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Chapter

Why Microplastics Are Exceptional 
Contaminants?
Dalia Saad

Abstract

Due to the heterogeneous nature of the physiochemical properties of microplastics 
(MPs), their behaviour in the environment is quite complex compared to other con-
taminants. The variety of polymers, wide range of sizes, variable shapes and numerous 
colours influence their mobility, transport and distribution in the different environ-
mental compartments. For example, different shapes and sizes are distributed differ-
ently, which influence their bioavailability and ecological impacts. The uptake of MPs 
by aquatic biota also depends, among others, on their characteristics. This book chapter 
aims to discuss the ecological and toxicological impacts of MPs in relation to their 
physical and chemical properties. The chapter starts with a brief introduction explain-
ing the uniqueness of MPs as emerging contaminants and a driver of environmental 
change. The following two sections then provide deeper insights into their ecological 
impact at all levels of the ecosystem and highlight the complexity associated with their 
toxicological effects. Finally, the last section provides more discussion about their prop-
erties in the context of their environmental behaviour, fate, bioavailability and toxicity.

Keywords: microplastics, physiochemical properties, behaviour, bioavailability, 
toxicity

1. Introduction

Plastic pollution was one of the biggest environmental challenges until the discov-
ery of microplastics (MPs) in the early 21st century. While plastics are easily visible 
and their environmental impacts are well documented, MPs are not visible and their 
ecological impacts are less understood [1].

MPs are exceptional pollutants with a broad range of individual properties. For 
instance, they are made of different polymers with different densities and chemical 
compositions (there are currently more than 5,300 types of synthetic polymers); they 
exist in variable shapes (fibres, fragments, foams, films, spheres, flakes, foils, sheets 
and granules) and are found in a wide range of sizes. These heterogeneous properties 
result in heterogeneous behaviour, fates and effects that are far more complex com-
pared to other environmental pollutants. To add to this complexity, their properties 
and behaviour can also change over time, thus their ecological effects [1–3].
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According to their physio-chemical properties, MPs are distributed differently 
in aquatic environments, which makes them available for uptake by a wide range of 
aquatic biota including plants. MPs are reported to interact with aquatic plants and 
accumulate into plants’ tissues. This enables them to penetrate aquatic food webs 
at multiple trophic levels and ecological niches. Yet, the degree and type of effects 
that they cause when consumed by organisms depend on their properties including 
polymer type, size, shape and colour, as well as their constituent chemicals [4–8].

Due to their greater surface area, MPs have a propensity to adsorb other pollutants 
such as metals, pharmaceuticals and persistent organic pollutants (POPs). They also 
host pathogens, such as bacteria and viruses, thus, providing an additional pathway 
of exposure of aquatic species to contaminants. In other words, MPs can serve as a 
micro-vector for a mix of toxic chemicals and pathogens [9–14].

2. Ecological impact

Over the years, several studies across the globe have reported MPs in different 
environmental compartments including rivers, lakes, estuaries, oceans, harbours, 
groundwater and in the atmosphere, as well as in Antarctica. Once they enter the 
environment, their residence time lasts for decades due to their low degradation rates, 
resulting in long-lasting impacts [15–19].

In natural environments, MPs are exposed to a variety of degradation processes 
through different environmental conditions including weathering, biodegradation, 
oxidation, mechanical forces and phytodegradation. Phytodegradation of MPs is 
reported to produce greenhouse gases (GHGs), mostly, methane and ethylene, thus, 
contributing to climate change. The emission of GHGs by the degradation of MPs is 
relatively low, however, with continuous degradation, the same amount of MPs may 
release more GHGs over time [20–23].

In the atmosphere, MPs can be transported with winds around the earth. Airborne 
MPs may influence earth’s climate by scattering and absorbing solar and terrestrial 
radiation, leading to atmospheric warming or cooling depending on particle size, 
shape and composition. However, the radiative effects of airborne MPs on climate are 
less understood [22, 24].

In marine environments, the widespread of MPs affects the light transmis-
sion, thereby influencing the efficiency of phytoplankton photosynthesis, which 
impacts both their growth and role in balancing the marine environment. Studies 
have shown that the photosynthetic rate of phytoplankton (Dunaliella tertiolecta) 
is reduced by 45% after being exposed to MPs. Additionally, MPs may influence 
the circulation of organic matter and nutrients, which affects the carbon stock of 
ocean [25].

