0 = 1. More specifically, a
necessary and sufficient condition, which determines the direction of bifurcation will be
derived.

Theorem 4. System (1) exists backward bifurcation at R0 = 1 if and only if b < b̂; and
the system undergoes forward bifurcation if and only if b > b̂, where

b̂ =
d(γ1 − γ0)〈k2〉

2

(d+ γ1)[dα〈k2〉2 + (d+ γ1)〈k〉〈k3〉]
,
〈
k3
〉
=

n∑
k=1

k3p(k).

Nonlinear Anal. Model. Control, 28(2):209–227, 2023
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Proof. The endemic equilibrium can be determined by the equation F (θ) = 1. Replacing
β by (d+ γ1)〈k〉R0/〈k2〉, we obtain the equation

n∑
k=1

k2p(k)
d(d+ γ1)(1− αθ)(b+ θ)R0

Q0
= 1, (3)

where

Q0 = d(d+ γ0)(b+ θ)
〈
k2
〉
+ bd(γ1 − γ0)

〈
k2
〉

+ (γ1 + d)k〈k〉θ(1− αθ)
[
(γ0 + d)θ + b(γ1 + d)

]
R0.

(4)

If we keep in mind that θ is a function of R0, then the direction of bifurcation is
depended on the sign of ∂θ/∂R0|(R0,θ)=(1,0). More exactly, if ∂θ/∂R0|(R0,θ)=(1,0) < 0,
then backward bifurcation occurs atR0 = 1. Conversely, the forward bifurcation happens.

Next, taking the deviation of equation (3) associated with R0, the implicit function
theorem yields the following equation:

n∑
k=1

k2p(k)
Q1 −Q2

Q2
0

= 0, (5)

where

Q1 =

[
d(d+ γ1)(1− αθ)(b+ θ) + d(d+ γ1)(1− bα− 2αθ)R0

∂θ

∂R0

]
Q0,

Q2 = d(d+ γ1)(1− αθ)(b+ θ)

×R0

{
d(d+ γ0)

〈
k2
〉 ∂θ
∂R0

+ (d+ γ1)k〈k〉θ(1− αθ)
[
(d+ γ0)θ + b(d+ γ1)

]
+ (d+ γ1)k〈k〉

[
(d+ γ0)θ + b(d+ γ1)

]
(1− 2αθ)R0

∂θ

∂R0

+ (d+ γ1)(d+ γ0)k〈k〉θ(1− αθ)R0
∂θ

∂R0

}
.

Substituting (R0, θ) = (1, 0) into equation (5), we can obtain the following equation
by simple calculation and arrangement:(

d+ γ0
b(d+ γ1)

+
(d+ γ1)〈k〉〈k3〉

d〈k2〉2
− 1− αb

b

)
∂θ

∂R0
= 1.

Thus

∂θ

∂R0

∣∣∣∣
(R0,θ)=(1,0)

< 0 ⇐⇒ d+ γ0
b(d+ γ1)

+
(d+ γ1)〈k〉〈k3〉

d〈k2〉2
− 1− αb

b
< 0,

that is,

b <
d(γ1 − γ0)〈k2〉

2

(d+ γ1)[dα〈k2〉2 + (d+ γ1)〈k〉〈k3〉]
.

The same holds true also for the other proposition.
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Remark 7. It is a fact that the number of hospital beds in public medical resources does
play a key role in determining whether or not backward bifurcation exists. If b is small
enough to satisfy the result of Theorem 4, backward bifurcation will occur. Otherwise,
when b is big enough, there is no backward bifurcation.

This also indicates the existence of a critical value b̂ for the number of hospital beds.
Therefore, government departments should provide enough hospital beds such that b > b̂,
so that the infectious diseases can be eradicated when R0 < 1.

