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Chapter

Optimal Unmanned Aerial Vehicle
Control and Designs for Load
Balancing in Intelligent Wireless
Communication Systems
Abhishek Mondal, Deepak Mishra, Ganesh Prasad

and Ashraf Hossain

Abstract

Maintaining reliable wireless connectivity is essential for the continuing growth of
mobile devices and their massive access to the Internet of Things (IoT). However,
terrestrial cellular networks often fail to meet their required quality of service (QoS)
demand because of the limited spectrum capacity. Although the deployment of more
base stations (BSs) in a concerned area is costly and requires regular maintenance.
Alternatively, unmanned aerial vehicles (UAVs) could be a potential solution due to
their ability of on-demand coverage and the high likelihood of strong line-of-sight
(LoS) communication links. Therefore, this chapter focuses on a UAV’s deployment
and movement design that supports existing BSs by reducing data traffic load and
providing reliable wireless communication. Specifically, we design UAV’s deployment
and trajectory under an efficient resource allocation strategy, i.e., assigning devices’
association indicators and transmitting power to maximize overall system’s through-
put and minimize the total energy consumption of all devices. For these
implementations, we adopt reinforcement learning framework because it does not
require all information about the system environment. The proposed methodology
finds optimal policy using the Markov decision process, exploiting the previous envi-
ronment interactions. Our proposed technique significantly improves the system’s
performance compared to the other benchmark schemes.

Keywords: unmanned aerial vehicle, reinforcement learning, energy efficiency,
offloading, throughput

1. Introduction

With the proliferation of mobile electronic devices, such as smartphones, tablets,
and more internet of things (IoT) gadgets, the need for high-speed wireless connec-
tivity has been growing rapidly [1]. But, the existing cellular networks with limited
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spectrum, coverage, and energy capacity fail to satisfy users’ quality of service (QoS)
requirements. Hence, the next generation 5G technologies, such as device-to-device
(D2D) communications, ultra-dense small cell networks, and millimeter wave
(mmW) communications, are emerging as potential alternatives to deal with such
issues [2, 3]. However, these modern 5G cellular networks face several challenges due
to resource allocation, backhaul interferences, high reliance on the line of sight (LoS)
link, and signal blockage. On the other hand, integration of unmanned aerial vehicles
(UAVs) into the fifth-generation (5G) and sixth-generation (6G) cellular networks as
aerial base stations would be a promising aspect to achieve several goals, namely
ubiquitous accessibility, robust navigation, ease of monitoring and management, etc.,
because they can establish LoS dominant air to ground channel in a controllable
manner [4]. Notably, cellular-connected UAV-assisted system gains significant per-
formance improvement over the existing point-to-point UAV-ground communication
in terms of coverage and throughput [5]. UAV also offload temporary high-traffic
demands from terrestrial BSs during huge crowd events such as festivals, concerts,
and stadium games [6]. Therefore, UAVs’ utility in the cellular network is directly
related to the highest number of serving users. Nevertheless, many challenges related
to the utilization of UAVs need to be addressed, including their deployment strategy,
trajectory optimization, and resource allocation under flight time limitations which
affect instantaneous LoS probability and remarkably influence the system perfor-
mance.

The relevant studies [7–10] optimized the trajectory and deployment of UAVs in
different circumstances. However, most of them incorporate nonlinear algorithms
that rely on average spatial throughput. Thus, computational complexity grows rap-
idly with the higher number of users and flight time. Moreover, practically without
prior knowledge about the network state, it becomes very difficult for a UAV to find
its path to accomplish a given real-time task. Alternatively, machine learning (ML)
techniques [11–13] intelligently support UAVs and ground users in performing
mission-oriented operations with low complexity when complete network informa-
tion is not available. Particularly, reinforcement learning (RL), being a part of ML, can
search for the optimal policy through trial and error while interacting with the envi-
ronment [14]. Hence, this chapter investigates the optimal deployment, trajectory,
and resource allocation of UAVs to meet the throughput requirements of the cellular
network.

2. Background

The existing literature focuses on the deployment and movement of UAV relays
for numerous applications. In [15], the authors estimated the optimal UAV relay
position in a multi-rate communication system using theoretical and simulated analy-
sis. The work in [16] investigated the mission planning of UAV relays to improve the
connectivity of ground users. The authors of [17, 18] maximized the lower bound of
the uplink transmission rate over the link between UAV relay and ground devices
using dynamic heading adjusting approaches. For throughput maximization of the
mobile relaying system, an iterative algorithm was developed [19, 20], which jointly
optimized the relays’ trajectory and transmitting power of the sources and UAVs by
satisfying the practical constraints. In [21], the authors maximized the UAV relay
network’s throughput by optimizing transmit power, bandwidth, transmission rate,
and relay deployment. However, in these works, a model-based centralized approach

2

Edge Computing - Technology, Management and Integration



is used where all necessary system parameters are required. Additionally, the research
gap still exists on enhancing network performance for source-destination device pair
communication. To overcome these shortcomings, Indu et al. [22] minimized the
energy consumption of UAV during its trajectory using genetic algorithm (GA). The
authors in [6] proposed two meta-heuristic algorithms, such as GA and particle swarm
optimization (PSO), to find the optimal UAV trajectory for satisfying users’minimum
data rate requirements. They showed that PSO significantly improves the UAV’s
wireless coverage compared to GA. Although the meta-heuristic algorithms can deal
with the complexity of UAV path planning, there are still some challenges in
exchanging information between UAV and core network due to either unavailable
constraints or obtaining their gradient analytically.

Another line of research studied the mobility management of UAVs for resource
allocation and coverage optimization using RL techniques to deal with convergence
issues. Kawamoto et al. [23] have presented a resource allocation algorithm of UAV
using Q-learning techniques for allocating time slots and modulation schemes. The
work in [24] presented a framework for the optimal UAV trajectory under a given
data rate constraint, which relies on a state-action-reward-state-action (SARSA) algo-
rithm. Hu et al. [25] proposed a real-time sensing and transmission protocol in UAV-
aided cellular networks and designed optimal UAVs’ trajectories under limited spec-
trum resources using RL based on a Q-learning algorithm. Furthermore, the authors of
[26] transformed UAV trajectory optimization problem for maximizing cumulative
collected sensors’ data into a Markov decision process (MDP) and proposed two
stochastic modeling RL algorithms, namely Q-learning and SARSA, to learn UAV’s
policy. They proved that SARSA outperforms Q-learning due to the adaptive system’s
state update rule. From the state-of-the-art, the coupled relationship among UAV
trajectory, device association, and transmit power allocation of IoT devices for the
enhancement of network lifetime has not been investigated during the data collection
process of UAV-assisted IoT networks.

3. Channel characterization of UAV-operated communication system

This section proposes a multi-hop radio frequency and free space optical (RF-FSO)
communication framework that analytically optimizes the UAV’s altitude for perfor-
mance enhancement of a relaying system. Here, we minimize the outage probability
and symbol error rate based on independent and identically distributed statistical
parameters i.e., pointing errors, atmospheric turbulence, and scintillation.