In terrestrial ecosystems, MPs can cause significant environmental changes with 
potential consequences on soil function, plant growth, soil biota and microbial 
communities; ultimately, MPs have the potential to impact the biodiversity. When 
dispersing in the soil matrices, MPs form aggregates and cause alteration in the 
physical properties of the soil, including water holding capacity, soil bulk density 
and soil structures. For example, MPs can create channels for water movement in the 
soil, thus, accelerating the evaporation of soil water. This further leads to destruction 
in the soil structure, which may result in desiccation cracking on the soil surface. 
The impact of MPs on the soil is not limited to the physical properties, MPs can also 
affect soil chemistry, for instance, by altering the levels of dissolved organic carbon, 
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phosphorus, and nitrogen. This leads to changes in the nutrient cycling processes in 
the soil. There is also a growing body of evidence suggesting that MPs can affect soil-
plant interactions, which in turn impacts plant growth. Several studies have reported 
significant changes in plant biomass, leaf and root traits and tissue elemental com-
position [26–36]. In short, MPs have profound effects on the ecosystem at all levels 
(Figure 1).

3. Toxicity

The toxicity of MPs comes from (i) their chemical constituents, which include 
both the polymers (polyaromatic hydrocarbon) and the chemical additives; (ii) the 
environmental pollutants adsorb onto their surfaces; (iii) pathogens colonized onto 
their surfaces.

During plastic processing and manufacturing, a variety of chemicals are added 
to enhance/adjust their properties and to make them into materials fit for intended 
purposes. Most of these chemicals are toxic and harmful to the environment, such as 
dyes, phthalates, flame retardants, pigments and stabilizers. Some of these additives 
tend not to be strongly bound within the matrix of the polymer and they can poten-
tially desorb and be leached out into the host environment [37–39].

Figure 1. 
Ecological impacts of MPs. Source: Shen et al. [20].
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On the other hand, due to their small size and greater surface area, MPs 
have a tendency to adsorb wide range of contaminants from the surrounding 
media. Pollutants such as persistent organic pollutants (POPs), metals, pesti-
cides and pharmaceuticals are readily bound to MPs. In natural environments, 
and depending on the prevailing environmental conditions, MPs may act as a 
sponge removing and/or concentrating these contaminants. It is reported that the 
concentrations of contaminants on the surface of MPs may reach up to 100-fold 
higher than the concentrations reported in the surrounding media. Once MPs 
are ingested, these concentrated contaminants can be released inside organisms. 
Arguably, the virgin MPs will release plastic additives, while the aged MPs will 
most likely release adsorbed pollutants. Most of these chemicals are reported 
to be toxic; for instance, POPs are known to be carcinogenic, while metals are 
known as endocrine disruptors. Additionally, in aquatic environments, MPs are 
susceptible to biofouling different pathogens/microbial organisms including 
fungi, bacteria and algae colonize MPs’ surfaces and form biofilms. Therefore, 
MPs act as carriers or micro-vector for transporting a complex mixture of con-
taminants (Figure 2). The leaching of additives from plastic combined with the 
chemicals adsorbed to plastic renders MPs a ‘cocktail’ of toxic contaminants. 
When particles containing adsorbed chemicals are ingested by an organism, pol-
lutants can be released [9–11, 38, 41–47].

The toxicological effects of the uptake of MPs by several aquatic biotas are 
reported in a variety of exposure studies, including both physical and bio-chemical 
changes. For instance, MPs were observed to cause oxidative stress, immune destruc-
tion and alterations in the level of enzyme activity, tissue morphologies, kidney func-
tions, gene expression and the total protein and glucose. Further, MPs may inhibit 
weight gain and growth. This, in addition to physical changes, such as abnormally 
impaired movement coordination, increased respiration and abnormal swimming 
patterns [48–53].