Remark 8. Since

∂θ

∂R0

∣∣∣∣
(R0,θ)=(1,0)

< 0 ⇐⇒ α <
d(γ1 − γ0)〈k2〉

2 − b(d+ γ1)
2〈k〉〈k3〉

bd(d+ γ1)〈k2〉2
,

it is suggested that the individual medical resource factor also affects the dynamics of
system (1). When α is small enough to satisfy the condition of the inequality, the system
will appear backward bifurcation. So, it is also important to provide sufficient individual
medical resources for the control of infectious diseases.

5 Optimal medical resources control

Considering the danger of infectious diseases, people will instinctively use their individual
medical resources to take some self-protective measures to reduce the probability of being
infected. At the same time, the government will invest more resources to increase the
public medical resource factor. All of these measures, which can naturally reduce the
number of infected, will take a certain cost. The more medical resources invested in health
care, the lower the transmission rate, the larger the public medical resource factor. Of
course, the corresponding cost will be higher to a certain degree. In order to minimise the
density of infected individuals and reduce the medical resources cost at the same time,
a feasible approach is to use optimal control theory. Then model (1) is rewritten as the
following control system:

S′k(t) = d− βk
(
1− αk(t)θ(t)

)
Sk(t)θ(t)− dSk(t),

I ′k(t) = βk
(
1− αk(t)θ(t)

)
Sk(t)θ(t)− dIk(t)−

(
γ0 +

b(γk(t)− γ0)
b+ θ(t)

)
Ik(t),

R′k(t) =

(
γ0 +

b(γk(t)− γ0)
b+ θ(t)

)
Ik(t)− dRk(t),

(6)

where α1(t), α2(t), . . . , αn(t), γ1(t), γ2(t), . . . , γn(t) are the control variables.
Suppose

U =
{
u(t) = (u1(t), u2(t), . . . , un(t), un+1(t), . . . , u2n(t)): uk(t) is measurable,

06uk(t)=αk(t)6α0, γ06un+k(t)=γk(t)61, t∈ [0, T ], k=1, 2, . . . , n
}

and terminal time T > 0.

Nonlinear Anal. Model. Control, 28(2):209–227, 2023
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Since our control goal is to decrease both the prevalence of contagious disease and
the medical resources cost, refer to the construction method of the objective function for
the optimal control problems on networks [6, 7, 20, 32], we define the objective function
as follows:

J(u) =

T∫
0

n∑
k=1

[
Ik(t) +

1

2
Bkα

2
k(t) +

1

2
Ckγ

2
k(t)

]
dt,

with Lagrangian

L =

n∑
k=1

[
Ik(t) +

1

2
Bkα

2
k(t) +

1

2
Ckγ

2
k(t)

]
,

where Bk, Ck > 0, k = 1, 2, . . . , n.
Therefore, the problem of optimal medical resources control can be described as

min J(u) s.t. u ∈ U.

For obtaining the solution of the optimal control, we will use Corollary 4.1 in [11] to
prove the existence of the optimal control firstly.

Theorem 5. There exists an optimal solution u∗(t) subject to J(u∗) = minu∈U J(u) and
satisfies control system (6).

Proof. Next, the five conditions [11] in Corollary 4.1 will be proved true.
(i) Obviously, U is closed and convex.
(ii) Because of the definition of U and nonnegativity of Sk(t), Ik(t), Rk(t), so the

solution of system (6) exists [24].
(iii) Let xk(t) = (Sk(t), Ik(t), Rk(t))

>, x(t) = (x1(t), x2(t), . . . , xn(t))
>, so

system (6) can be expressed as dx(t)/dt =: G(x(t)), G(x(t)) is obviously continuous.
Besides

−βkSk(t)− dSk(t) 6 −βk
(
1− αk(t)θ(t)

)
Sk(t)θ(t)− dSk(t) 6 S′k(t) 6 d,

(−d− 1)Ik(t) 6 −dIk(t)−
(
γ0 +

b(γk(t)− γ0)
b+ θ(t)

)
Ik(t) 6 I ′k(t) 6 βkSk(t),

−dRk(t) 6 R′k(t) 6

(
γ0 +

b(γk(t)− γ0)
b+ θ(t)

)
Ik(t) 6 Ik(t),

so G(x(t)) can be bounded by a linear function of x(t).
(iv) ∂2L/∂α2

k = Bk > 0, ∂2L/∂γ2k = Ck > 0, then the function L(x(t), uk(t)) is
convex on U .