3.1 Channel model

Consider a multi-hop hybrid RF–FSO system as shown in Figure 1, where single
antenna-equipped ground base stations realize periodic data exchange. Since there
are significant obstacles in the LoS path, direct link cannot be established between
them. Therefore, two UAVs are deployed at a certain altitude which are employed
as relays between the source and destination. These UAVs operate as RF and optical
link transceiver modules with single-directional apertures. Depending on various
environmental conditions, three different channels categorize the source-to-destina-
tion link, i.e., Ground to UAV (G2U), UAV to UAV (U2U), and UAV to Ground
(U2G) channels.
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3.1.1 G2U channel model

As ground to UAV channel consists of RF signals, experiencing small-scale fading
and large-scale path loss, the received symbol at UAV U1 can be estimated as [27],

YU1 ¼
ffiffiffiffiffiffiffiffiffiffi

PS,U1

p

ffiffiffiffiffiffiffiffiffiffi

aS,U1

p
hS,U1xS þ nU1 (1)

where, xS is the transmitted symbol of power PS,U1 , nU1 represents the additive
white Gaussian noise (AWGN) power of zero mean and variance N0 at U1, hS,U1

defines the channel gain of S-U1 link and aS,U1 ¼ κS,U1L
�ϵS,U1
S,U1

is path loss corresponding

to link distance LS,U1 , ϵS,U1 denotes the path loss exponent and κS,U1 is the
environment-dependent constant. As multipath components govern the S-U1 link,

therefore hS,U1j j2 ¼ χ follows a non-central chi-square distribution, and its probability
density function (PDF) is given by [28],

f χ tð Þ ¼ KS,U1 þ 1ð Þe�KS,U1

AS,U1

exp
� KS,U1 þ 1ð Þt

AS,U1

� �

� I0 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KS,U1 þ 1ð ÞKS,U1

AS,U1

s

t

 !

(2)

where AS,U1 ¼ E hS,U1j j2
n o

¼ 1, is average fading power, E :f g denotes expectation
operator, I0 :ð Þ defines zero order modified Bessel function,KS,U1 ¼ mS,U1j j2=2σ2 is
Rician factor, mS,U1 is the amplitude of LoS component and σ2 is average power of
multipath components. The instantaneous signal-to-noise ratio (SNR) received at
UAV U1 is expressed as [29],

ΥS,U1 ¼
PS,U1aS,U1

N0
X ¼ ΥS,U1X (3)

where, the average SNR is given as, ΥS,U1 ¼
PS,U1

aS,U1

N0

3.1.2 U2U channel model

UAV U1 first receive the RF signal YU1 , then convert and encode it into the optical
signal and then forward it to UAV U2 over FSO link. The received signal at UAV U2

can be obtained as [27]

Figure 1.
UAV-assisted multihop hybrid RF–FSO system.

4

Edge Computing - Technology, Management and Integration



YU2 ¼ ηU1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

PU1,U2

p

hU1,U2xU1 þ nU2 (4)

where ηU1
is electrical to optical conversion coefficient of UAV U1, xU1

indicates the converted and encoded optical symbol of power PU1,U2 , nU2 denotes
AWGN with zero mean and variance N0 at UAV U2, and hU1,U2 ¼ hahp is optical
channel coefficient depending on atmospheric turbulence-induced fading hað Þ and
pointing errors hp

� �

. The instantaneous SNR received at UAV U2, can be

expressed as [27]

ΥU1,U2 ¼
η2U1

PU1,U2h
2
U1,U2

N0
(5)

Since the optical link between UAV U1 and U2 experience several atmospheric
turbulence and corresponding optical axis misalignment, the PDF of its instantaneous
SNR follows the variation of atmospheric turbulence and pointing errors, which can
be expressed as [30]

fΥU1,U2
Υð Þ ¼ ξ2

2ΥΓ αð ÞΓ βð ÞG
3,0
1,3 αβ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

Υ

ΥU1,U2

s �

�

�

�

�

ξ2þ1

ξ2,α,β

0

@

1

A (6)

where Γ (.) is the Gamma function, α and β are scintillation parameters, ξ is the
ratio between the equivalent beam radius and the misalignment displacement stan-

dard deviation at U2, G
m,n
p,q xja1,a2,… ,an,… ,ap

b1,b2,… ,bm,… ,bq

� 	

is Meijer’s G function and ΥU1,U2 ¼
PU1,U2η

2
U1

E hU1,U2f g2=N0 is average electrical SNR.

3.1.3 U2G channel model

After receiving the optical signal YU2 , UAV U2 first decodes and converts it to RF
signal and then forwards to the destination. Hence, the channel characterization is
similar as the G2U channel model, and the received signal at the destination can be
expressed as [27]

YD ¼ ηU2

ffiffiffiffiffiffiffiffiffiffiffi

PU2,D

p

ffiffiffiffiffiffiffiffiffiffiffi

aU2,D
p

hU2,DxU2 þ nD (7)

where ηU2
is optical to electrical conversion coefficient of UAV U2, xU2 denotes the

transmitted symbol of power PU2,D, nD defines AWGN of zero mean and variance N0,
hU2,D is channel coefficient and aU2,D is path loss attenuation factor. Instantaneous
SNR received at the destination is expressed as,

ΥU2,D ¼
η2U2

PU2,DaU2,D hU2,Dj j2

N0
(8)

where ΥU2,D ¼ η2U2
PU2,DaU2,D=N0 is average SNR
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3.2 Performance metrics of multihop RF: FSO system

3.2.1 Outage probability

It is defined as the probability that instantaneous SNR is less than the minimum
required threshold level, Υth. For decode and forward relaying mode, the equivalent
SNR at destination can be expressed as [27]

ΥS,D ¼ min ΥS,U1 ,ΥU1,U2 ,ΥU2,Dð Þ (9)

Cumulative distribution function (CDF) of equivalent SNR is expressed by,

FΥS,D Υð Þ ¼ Pr ΥS,D ≤Υð Þ ¼ Pr min ΥS,U1 ,ΥU1,U2 ,ΥU2,Dð Þ≤Υð Þ
¼ 1� 1� FΥS,U1

Υð Þ
n o

1� FΥU1,U2
Υð Þ

n o

1� FΥU2,D
Υð Þ

n o (10)

where FΥS,U1
Υð Þ, FΥU1,U2

Υð Þ and FΥU2,D
Υð Þ are the CDF of ΥS,U1 , ΥU1,U2 and ΥU2,D

respectively. The outage probability of the overall system is obtained in terms of Q1 (., .)
i.e., the first order Marcum Q function as [31]

Pout ¼ FΥS,D Υthð Þ ¼ Pr ΥS,D ≤Υthð Þ

¼ 1� Q1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

2KS,U1

p

,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ΥthL
ϵS,U1
S,U1

1þ KS,U1ð Þ=~ΥS,U1

q


 �

�Q1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2KU2,D

p

,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ΥthL
ϵU2,D

U2,D
1þ KU2,Dð Þ=~ΥU2,D

q


 �

� 1� ξ2

Γ αð ÞΓ βð ÞG
3,1
2,4 αβ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

Υth

ΥU1,U2

s

j
1,ξ2þ1

ξ2,α,β,0

0

@

1

A

2

4

3

5

(11)

3.2.2 Symbol error rate

It is defined as the probability of false estimation of the received symbol, which
can be expressed as [32]

PM,PSK eð Þ ¼ 1�
X

M

k¼1
Pk ΥS,U1ð ÞPk ΥU1,U2ð ÞPk ΥU2,Dð Þ (12)