Figure 2. 
Interaction of MPs with co-existing pollutants. Source: Wang et al. [40].
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4.  Characteristics of MPs: implications on their behaviour, bioavailability 
and toxicity

The unique nature of MPs is clearly illustrated in comparison with other environ-
mental pollutants. While toxicity of other contaminants is merely dependent on their 
composition, that of MPs is more complex. The toxicity of MPs includes the particle-
related toxicity, which is driven by size, shape, colour and the polymer type; and the 
chemical toxicity, which is driven by adsorption-desorption kinetics of additives, and 
co-existing pollutants [6]. This section reviews the implications of MPs’ character-
istics in their behaviour and fate, and further highlights the consequences of these 
implications on their bioavailability and potential toxicity.

4.1 Size

The size of MPs influences their distribution in the environment, dispersal in 
water column, magnitude of buoyant, biofilm formation and sedimentation. It 
also determines the extent of their impacts on soil properties, bioavailability, plant 
growth, GHGs emission rates and their potential health risks [21, 54–56].

For instance, their impact on the climate depends to a great extent on their size. 
For example, the larger surface area of the small-sized MPs increases the emission rate 
of GHGs. Meaning, with the frequent degradation of MPs, the very same amount of 
MPs will continue to release more and more GHGs [23, 24].

In terrestrial environment, small-sized MPs are more likely to block soil micro-
pores, absorb by plants and be consumed by soil organisms compared to larger MPs. 
In addition, they are transported through the soil to groundwater more easily than 
larger MPs [57].

In aquatic systems, the size range of MPs overlaps with the preferred particle size 
ingested by a wide range of aquatic biota, including filters, detritus and suspension 
feeders. In addition, some organisms such as diatoms can aggregate on the surfaces of 
small-sized MPs and construct biofilms that could be attractive to organisms causing 
a higher probability of being mistakenly ingested. Smaller MPs generally have larger 
surface area, which makes them a good carrier for other pollutants such as heavy 
metals [5, 58–62].

In terms of toxicity, pollutants’ adsorption and release from MPs depend, among 
other parameters, on the total surface area and thus on the size of the particles. 
The greater surface area of small-sized MPs thus facilitates the adsorption of other 
pollutants from the surrounding environment, resulting in additional health risks 
[63]. Consequently, small-sized MPs are considered to be more harmful to aquatic 
organisms. Hamed et al. [51] examined the effects of varying sizes of MPs in fish, and 
they observed toxicological effects including oxidative stress, biochemical changes 
and immune destruction. These toxicological effects were found to be augmented 
with decreasing MP size, thus, implying a direct correlation between the toxicity of 
MPs and their size. Additionally, the small size may facilitate their translocation into 
other organs. For instance, MPs have been reported in tissues, muscles and organs, 
confirming their ability to be translocated into these parts of the body, and it was 
noted that translocation rates increased with decreasing particle size [64–66]. This 
represents higher potential for health risks and higher level of toxicity if small MPs 
are regularly translocated into other parts of the body.



Advances and Challenges in Microplastics

6

4.2 Shape

MPs’ shape is a key attribute affecting their behaviour in the environment. It 
influences biofouling, rising and fall velocities and drag force. Thus, the shape plays a 
significant role in the sedimentation of MPs [67–69]. The shape of MPs is also impor-
tant with regards to their impact on soil properties.

Some studies have suggested that MPs with different shapes may affect soil 
properties differently. For instance, fibres and films may have more significant effects 
on soil properties compared to beads and spheres [57, 70, 71]. This was explained by 
Rillig et al. [72] that the pollutants with dissimilar shapes to soil particles may have 
stronger effects. This was further supported by Lozano et al. [57]; they reported dif-
ferent effects on soil based on different shapes. They observed different effects caused 
by different shapes; according to their findings, fibres increased water-holding 
capacity, films decreased soil bulk density, while foams and fragments increased soil 
aeration and porosity.

In terms of bioavailability and toxicity, the shape of MPs is essential to prey percep-
tion by visual predator and the preference for certain MP shapes by several aquatic 
organisms have been reported in several studies. For instance, Saad et al. [5] and Yuan 
et al. [73] observed that common carp fish and goldfish preferably consumed fibrous 
MPs in the presence of other shapes, whereas, Hurley et al. [74] and Schessl et al. [75] 
reported an absence of pellets in the freshwater worm Tubifex tubifex and bivalves 
(Dreissena polymorpha and D. bugensis) despite their presence in the environment. This 
confirms the role of MPs shape in their bioavailability to different aquatic organisms.