(v) Since Ik(t) > 0,

L
(
x(t), uk(t)

)
>

n∑
k=1

[
1

2
Bkα

2
k(t) +

1

2
Ckγ

2
k(t)

]
>

1

2
min{Bk, Ck}

∥∥u(t)∥∥2
2
.
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There exist ϕ = 2, c1 = min{Bk, Ck}/2, c2 = 0 subject to

L
(
x(t), uk(t)

)
> c1

∥∥u(t)∥∥ϕ
2
+ c2.

Therefore, the optimal solution exists.

The optimal solution will be solved by using the Pontryagin’s minimum principle [11].
Define the Hamiltonian H for optimal control problem as follows:

H =

n∑
k=1

[
Ik(t) +

1

2
Bkα

2
k(t) +

1

2
Ckγ

2
k(t)

]

+

n∑
k=1

[
λ1k(t)S

′
k(t) + λ2k(t)I

′
k(t) + λ3k(t)R

′
k(t)

]
.

λ1k(t), λ2k(t), λ3k(t) are the adjoint variables, which will be determined below.

Theorem 6. For model (6), suppose (S∗k(t), I
∗
k(t), R

∗
k(t)), k = 1, 2, . . . , n, be the optimal

solution associated to the optimal control u∗(t) = (u∗1(t), u
∗
2(t), . . . , u

∗
2n(t)) and θ∗(t) =

(1/〈k〉)
∑n
k=1 kp(k)I

∗
k(t). Then the adjoint variables λ1k(t), λ2k(t), λ3k(t) satisfy the

following equations:

λ′1k(t) = βk
(
1− α∗k(t)θ∗(t)

)
θ∗(t)

(
λ1k(t)− λ2k(t)

)
+ dλ1k(t),

λ′2k(t) = −1 +
βkp(k)

〈k〉

n∑
i=1

(
1− 2α∗i (t)θ

∗(t)
)
iS∗i (t)

(
λ1i(t)− λ2i(t)

)
+ dλ2k(t)

+
bkp(k)

(b+ θ∗(t))2〈k〉

n∑
i=1

I∗i (t)
(
γ∗i (t)− γ0

)(
λ3i(t)− λ2i(t)

)
+

(
γ0 +

b(γ∗k(t)− γ0)
b+ θ∗(t)

)(
λ2k(t)− λ3k(t)

)
,

λ′3k(t) = dλ3k(t)

(7)

with the transversality condition λ1k(T ) = λ2k(T ) = λ3k(T ) = 0, k = 1, 2, . . . , n.
Furthermore, the optimal controls α∗k(t), γ

∗
k(t) are obtained by

α∗k(t) = min

{
max

(
0,
βkS∗k(t)θ

∗2(t)(λ2k(t)− λ1k(t))
Bk

)
, α0

}
,

γ∗k(t) = min

{
max

(
γ0,

bI∗k(t)(λ2k(t)− λ3k(t))
Ck(b+ θ∗(t))

)
, 1

}
.