Pk Υs,dð Þ ¼

1� 1

π

ð
M�1ð Þπ
M

0
MΥs,d

�
sin 2 π

M

� 	

sin 2 ϕð Þ

0

@

1

A dϕ, for k ¼ 1

1

π

ð
M�1ð Þπ
M

0
MΥs,d

�
sin 2 π

M

� 	

sin 2 ϕð Þ

0

@

1

A dϕ, for k ¼M

2
þ 1

1

2π

ðπ�ak�1

0
MΥs,d

� sin 2 ak � 1ð Þ
sin 2 ϕð Þ


 �

dϕ�

1

2π

ðπ�ak

0
MΥs,d

� sin 2 akð Þ
sin 2 ϕð Þ


 �

dϕ

2

6

6

6

6

4

3

7

7

7

7

5

, otherwise

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(13)
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where, ak ¼ 2k� 1ð Þ π
M. After substituting Eq. (6) in Eq. (13) and using [29], we

can obtain the moment-generating function of instantaneous SNR corresponding FSO
link as

MΥU1,U2
sð Þ ¼ ξ22αþβ�1

4πΓ αð ÞΓ βð Þ �G6,1
3,6

αβð Þ2

16ΥU1,U2 s

�

�

�

�

�

1,ξ
2þ1
2 ,ξ

2þ2
2

ξ2

2 ,
ξ2þ1
2 ,α2,

αþ1
2 ,β2,

βþ1
2

0

B

@

1

C

A
(14)

3.3 UAVs’ optimal altitude

According to Eq. (11), outage probability is a function of UAV’s altitude, distance
from source to destination, and distance between the projection points of UAVs on the
ground and end users. For these given parameters values, the optimal altitude is
obtained as

~h ¼ ly tan ~ϕ2

� �

(15)

where the optimal altitude must satisfy the following condition [33]

~h ¼ arg min
hϵ 0,∞½ �

Pout h, lx, ly,LS,D

� �

(16)

Finally, the optimal elevation angle at the receiver side ~ϕ2 is obtained by solving
the equation,

P1:Q1 v2,w2ð Þ þ P2:Q1 v1,w1ð Þ½ �:P3 ¼ 0 (17)

where

P1 ¼ v1e
�

v2
1
þw2

1
2 I1 v1,w1ð Þ

K
=
S,U1

ϕ1ð Þ
v1

� I0 v1,w1ð Þ:w1

2

K
=
S,U1

ϕ1ð Þ
1þ KS,U1 ϕ1ð Þ

8

<

:

2

4

þ ϵ
=
S,U1

ϕ1ð Þ ln
lx

cosϕ1


 �

þ ϵS,U1 ϕ1ð Þ tanϕ1

9

=

;

3

5� lxly

l2x cos
2ϕ2 þ l2y sin

2ϕ2

(18)

P2 ¼ v2e
�

v2
2
þw2

2
2 I1 v2,w2ð Þ

K
=
U2,D

ϕ2ð Þ
v2

� I0 v2,w2ð Þ:w2

2

K
=
U2,D

ϕ2ð Þ
1þ KU2,D ϕ2ð Þ

8

<

:

2

4

þ ϵ
=
U2,D

ϕ2ð Þ ln
ly

cosϕ2


 �

þ ϵU2,D ϕ2ð Þ tanϕ2

9

=

;

3

5

(19)

P3 ¼ 1� ξ2

Γ αð ÞΓ βð ÞG
3,1
2,4 αβ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

Υth

ΥU1,U2

s �

�

�

�

�

1,ξ2þ1

ξ2,α,β,0

0

@

1

A (20)

3.4 Numerical results

In this section, we provide numerical insights of optimal UAVs’ altitude and
corresponding performance analysis and then cross-validate the proposed methodology
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using Monte-Carlo simulation. We assume that the system is operated under moderate
and strong atmospheric turbulence conditions with a maximum free space optical dis-

tance 7 km, where the average SNR is set as ΥS,U1 ¼ ΥU1,U2 ¼ ΥU2,D ¼ 75 dB.
The variations of elevation angle corresponding to the optimal UAVs’ altitude for

the given distance between the projection points of UAVs on the ground and end users
under moderate atmospheric turbulence conditions are depicted in Figure 2.
According to this figure, the optimal elevation angles decrease with the increase in
distance from the end-user location to the projection point of the UAVs on the ground
because the variation of optimal elevation angle follows Eq. (15).

The variation of outage probability with respect to UAVs’ altitude under moderate
atmospheric turbulence conditions is statistically visualized in Figure 3 when the SNR
threshold is assumed as Υth ¼ 0:4. Since small-scale fading and signal path loss less

Figure 2.
Variation of optimal elevation angle while considering Υth ¼ 0:1:

Figure 3.
Outage probability variation for different UAVs’ altitude.
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affect the received SNR at the optimal altitude, minimum outage probability can be
achieved at that altitude. On the other hand, outage probability increases if UAVs’
altitude deviates from the optimal value.

Figure 4 shows the impact of various modulation schemes on symbol error rate
when the distance between projection points of UAVs on the ground and end users is
2000 m under different atmospheric turbulence conditions. According to the result, it
is observed that symbol error rate decreases with the average SNR value. Furtherore,
binary phase shift keying (BPSK) outperforms the modulation scheme of quadrature
phase shift keying (QPSK). Although higher modulation techniques offer more data
rates and bandwidth efficiency, they are more complicated to implement, require a
more stringent RF amplifier, and are less resilient to error. Therefore, BPSK offers
more secure and errorless transmission than other modulation techniques.

4. Throughput maximization in UAVs-supported D2D network

This section proposes a UAVs-supported self-organized device-to-device
(USSD2D) network containing multiple source-destination device pairs and multiple
UAVs, where the objective is to find the optimal deployed location of UAVs to support
reliable data transmission between source and destination device pairs. Here, we
consider SNR-constrained maximization of the total instantaneous transmission rate
of the USSD2D network by jointly optimizing device association, UAV’s channel
selection, and UAVs’ deployed location at every time slot.

4.1 System model

Figure 5 depicts the UAVs-supported self-organized device-to-device (USSD2D)
network where the stationary source and destination devices pairs are randomly
deployed on the ground within the target area. The direct D2D pairs can establish LoS
links due to good channel conditions and the short distance between them. On the
other hand, UAV-assisted D2D pairs cannot establish direct links due to the presence

Figure 4.
Variation of symbol error rate for different modulation schemes.
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of significant obstacles in the signal propagation path and thereby utilize the deployed
UAVs as relays.