Proof. According to the Pontryagin’s minimum principle with the Hamiltonian function
[11], we can calculate the adjoint variables by the following equations:

λ′1k(t) = −
∂H

∂Sk

∣∣∣∣
Sk(t)=S∗

k(t), Ik(t)=I
∗
k(t), Rk(t)=R∗

k(t), αk(t)=α∗
k(t), γk(t)=γ

∗
k(t)

= βk
(
1− α∗k(t)θ∗(t)

)
θ∗(t)

(
λ1k(t)− λ2k(t)

)
+ dλ1k(t),
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λ′2k(t) = −
∂H

∂Ik

∣∣∣∣
Sk(t)=S∗

k(t), Ik(t)=I
∗
k(t), Rk(t)=R∗

k(t), αk(t)=α∗
k(t), γk(t)=γ

∗
k(t)

= −1 + βkp(k)

〈k〉

n∑
i=1

(
1− 2α∗i (t)θ

∗(t)
)
iS∗i (t)

(
λ1i(t)− λ2i(t)

)
+ dλ2k(t)

+
bkp(k)(

b+ θ∗(t)
)2〈k〉

n∑
i=1

I∗i (t)
(
γ∗i (t)− γ0

)(
λ3i(t)− λ2i(t)

)
+

(
γ0 +

b(γ∗k(t)− γ0)
b+ θ∗(t)

)(
λ2k(t)− λ3k(t)

)
,

λ′3k(t) = −
∂H

∂Rk

∣∣∣∣
Sk(t)=S∗

k(t), Ik(t)=I
∗
k(t), Rk(t)=R∗

k(t), αk(t)=α∗
k(t),γk(t)=γ

∗
k(t)

= dλ3k(t)

with the transversality condition λ1k(T ) = λ2k(T ) = λ3k(T ) = 0, k = 1, 2, . . . , n.
In addition, the optimal control should satisfy the necessary condition

∂H

∂αk

∣∣∣∣
Sk(t)=S∗

k(t), Ik(t)=I
∗
k(t), Rk(t)=R∗

k(t), αk(t)=α∗
k(t), γk(t)=γ

∗
k(t)

= 0,

i.e.,
βkS∗k(t)θ

∗2(t)λ1k(t)− βkS∗k(t)θ∗2(t)λ2k(t) +Bkα
∗
k(t) = 0, 0 6 α∗k(t) 6 α0.

∂H

∂γk

∣∣∣∣
Sk(t)=S∗

k(t), Ik(t)=I
∗
k(t), Rk(t)=R∗

k(t), αk(t)=α∗
k(t), γk(t)=γ

∗
k(t)

= 0,

i.e.,

− bI∗k(t)

b+ θ∗(t)
λ2k(t) +

bI∗k(t)

b+ θ∗(t)
λ3k(t) + Ckγ

∗
k(t) = 0, γ0 6 γ∗k(t) 6 1.

So the optimal control

α∗k(t) =


0,

βkS∗
k(t)θ

∗2(t)(λ2k(t)−λ1k(t))
Bk

6 0;

βkS∗
k(t)θ

∗2(t)(λ2k(t)−λ1k(t))
Bk

, 0 <
βkS∗

k(t)θ
∗2(t)(λ2k(t)−λ1k(t))

Bk
< α0;

α0,
βkS∗

k(t)θ
∗2(t)(λ2k(t)−λ1k(t))

Bk
> α0.

γ∗k(t) =


γ0,

bI∗k(t)(λ2k(t)−λ3k(t))
Ck(b+θ∗(t))

6 γ0;

bI∗k(t)(λ2k(t)−λ3k(t))
Ck(b+θ∗(t))

, γ0 <
bI∗k(t)(λ2k(t)−λ3k(t))

Ck(b+θ∗(t))
< 1;

1,
bI∗k(t)(λ2k(t)−λ3k(t))

Ck(b+θ∗(t))
> 1.

Therefore, substituting the values of α∗k(t) and γ∗k(t) into system (6) and (7), we can get
the optimality system with initial condition 0 < S∗k(0) < 1, 0 < I∗k(0) < 1, R∗k(0) = 0,
S∗k(0) + I∗k(0) = 1 and the transversality condition λ1k(T ) = λ2k(T ) = λ3k(T ) = 0,
k = 1, 2, . . . , n.
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6 Simulations

Next, we plot all the figures by MATLAB to validate the previous theoretical results. Our
simulations are based on the scale-free network with p(k) = ηk−2.5, k = 1, 2, . . . , 100,
and the constant η is chosen to satisfy the equation

∑100
k=1 p(k) = 1.