4.1.1 Channel model

Consider M number of UAVs represented by M ¼ 1, 2, … ,Mf g at a fixed altitude

of Hu acting as relays for K number of direct D2D pairs and ~K number of UAV-
assisted D2D pairs. There are total J number of orthogonal channels represented by
J ¼ 1, 2, … , Jf g in the USSD2D network, and each UAV selects a single orthogonal
channel at a time. The set of source and destination devices of the direct D2D and

UAV-assisted D2D pairs are represented as KS ¼ 1, 2, … ,K
� 


,

KD ¼ K þ 1,K þ 2, … , 2K
� 


, ~KS ¼ 1, 2, … , ~K
� 


and ~KD ¼ ~K þ 1, ~K þ 2, … , 2~K
� 


respectively where kth device’s location is xk, yk
� �

, ∀k∈ KS∪KD∪
~KS∪

~KD

� 


. UAVs’
flight period is discretized into T equally spaced time slots of duration δ each and mth

UAV’s location Um tð Þ ¼ xm tð Þ, ym tð Þ,Hu

� �

, ∀m∈M, t∈ T ¼ 1, 2, … ,Tf g is almost
unchanged within each slot. Here, we assume that one source device can only associ-
ate with a single UAV at a time slot, but multiple devices can access a single UAV
simultaneously. To avoid mutual interference from nearby devices, UAVs select the
orthogonal channel, and data transmission follows amplify and forward relaying (AF)

protocol [34]. The association indicator of the ~k∈ ~KS∪
~KD

� 


device with UAV m at

time slot t is defined as

I~k,m tð Þ ¼ 1, if device~kassociates with UAV m

0,Otherwise

(

(21)

Similarly, when UAV m selects an orthogonal channel j at tth time slot, the
corresponding channel selection indicator is defined as

~Im,j tð Þ ¼
1, if UAV m selects channel j

0,Otherwise

�

(22)

The path loss between the device ~k and UAV m can be expressed as [35]

L~k,m tð Þ ¼ μLoS � μNLoS

1þ b1 exp �b2 180
π
ϕ~k,m tð Þ � b1

� 	h iþ 20 log
4πf cD~k,m tð Þ

c


 �

þ μNLoS (23)

Figure 5.
UAVs-supported self-organized device-to-device network.
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where c is the speed of light, f c is the carrier frequency, μLoS and μNLoS are attenu-
ation factors corresponding to the LoS and NLoS path, respectively, b1 and b2 are the

constant. ϕ~k,m tð Þ ¼ sin �1 Hu=D~k,m tð Þ
� 	

is the elevation angle between the device ~k and

UAV m, where the instantaneous distance between them is calculated as

D~k,m tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xm tð Þ � x~k
� �2 þ ym tð Þ � y~k

� �2 þH2
u

q

: The instantaneous channel gain

between ~kth device and relay UAV m can be expressed as

G~k,m tð Þ ¼ 10�L~k,m tð Þ=10 (24)

4.1.2 Transmission model

The received SNR at UAV m from the source device ~k over channel j can be
expressed as [34]

Γ
j
~k,m

tð Þ ¼
PTx
~k
G~k,m tð ÞI~k,m tð Þ~Im,j tð Þ

N0
(25)

where PTx
~k

is transmit power of ~k device and N0 is noise power. The expected SNR

received by the destination device ~kþ ~K ∈ ~KD from UAV m over channel j can be
expressed as

Γ̂
j

m,~kþ~K
tð Þ ¼

PTx
m Gm,~kþ~K tð ÞI~kþ~K,m tð Þ~Im,j tð Þ

N0
(26)

where PTx
m is transmit power of UAV m. The overall SNR at the destination device

of the UAV-assisted D2D pair following AF relaying protocol can be expressed as [36]

Γ̂
j
~k,~kþ~K

tð Þ ¼
Y

N

i¼1
1þ 1

Γ
j
i tð Þ

 !

� 1

" #�1

(27)

where Γ
j
i tð Þ is the instantaneous SNR of the ith hop over jth channel, and N is the

total number of hops in the link. For direct D2D pair, we consider a conventional

channel model where the instantaneous channel gain between the source device k and

destination device kþ K can be expressed as

G
k,kþK tð Þ ¼ β0D

�ϱ
k,kþK

tð Þ (28)

where β0 ¼ 4πf c=c
� �2

is free space path loss at a distance of 1 m, and ϱ is the path

loss exponent. The expected instantaneous SNR received by the destination device kþ
K from the source device k over channel j can be expressed as

Γ̂
j

k,kþK tð Þ ¼
PTx
k
G

k,kþK tð Þ
N0

(29)
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The instantaneous transmission rate achieved by the destination device kþ K can
be expressed as

R
j

k,kþK tð Þ ¼ B log 2 1þ Γ̂
j

k,kþK tð Þ
h i

(30)

The total instantaneous transmission rate achieved by all direct D2D pairs can be
calculated as

RSum tð Þ ¼
X

J

j¼1

X

K

k¼1

R
j

k,kþK tð Þ (31)

Similarly, ~kþ ~Kth device obtains the instantaneous transmission rate over
channel j as

~R
j
~k,~kþ~K

tð Þ ¼ B log 2 1þ Γ̂
j
~k,~kþ~K

tð Þ
h i

(32)

The total instantaneous transmission rate of all UAV-assisted D2D pairs can be
expressed as

~RSum tð Þ ¼
X

J

j¼1

X

M

m¼1

X

~K

~k¼1

~R
j
~k,~kþ~K

tð Þ (33)

The overall instantaneous transmission rate of the USSD2D network is
formulated as

RSum tð Þ ¼ RSum tð Þ þ ~RSum tð Þ (34)

4.1.3 Problem formulation

From the practical scenario, it is observed that when UAVs fly toward a group of
devices to obtain better channel conditions, the remaining devices of the network
cannot receive adequate services from the UAV, and consequently, UAVs cannot
allocate network resources fairly. Hence, we jointly optimize UAVs’ location, device
association, and channel selection indicators at every time slot to maximize the total
instantaneous transmission rate of the USSD2D network while assuring that each
device should achieve a minimum SNR of ς to maintain the required QoS. The
corresponding optimization problem is formulated as

P1 :

Maximize

xm tð Þ, ym tð Þ
� �

, Ik,m tð Þ,~Im,j tð Þ

∀k∈ KS∪KD∪
~KS∪

~KD

� 


,m∈M, j∈J

( )

RSum tð Þ (35)

Subject to the constraints
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C1 : Γ
j
k,kþK tð Þ> ς, ∀k∈ KS∪KD∪

~KS∪
~KD

� 


(36)

C2 : Ik,m tð Þ, IkþK,m tð Þ ¼ 0, 1f g,~Im,j tð Þ ¼ 0, 1f g,∀k∈ KS∪KD∪
~KS∪

~KD

� 


,m∈M, j∈J

(37)

C3 :

X

m∈M

Ik,m tð Þ≤ 1,
X

m∈M

IkþK,m tð Þ≤ 1, ∀k∈ KS∪KD∪
~KS∪

~KD

� 


, (38)

C4 :

X

j∈J

~Im,j tð Þ≤ 1, ∀m∈M (39)

C1 indicates that a device should achieve a minimum SNR threshold to maintain
the required QoS. C2 defines the instantaneous device association indicator and UAVs’
channel selection indicator. C3 assures that each device can be associated with a single
UAV at a time slot, and C4 implies UAVs’ channel selection conditions at each time

slot. The optimization variables xm tð Þ, ym tð Þ
� �

, Ik,m tð Þ and ~Im,j tð Þ are coupled and
interactable, where the deflection of one variable impacts the optimization of other
variables and the objective value. Hence, this optimization problem becomes compli-
cated using standard optimization tools. In order to tackle this situation, we adopt an
RL-based UAV deployment strategy to find their optimal position by estimating the
required system parameters using real-time measurements and statistics of collected
information.

4.2 RL-based solution methodology

UAVs acting as RL agents select the action depending on their current positions,
which are only related to their previous states. Hence, the proposed framework fol-
lows Markovian properties composed of state, action, reward, state transition proba-
bility, and the flying time periods. In the next sub-section, we explain each of those
elements elaborately.

4.2.1 State space

The state of the mth UAV at t-th time slot is the vector of two elements which
represent its current position as sm tð Þ ¼ xm tð Þ, ym tð Þ

� �

, ∀sm tð Þ∈S. Here, S is the state

space, whose elements are independent and identically distributed random variables
arranged by combining all possible values across the time horizon.

4.2.2 Action space

UAV’s action am tð Þ∈A in the current state is the change of its position, which is
measured with respect to its immediate X and Y coordinates. Here, we consider a
benchmark RL gridworld environment where UAVs have maximum of eight possible
moving directions at each state, i.e., NORTH, NORTH-WEST, WEST, SOUTH-
WEST, SOUTH, SOUTH-EAST, EAST, and NORTH-EAST. After selecting an action,
the X and Y coordinate changes of UAV m at t-th time slot are represented as
δmx tð Þ∈ �ϑ tð Þδ, 0, ϑ tð Þδf g and δmy tð Þ∈ �ϑ tð Þδ, 0, ϑ tð Þδf g respectively,
∀am tð Þ ¼ δmx tð Þ, δmy tð Þ

n o

∈A, t∈ T , where ϑ tð Þ is the velocity of UAVs at time slot t and
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A is the action set containing all possible actions. The obtained X and Y coordinate of
UAV m for next time slot is measured as

xm tþ 1ð Þ ¼ xm tð Þ þ δmx tð Þ (40)

ym tþ 1ð Þ ¼ ym tð Þ þ δmy tð Þ (41)

4.2.3 Reward formulation

RL agents choose their actions in such a manner that maximizes long-term cumu-
lative reward. Since our objective is to maximize the total instantaneous transmission
rate of the USSD2D network, we need to find such locations of UAVs that impacts
immediate objective value. Hence, we model the instantaneous reward function con-
tributed by UAV m as

R sm tð Þ, am tð Þð Þ ¼
X

J

j¼1

X

~K

~k¼1

~R
j
~k,m,~kþ~K

tð Þ þ
X

J

j¼1

X

K

k¼1

R
j

k,kþK tð Þ,∀m∈M (42)

4.2.4 State transition probability

It is the probability that UAV m changes its state from sm tð Þ to sm tþ 1ð Þ after
selecting an action am tð Þ, denoted as Ptr sm tþ 1ð Þ∈Sjsm tð Þ, am tð Þf g. Let us consider the
probability vectors of device association and UAVs’ channel selection at time slot t as

PDA
~k

tð Þ ¼ ~P~k,1 tð Þ, ~P~k,2 tð Þ, … , ~P~k,M tð Þ
h i

, ∀~k∈ ~KS∪
~KD

� 


and PCS
m tð Þ ¼

Pm,1 tð Þ,Pm,2 tð Þ, … ,Pm,J tð Þ
� �

, ∀m∈M respectively where ~P~k,m tð Þ indicates the associa-
tion probability of device ~k with UAVm at time slot t and Pm,j tð Þ is the probability that
UAVm selects channel j at time slot t. In each time slot, source and destination devices

associated with a single UAV according to probability vectors PUA
~k

tð Þ and UAV selects

a single orthogonal channel with a probability vector of PCS
m tð Þ . The probabilities of

device association and UAV’s channel selections are updated for the next time slot as
follows:

~P~k,m tþ 1ð Þ ¼
~P~k,m tð Þ þw1~r~k,m tð Þ 1� ~P~k,m tð Þ

� 	

,m ¼ UMax
~k

tð Þ
~P~k,m tð Þ � w1~r~k,m tð Þ~P~k,m tð Þ,m 6¼ UMax

~k
tð Þ

8

<

:

(43)

Pm,j tþ 1ð Þ ¼
Pm,j tð Þ þw2rm,j tð Þ 1� Pm,j tð Þ

� �

, j ¼ CMax
m tð Þ

Pm,j tð Þ �w2rm,j tð ÞPm,j tð Þ, j 6¼ CMax
m tð Þ

(

(44)

where w1 and w2 are the learning step sizes. UMax
~k

tð Þ is the current best UAV for

device ~k for a fixed selected channel and CMax
m tð Þ is the current best channel of UAV m

for associated devices at that time slot respectively, which can be expressed as

UMax
~k

tð Þ ¼ argmax
m∈M

~R~k,m,~kþ~K tð Þ, ∀~k∈ ~KS∪
~KD

� 


(45)

CMax
m tð Þ ¼ argmax

j∈J

~Rm,j tð Þ,∀m∈M (46)

14

Edge Computing - Technology, Management and Integration



where ~r~k,m tð Þ and rm,j tð Þ are the normalized reward achieved by the source device ~k

and UAV m at time slot t respectively, which are defined as

~r~k,m tð Þ ¼
~R~k,m,~kþ~K tð Þ

max
m∈M

~R~k,m,~kþ~K tð Þ
(47)

rm,j tð Þ ¼
~Rm,j tð Þ

max
j∈J

~Rm,j tð Þ
(48)

From (43) and (44), it is observed that the update of selection probability vectors
depends on the instantaneous transmission rate, which does not need any prior infor-
mation. Thus, device association and UAVs’ channel selection at each time slot is
entirely model-free.

4.2.5 Updating the action value function

During the operation period, each UAV acts as an RL agent where UAV m takes an
action am tð Þ at current state sm tð Þ. Then it generates an immediate reward
R sm tð Þ, am tð Þð Þ, and computes corresponding Q sm tð Þ, am tð Þð Þ value. Finally, the current
state sm tð Þ is updated to the next state sm tþ 1ð Þ and UAV m selects the next action
am tþ 1ð Þ using the same policy where the action-value function is updated as [37]

Q sm tð Þ, am tð Þð Þ  1� αð ÞQ sm tð Þ, am tð Þð Þ þ α R sm tð Þ, am tð Þð Þ þ γ Q sm tþ 1ð Þ, am tþ 1ð Þð Þ½ �
(49)

UAVs consider all the possible actions from the action space and select an action
with a certain probability that provides maximum long-term reward. ϵ-greedy action
selection policy is adopted under which the probability that UAV m takes action
am tð Þ∈A corresponding to a state sm tð Þ∈S at time slot t can be expressed as [37]

πϵm ¼
arg max

am tð Þ¼ δmx tð Þ, δmy tð Þf g
Q sm tð Þ, am tð Þð Þ, with probability 1� ϵ

Random Selection,with probability ϵ

8

<

:

(50)

UAVs execute state-action pairs repeatedly to gain experience of interacting with
the environment. These interaction results are recorded in Q-table and updated the
learning policy in each episode until convergence. Algorithm 1 summarizes the opti-
mal deployment strategy using the adaptive State-Action-Reward-State-Action
(SARSA) technique.

4.3 Simulation results

In this sub-section, we validate the proposed analysis and provide various numer-
ical insights on key system parameters to improve the system’s performance. Later, we
compare the obtained results corresponding to the proposed SARSA algorithm with
the existing works [34], such as random selection with fixed optimal relay deployment
(RS-FORD), an exhaustive search for relay assignment and channel allocation with
fixed initial relay deployment (ES-FIRD), and alternative optimization for the
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individual variable (AOIV). Here, we consider that direct D2D pair and UAV-assisted
D2D pair devices are uniformly distributed in a 4 km�4 km square area where the
primary simulation parameters are adopted from [38].