Firstly, we select the following parameters: d = 0.03, β = 0.02, α = 0.008, b =
0.18, γ0 = 0.06, γ1 = 0.5. Thus, one can obtain R0 = 0.2907, R̂0 = 0.9807. It is
known that E0 is globally asymptotically stable from the result of Theorem 2. We use
5 different initial conditions to plot the time evolution of the average density S(t) =∑100
k=1 Sk(t)p(k), I(t) =

∑100
k=1 Ik(t)p(k). It can be seen that limt→∞(S(t), I(t)) =

(1, 0) from Fig.1. Hence, this does indeed support the global stability of E0.
Secondly, we will verify that R0 < 1 is not sufficient to ensure the global asymptotic

stability of E0. The parameters are chosen as follows: d = 0.01, β = 0.005, α = 0.002,
γ0 = 0.005, γ1 = 0.06, so R0 = 0.5503 < 1, R̂0 = 2.5132 > 1, so E0 is not globally
asymptotically stable from the result of Theorem 2. From Fig. 2 it can be observed that
the trajectories partially converge to zero or move towards to a positive level. The result of
the coexistence of two locally asymptotically stable equilibriums is named as the bistable
phenomenon.

Figure 1. The time evolution of the average density S(t), I(t) with 5 different initial conditions, when R̂0 =
0.9807 < 1.

Figure 2. The time evolution of the average density S(t), I(t) with 10 different initial conditions, when R0 =

0.5503 < 1, R̂0 = 2.5132 > 1 and b = 0.006.
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(a) b = 0.006 (b) b = 0.2

Figure 3. Bifurcation diagrams in the R0θ-plane with different values of b.

Figure 4. The time evolution of the average density S(t), I(t) with 10 different initial conditions, when R0 =
1.1006 > 1.

Different values of b are taken to show the bifurcation diagrams in Fig. 3. The left
column displays the occurrence of backward bifurcation at R0 = 1 when b=0.006<b̂=
0.0239, and the right column shows forward bifurcation diagram when b=0.2>b̂. Hence,
the numerical simulation results are in agreement with the conclusions of Theorem 4.
Besides, for backward bifurcation, one endemic state should be unstable and the other
endemic state should be stable, although it is still difficult to prove theoretically.

For the simulation about the existence of the endemic equilibrium, the parameters
are set the same values as those in Fig. 2, except that β = 0.01, α = 0.008, b = 3. By
a simple calculation,R0 = 1.1006 > 1, and hence, model (1) exists endemic equilibrium.
Observing the simulation results displayed in Fig. 4, we can see that all trajectories move
towards to a positive constant. This phenomenon shows that the endemic equilibrium may
be stable, although it is still difficult to prove theoretically.

Thirdly, we will investigate the effect of individual medical resource factor on diseases
transmission through numerical simulations. In Fig. 5(a), the parameters are the same as
those in Fig. 1 and R̂0 = 0.9807 < 1. Although diseases will eventually become extinct
for different α, the larger α can slow down the spread of diseases. The parameters in
Fig. 5(b) take the same values as those in Fig. 4, and R0 = 1.1006 > 1. It can be
observed that the larger α, the lower the endemic level. This can be explained that the
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(a) (b)

Figure 5. The average density I(t) versus time corresponding to different α, which are 3, 2, 1, 0 from bottom
to top. Subfigures (a) and (b) are achieved with identical initial value Ik(0) = 0.4, Ik(0) = 0.01, respectively.

Figure 6. Sensitivity of control strategies with respect to three kinds of constant control (αk(t) = α,
γk(t) = γ) and optimal control. The minimum control strength corresponds to α = 0, γ = γ0 = 0.005,
while α = α0 = 3, γ = 1 corresponds to the maximum control.

more dangerous infectious diseases, the larger individual medical resource factor, and the
density of infected individuals will be smaller, which is in accordance with the laws of
real life.

Finally, numerical simulations are presented to illustrate the proposed optimal control
solution in Section 5. The optimal control problem is solved with the help of fourth-
order Runge–Kutta algorithm. The values of parameters are taken as d = 0.03, β =
0.15, α0 = 3, γ0 = 0.005, b = 0.35, and we choose the weight parameters Bk = 0.8,
Ck = 0.5, T = 10. The initial conditions are Sk(0) = 0.9, Ik(0) = 0.1, Rk(0) = 0 and
0 6 αk(t) 6 α0, γ0 6 γk(t) 6 1, k = 1, 2, . . . , 100. Through simulation, the mean value
of optimal control is obtained 〈α∗(t)〉 =

∑100
k=1 α

∗
k(t)/100, 〈γ∗(t)〉 =

∑100
k=1 γ

∗
k(t)/100.

The average of the control measures are shown in the middle column of Fig. 6. The left
column shows the average infected density with different control strategies, and the right
column shows the cost. It can be seen from Fig. 6 that in different cases, the optimal
control solutions can indeed make the density of infected to relatively smaller, but the
cost is the lowest. Therefore, the optimal control does achieve better results than constant
control.
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Figure 7. The dynamical change process of different optimal controls α∗
k(t), γ

∗
k(t), k = 25, 50, 75, 100.

The trajectories of the optimal controls α∗k(t), γ
∗
k(t) (k = 25, 50, 75, 100) can be seen

in Fig. 7. For different degrees, the optimal control α∗k(t) all decrease at first, then increase
and decrease again as time evolves. However, the optimal control level is different. The
level of the optimal control α∗k(t) will be lower for the larger degree. The optimal control
γ∗k(t) increase at the beginning and then decrease as time goes on. In addition, we can
also find that the larger the degree k, the higher the level of optimal control γ∗k(t) within
a short time. But as time evolves, the opposite is true.

7 Conclusions and discussions

It is well known that the investment of medical resources is effective in suppressing
or reducing outbreaks of epidemics. However, there are few results on considering the
epidemic model with the influence of medical resources on networks. Many scholars
proved that the number of hospital beds play an important role in the occurrence of
backward bifurcation [1, 8, 19, 25], but most of them studied the homogeneously mixed
models. In [13, 18], Li and his collaborators given a condition deciding the existence of
backward bifurcation on networks, but they did not study quantitatively the impact of
medical resources on epidemic spreading process. In this paper, we studied the influence
of both individual medical resources and public medical resources on the dynamics of
model (1). It has been proved that the system will undergoes backward bifurcation when
the number of hospital beds or the individual medical resource factor is small enough,
although they can not change the value of R0. Besides, the larger the public medical
resource factor γ1, the smaller the control reproduction number R0, and the larger indi-
vidual medical resource factor α can slow down the spread of diseases and decrease the
size of the associated endemic equilibria. Therefore, our work reveals the importance of
both the public medical resources and individual medical resources for the suppressing of
epidemic spreading.

We also discussed an optimal control problem by adopting two control variables
and given their corresponding solutions. The optimal solution is much more effective
in minimizing the density of infectious individual as well as the cost of medical resources
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(see Fig. 6). In addition, the magnitude of the degree also affects the optimal control
strength on the scale-free network.

At present, the bifurcation theory on networks is still less, it will be interesting and
important to excavate more abundant theory, such as the study of Hopf bifurcation, saddle-
node, transcritical and Bogdanov–Takens bifurcation, etc. The problem of optimal medi-
cal resources control has been discussed in this article. In future, we will make efforts to
study the distribution problem of medical resources from different angles.
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