The iterative evolutions of the proposed and benchmark schemes are depicted in
Figure 6, where the number of UAVs, UAV-assisted D2D pairs, direct D2D pairs,
orthogonal channels, and transmit power are set as 5, 10, 2, 7, and 10 mW respec-
tively. From this figure, it is clear that the proposed algorithm outperforms the
benchmark scheme with respect to the converged value because it utilizes ϵ-greedy
action policy to obtain the large search space by exploring the target region more
efficiently. Furthermore, UAV acting as an RL agent learns to improve the cumulative
reward, i.e., the total instantaneous transmission rate, from its past learning experi-
ences. Hence, according to this figure, the SARSA algorithm enhances the overall
transmission rate by 75.37%, 49.74%, and 11.01%, compared with RS-FORD, ES-
FIRD, and AOIV schemes, respectively.

Algorithm 1: Optimal UAV deployment strategy using adaptive SARSA technique

Input: N0,B, μLoS, μNLoS, f c, b1, b2, Hu, ϑ0,K,KS, KD, ~K,~KS,~KD, P
Tx
k , M, M, PTx

m , J, J ,

w1, w2, γ, α, ϵ, ς, ∀sm tð Þ∈S, am tð Þ∈A, k∈K ¼ KS∪KD∪
~KS∪

~KD

� 


, m∈M

Output: Instantaneous reward generated by all UAVs as R tð Þ
1: Initialize Q sm tð Þ, am tð Þð Þ ¼ 0, ∀sm tð Þ∈S, am tð Þ∈A,m∈M

2: Set initial device association probability as ~P~k,m 1ð Þ ¼ 1
M , ∀~k∈ ~KS∪

~KD

� 


,m∈M

3: Set initial channel selection probability of UAVs as Pm,j 1ð Þ ¼ 1
J ,∀m∈M, j∈J

4: Initially deploy UAV m at the random position as sm 1ð Þ ¼ xm 1ð Þ, ym 1ð Þ,Hu

� �

,∀m∈M

5: fort ¼ 1, 2, … ,T do

6: for~k ¼ 1, 2, … , ~K do

7: form ¼ 1, 2, … ,M do

8: Obtain the association probability of device ~k with UAV m as ~P~k,m tð Þ

9: Calculate Γ̂
j
~k,m

tð Þ and Γ̂
j

m,~kþ~K
tð Þ by (25) and (26), respectively, for a fixed assigned channel

10: ifΓ̂
j
~k,m

tð Þ, Γ̂j

m,~kþ~K
tð Þ≥ ς then

Figure 6.
The variation of the total transmission rate of the USSD2D network corresponding to each episode.
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11: Calculate ~R
j
~k,~kþ~K

tð Þ using (32) for a fixed assigned channel

12: else

13: ~R
j
~k,~kþ~K

tð Þ ¼ 0

14: for~k ¼ 1, 2, … , ~K do

15: form ¼ 1, 2, … ,M do

16: Set I~k,m tð Þ ¼ 1 when m ¼ argmax
m∈M

~P~k,m tð Þ, otherwise I~k,m tð Þ ¼ 0

17: According to (43), update the association probability as ~P~k,m tð Þ  ~P~k,m t þ 1ð Þ
18: form ¼ 1, 2, … ,M do

19: forj ¼ 1, 2, … , J do

20: UAV m obtains the jth channel selection probability as Pm,j tð Þ
21: Calculate Γ̂

j

m tð Þ according to (25) for the fixed associated devices

22: ifΓ̂
j

m tð Þ≥ ς then

23: ~R
j

m tð Þ ¼
P~K

~k¼1B log 2 1þ Γ̂
j
~k,m

tð Þ
h i

24: else

25: ~R
j

m tð Þ ¼ 0

26: form ¼ 1, 2, … ,M do

27: forj ¼ 1, 2, … , J do

28: Set ~Im,j tð Þ ¼ 1 when j ¼ argmax
j∈J

Pm,j tð Þ, otherwise ~Im,j tð Þ ¼ 0

29: According to (44), update channel selection probability as

Pm,j tð Þ  Pm,j t þ 1ð Þ
30: form ¼ 1, 2, … ,M do

31: Choose the action values am tð Þ ¼ δmx tð Þ, δmy tð Þ
n o

by (50)

32: Find next state as sm t þ 1ð Þ ¼ xm tþ 1ð Þ, ym t þ 1ð Þ,Hu

� �

by (40) and (41)

33: Calculate the immediate reward R sm tð Þ, am tð Þð Þ of UAV m by (42)

34: Choose the action am t þ 1ð Þ ¼ δmx t þ 1ð Þ, δmy t þ 1ð Þ
n o

by (50) and obtain Q sm t þ 1ð Þ, am t þ 1ð Þð Þ value
35: Update Q sm tð Þ, am tð Þð Þ value according to (49) and store it in Q-table

36: Update the state and action for the next time slot as sm tð Þ  sm t þ 1ð Þ and am tð Þ  am t þ 1ð Þ
respectively

37: Calculate the instantaneous reward generated by all UAVs as R tð Þ ¼PM
m¼1R sm tð Þ, am tð Þð Þ

Figure 7a shows the variation of instantaneous transmission rate for different
number of UAVs while the other3 network parameters are the same, as mentioned in
Figure 6. It can be observed in this figure that the performance metric value increases
with the number of UAVs because all UAVs utilize the available channels efficiently at
their deployed location. But when the number of UAVs exceeds 7, the total instanta-
neous transmission rate does not increase significantly because all UAVs reuse the
limited spectrum, which increases mutual interferences among UAVs and source-
destination device pairs.

Figure 7b plots the objective value corresponding to the different number of
available orthogonal channels. From this figure, we can say that the instantaneous
transmission rate increases with the number of channels because all the communica-
tion nodes select individual channels according to the channel selection probability
vectors. But when the number of channels exceeds 7, no such variation in objective
value is found because this is a sufficient resource to avoid mutual interferences
completely.

Figure 7c represents the network throughput variation for different UAV-assisted
D2D pairs when their transmitting power is 10 mW. Since all the devices and UAVs
share the fixed amount of orthogonal channels, the network’s performance is
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independent with respect to the number of UAV-assisted D2D pairs, and the perfor-
mance metric value is almost constant for variation of the key system parameters.

The performance metric variations for different number of direct D2D pairs are
illustrated in Figure 7d when their transmitting power is set as 10 mW. It is observed
that the instantaneous transmission rate decreases with the number of direct D2D
pairs because they utilize more orthogonal channels. As a result, mutual interference
among UAV-assisted D2D pairs increases since they share limited network resources.
Furthermore, our proposed scheme has the capabilities for adaptive action selection,
which significantly outperforms the benchmark techniques. From Figure 7, we can
say that the overall network throughput can be improved by 77.58%, 52.51%, and
12.14% compared to the RS-FORD, ES-FIRD, and AOIV schemes, respectively.

5. Minimization of devices’ energy consumption in UAV-assisted IoT
network

The devices at the cell edge consume high energy to achieve the required data rate
when transmitting data to the nearest BS because of the large LoS distance between

Figure 7.
Total overall network performance of the USSD2D network for different network parameters value. (a) Network
throughput for different number of UAVs. (b) Network throughput for different number of channels. (c) Network
throughput corresponding to the different number of UAV-assisted D2D pairs. (d) Network throughput
corresponding to the different number of direct D2D pairs.
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BSs and those devices. Alternatively, a quad-rotor UAV-assisted IoT network could
provide reliable communication compared to fixed terrestrial BSs. Therefore, in this
section, we aim to find the optimal trajectory of UAV and the association of IoT
devices that simultaneously support energy-efficient data collection.

5.1 System model

Figure 8 illustrates the UAV-assisted IoT network, in whichM terrestrial BSs with
fixed height of HB and a single UAV collect data from K stationary uniformly distributed
IoT devices. The UAV flies at a fixed altitude Hu with the constant speed of ϑu where its
start and end locations are represented by US ¼ xs, ys,Hu

� �

and UE ¼ xe, ye,Hu

� �

respectively. To track the UAV’s location at each instance, we discretize its flight period
into N equally spaced time slots, each of duration Ts, and assume that UAV’s location at
nth time slot U n½ � ¼ x n½ �, y n½ �,Huð Þ, ∀n∈N ¼ 1, 2, … ,Nf g is constant. All devices
transmit atleast DMin bits data to the core network to maintain reliable QoS.

5.1.1 Data collection of core network

The transmission environment is categorized into two scenarios, i.e., ground to
ground (G2G) and ground to air (G2A) channels. G2G channel establishes the links
between BS and IoT devices, whereas G2A channel connects the IoT devices with the
UAV platform. We generalize the wireless channel gain between each device and its
destination (either UAV or BS) at each time slot as the combination of large-scale path
loss and small-scale fading. The channel gain between each device and its destination
can be modeled as [39]

hik n½ � ¼ gik n½ �
ffiffiffiffiffiffiffiffiffiffiffi

Li
k n½ �

q

,∀k∈K ¼ 1, 2, … ,Kf g (51)

where i∈ B or Uf g is the destination indicator in which B and U represent nearest

BS and UAV, respectively, Li
k n½ � is the large scale path loss, gik n½ � is the small scale

fading coefficient. The achievable instantaneous transmission rate of the kth IoT
device can be formulated as [40]

Ri
k n½ � ¼ CB log 2 1þ hik n½ �

�

�

�

�

2
Pi
k n½ �

η0

" #

(52)

Figure 8.
Illustration of UAV-assisted IoT network.
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where CB is channel bandwidth, Pi
k n½ � is transmitting power of the kth device, and

η0 is noise power. Instantaneous data transmitted by the kth device over G2G and G2A

channel is measured as DB
k n½ � ¼ RB

k n½ �Ts and DU
k n½ � ¼ RU

k n½ �Ts respectively. The energy
consumption of device k at nth time slot can be calculated as

Ek n½ � ¼ IUk n½ �PU
k n½ � þ IBk n½ �PB

k n½ �
� �

Ts, ∀k∈K (53)

where PU
k n½ � and PB

k n½ � are the instantaneous transmit powers of kth device when

connecting with UAV and BS, respectively and IUk n½ �, IBk n½ �∈ 0, 1f g are the binary
device association indicators with UAV and BS respectively. The k th device transmits
data to the core network during each time slot is measured as

Dk n½ � ¼ IUk n½ �DU
k n½ � þ IBk n½ �DB

k n½ �,∀k∈K, n∈N (54)

5.1.2 Problem formulation

We aim for energy-efficient data collection that jointly exploit reliable data trans-
mission, optimal instantaneous position of UAV and transmit power control. The fluc-
tuation of channel gain causes unstable network performance, leading to quickly drain
out devices’ on-board battery energy. Thus, to minimize total energy consumption of all
devices we jointly optimize UAV’ trajectory, device association indicators and their
transmit power allocation, while ensuring that each device should transmit a minimum
data to the destination and UAV chooses a constant speed during its trajectory between
the initial and final locations. Therefore the optimization problem is formulated as

P1 : Minimize
x n½ �, y n½ �ð Þf g, IUk n½ �, IBk n½ �,PU

k n½ �, and PB
k n½ �

∀k∈K, n∈N

� �

X

N

n¼1

X

K

k¼1
Iuk n½ �Pu

k n½ � þ IBk n½ �PB
k n½ �

� �

Ts

� �

(55)

Subject to the constraints

C1 : IUk n½ �DU
k n½ � þ IBk n½ �DB

k n½ �≥DMin, ∀k∈K, n∈N (56)

C2 : IUk n½ �∈ 0, 1f g, IBk n½ �∈ 0, 1f g, ∀k∈K, n∈N (57)

C3 : IUk n½ � þ IBk n½ �≤ 1, ∀k∈K, n∈N (58)

C4 :

X

K

k¼1
IUk n½ �≤K,∀n∈N (59)

C5 : U 1½ � ¼ US,U N½ � ¼ UE (60)

Here, C1 ensures that each device transmits atleast DMin bits data to either UAV or
nearest BS at a time slot. C2 defines the device association indicators. C3 verifies that
each device associates with either UAV or the nearest BS at each time slot. C4 implies
that UAV can associate with maximum K number of devices instantaneously; and C5
guarantees that UAV starts its trajectory from an initial given position and ends to the
final predefined location. The optimization problem contains multiple interactive and
coupled variables, and they have a complex relationship by which changing one’s value
may impact to others. Furthermore, these discrete optimizing variables make the prob-
lem highly non-convex to find a limited time trajectory between the start and end points.
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Hence, standard optimization methods face difficulties in obtaining exact solutions. In
order to tackle this situation, we propose RL framework and adaptive decision-making
policy to find UAV’s successive locations, and device association along with their trans-
mit power allocation. We adopt the SARSA algorithm to control the UAV, which acts as
an RL-agent for taking the optimal action at each step to maximize its reward.

5.2 Reinforcement learning based on SARSA algorithm

As discussed earlier in Section 4.3, the RL framework follows MDP, where the
current state only depends on the immediate past state, and the UAV acting as RL
agent chooses an action according to the ϵ-greedy policy. Here, the generated reward
depends on UAV’s current state and taken action at each time slot. The expected
trajectory is obtained more precisely when the reward generated by the UAV at the
current time slot is beneficial for the long term. To reflect this property, we model the
instantaneous reward for every time slot as UAV’s instantaneous objective value,
which is expressed as

R s n½ �, a n½ �ð Þ ¼
X

K

k¼1
IUk n½ �PU

k n½ � þ IBk n½ �PB
k n½ �

� �

Ts

" #�1

(61)

Algorithm 2 summarizes the optimal trajectory learning procedure using the
improved SARSA technique. In this framework, we first calculate UAV’s current state,
channel gain, and distances from all devices to UAV and the nearest BS at every time
slot. Then, all devices select the destination (either UAV or nearest BS) by estimating
the instantaneous device association indicator and the required transmit power while
satisfying the data rate constraint value. This process is repeated at each step, and
UAV obtains optimal policy at the final episode. Since the number of episodes is T and
each episode goes through N time slots, the computation complexity depends on total
steps TN, including state space and action space in RL. In our scenario, there are L1L2

possible state locations and eight possible actions for each time slot. Therefore, the
computational complexity of algorithm 1 is O 8TNL1L2ð Þ, including the complexity of
the action selection scheme in each step.

Algorithm 2: UAV trajectory learning process using SARSA

Input:γ, α, ϵ̂, ζ,T, xs, ys,Hu

� �

, xe, ye,Hu

� �

,Ts, β0, ϑu,Hu,DMin, IoTk,K,BSm,M,N, eMax,

hik n½ �, s n½ �, a n½ �, ∀s n½ �∈S, a n½ �∈A, k∈K,m∈M, n∈N , i∈ U or Bf g
Output: Optimal policy π ∗

h

1: Initialize Q s n½ �, a n½ �ð Þ ¼ 0, ∀s∈S, a∈A, and e 1½ � ¼ eMax

2: fort ¼ 1, 2, … ,T do

3: Set the starting point as s 1½ � ¼ x 1½ �, y 1½ �ð Þ ¼ xs, ys
� �

4: for n ¼ 1, 2, … ,N do

5: if n≤N � 2 and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xe � xu n½ �ð Þ2 þ ye � yu n½ �
� �2

q

≤ϑu N � nð ÞTs then

6: Choose the action values a n½ � ¼ δux n½ �, δuy n½ �
n o

by (50)

7: Find next state by (40) and (41) as s nþ 1½ � ¼ x nþ 1½ �, y nþ 1½ �ð Þ
8: Calculate reward R s n½ �, a n½ �ð Þ by (61)

9: Choose the next action a nþ 1½ � ¼ δux nþ 1½ �, δuy nþ 1½ �
n o

by (50) and obtain Q s nþ 1½ �, a nþ 1½ �ð Þ value
10: Update Q s n½ �, a n½ �ð Þ value according to (49)

11: Update the respective state and action as s n½ �  s nþ 1½ � and a n½ �  a nþ 1½ �
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12: else if n ¼ N � 1 and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xe � xu n½ �ð Þ2 þ ye � yu n½ �
� �2

q

≤ϑuTs then

13: Obtain the next state as s nþ 1½ � ¼ xe, ye
� �

14: Calculate reward R s n½ �, a n½ �ð Þ by (61)

15: Choose the next action a nþ 1½ � ¼ δux nþ 1½ �, δuy nþ 1½ �
n o

by (50) and obtain Q s nþ 1½ �, a nþ 1½ �ð Þ value
16: Update Q s n½ �, a n½ �ð Þ value according to (49)

17: Update the respective state and action as s n½ �  s nþ 1½ � and a n½ �  a nþ 1½ �
18: else

19: Break

20: Find an optimal policy as π ∗
h ¼ arg max

a n½ �¼ δux n½ �, δuy n½ �f g
Q s n½ �, a n½ �ð Þ,∀s n½ �∈S, a n½ �∈A, n∈N

5.3 Simulation results

This sub-section presents the training outcomes corresponding to the proposed
SARSA algorithm for optimal trajectory and subsequently evaluates the energy-
efficient data collection. Here, we compare the effectiveness and superiority of the
proposed design with the benchmark PSO technique [41], where 100 IoT devices are
uniformly distributed within a square field of size 2000� 2000 m. Moreover, we
adopt the required simulation parameters from [40] and [24] to implement the
proposed algorithm.

5.3.1 Convergence analysis

The agents’ training evaluations using RL-based SARSA algorithm are illustrated in
Figure 9a, when all IoT devices maintain the data rate constraint of 10 Mbps. In this
figure, we have found that the convergence rate varies for flying time because UAV
explores the target area more efficiently with the available time slots. As a result more
devices associate with UAV and the convergence occurs before 10,000 episodes.

Figure 9b shows the episode-wise objective value evaluation using PSO algorithm.
From this figure, it is visible that PSO takes more time to converge, and its final
convergence value is less than the SARSA algorithm. This is because PSO updates
particles’ position and velocity according to the random inertial weight which causes
less exact regulation of particles’ moving directions and speed. Hence, its

Figure 9.
Training results corresponding to the proposed and benchmark algorithms. (a) Cumulative reward generated by
proposed SARSA. (b) Fitness value generated by benchmark PSO.
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computational complexity increase due to the high dimensions of decision variables.
Therefore, the proposed SARSA algorithm improves the cumulative reward by
10.26% with respect to the PSO.

5.3.2 Optimal trajectory

Using the same parameters mentioned in Figure 9, UAV finds its optimal trajec-
tories with the help of SARSA and PSO algorithms, depicted in Figure 10. These
figures indicate that UAVmoves toward the devices, far away from the BS, and within
the flight period, it reaches the final destination point. Since devices consume more
energy while transmitting data to BS, UAV fly toward those devices to improve their
channel conditions. as we mentioned earlier, device association with UAV increases
with the flying time, more devices transmit their data to the UAV instead of BS,
reducing their energy consumption.

5.3.3 Performance comparison of proposed SARSA with benchmark PSO

The variation of devices’ average transmit power to achieve 10 Mbps data rate with
the index value is demonstrated in Figure 11a where a device’s index indicates its

Figure 10.
Optimal trajectories corresponding to the proposed and benchmark algorithms. (a) Optimal UAV trajectory using
SARSA. (b) Optimal UAV trajectory using PSO.

Figure 11.
Performance comparison of the proposed and benchmark algorithms. (a) Devices’ transmit power corresponding to
their index value. (b) Devices’ energy consumption versus data rate constraint.
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distance from the nearest BS. It is observed that, when there is no UAV support,
average transmit power increases with the index value because, according to (52)
devices far away from BS utilize more power to obtain the given data rate. But when
UAV is employed, its optimal trajectory focuses the devices which are consuming
more power and associates with them for data collection. Furthermore, since UAV’s
straight trajectory cannot improve all devices’ channel conditions, the corresponding
energy-efficient data collection would not be possible.

The total energy consumption of all devices for various data rate constraint values
is illustrated in Figure 11b. It is clear that devices’ energy consumption increases with
data rate constraint because, according to (49), devices allocate more power to
achieve the given rate constraint. Furthermore, from Figure 11a, UAV’s optimal
trajectory corresponding to the proposed SARSA algorithm reduces devices’ transmit
power with its available flying time as compared to PSO algorithm, because PSO
achieves low convergence rate in an iterative process and could not identify the local
optimal in high-dimension space. Hence, the proposed SARSA methodology signifi-
cantly reduces the total energy consumption of all devices by 8.15%, 7.72%, and 5.67%
for UAV’s flying time of 80, 100, and 120 timeslots, respectively as compared to PSO.

6. Conclusion

This chapter proposes deployment and trajectory designs of UAVs for efficient
resource allocation to achieve reliable wireless communication. The main features of
this structure are three folded. In the first part, we optimize UAVs altitude to mini-
mize outage probability and symbol error rate, considering pointing errors, atmo-
spheric turbulence, and scintillation parameters where a hybrid RF-FSO channel
governs the transmission environment. The second part finds the optimal deployed
locations of UAVs to maximize the total instantaneous transmission rate of the devices
in USSD2D network under SNR constraint. Finally, the last feature focuses on energy-
efficient data collection where devices’ total energy consumption is minimized by
jointly optimizing their association with the nearest BS or UAV, their transmitting
power, and UAV trajectory while satisfying a given data rate requirements. Numerical
results validate the analysis and provide insights on the optimal UAV control design
for various key system parameters. Our proposed methodology significantly improves
system performance compared with the benchmark techniques. This work would be
extended toward a multi UAVs-assisted energy-efficient data collection system con-
sidering the age of information aspect where the users follow a certain mobility model.
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