Further, MPs’ shape is pertinent to their potential toxic effects due to the different 
retention time, accumulation and physical damage. For example, fibres are reported 
to have longer intestinal residence time and accumulation, stronger acute toxicity and 
intestinal epithelial cell necrosis compared to other shapes in zebrafish, amphipods 
and grass shrimp. This could be attributed to the non-spherical shape, which is more 
easily embedded in tissue and takes longer time to pass through the gut. It is known 
that the longer the particles remain within the organism, the greater the potential to 
release associated toxins [76–79].

4.3 Surface morphology

The surface morphology of MPs influences their interaction with the surrounding 
environment. For instance, adsorption/desorption of co-existing pollutants as well 
as biofilm formation are influenced, to a great extent, by the surface nature of MPs. 
Ultimately, surface morphology impacts the distribution and sedimentation, thus 
bioavailability of MPs [80].

Cracks, pitting, flaking and fracturing result in an increased surface area, which 
increases the emission of GHGs. The increased surface area also facilitates the adsorp-
tion of other pollutants as well as the formation of biofilms. As a result, MPs may 
become a cocktail of pollutants with varying toxicity effects [10, 11, 23, 30, 47, 81].

4.4 Colour

A variety of colourant agents such as pigments and dyes are widely used during 
plastic manufacturing, these colourants contain some toxic chemicals. Coloured MPs 
are, therefore, considered to have higher potential health risks compared to non-
coloured MPs [82].
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The uptake of coloured MPs by aquatic biota is well documented and exposure 
studies have suggested that aquatic organisms may actively prey on plastic particles 
that possess similar colours to their natural prey. For instance, the preferential uptake 
of certain colours (MPs with artificial food-like colours) was reported in common 
carp (Cyprinus carpio). The authors observed an increase in the number of ingested 
food-like MPs with increasing concentrations of MPs in the water, while no increase 
in the number of non-food-like colours was observed [83]. Similarly, Ory et al. [84] 
reported significant uptake of MPs with artificial food-like colours by palm ruff 
(Seriolella violacea) more often than other colours, whereas MPs of other colours were 
mostly co-ingested when floating close to food pellets. Another study by de Sá et al. 
[85] reported a preferential uptake of white MPs by common goby (Pomatoschistus 
microps), compared to black and red MPs. The authors attributed this to the similarity 
in colour with the brine shrimp (Artemia nauplii), a prey that is commonly consumed 
by the common goby.

4.5 Chemical composition

Generally, MPs consist of a high molecular polymer as the main body and a variety 
of additives such as stabilizers, plasticizers, flame retardants and colouring agents as 
auxiliary materials. These various potential compositions determine their properties 
such as density and degradability, behaviour and environmental impact. For instance, 
their distribution in different environmental compartments is greatly influenced by 
polymer density. MPs with low density are buoyant, while those of high density tend 
to sink into sediments [37, 68].

The chemical composition of MPs also influences their interaction with the co-
existing contaminants. For instance, the tendency of MPs to adsorb metals depends 
mainly on the functional groups pendent on the backbone structure of the polymer 
[86–92]. Ultimately, the chemical composition of MPs shapes their toxicological 
effects.

It is reported that the effect of MPs on soil properties varies based on the polymer 
type. The polymer type further influences the degradation of MPs, as a result, MPs 
may release the contaminants that are adsorbed onto their surfaces. The degrada-
tion also increases the emission rate of GHGs by MPs. The rate of GHGs emission 
also depends on the polymer type, for instance, polyethylene is found to emit higher 
GHGs compared to a number of other polymers [22, 30, 34, 80, 93].

5. Concluding remarks

The ubiquitous detection of MPs in different environmental compartments has 
made them a prominent environmental concern. Due to the chemical modification 
of plastic materials, receiving environments are potentially exposed to a cocktail of 
pollutants (polymers, leached additives and degradation products). This chapter 
provided a brief overview of the environmental challenges associated with MPs. The 
complexity of their ecological impact is discussed in light of their heterogeneous 
physicochemical characteristics.

Over the past decade, monitoring and ecotoxicological studies have improved 
our understanding of their nature and potential health risks. However, a better 
understanding of their long-term effects is needed. Considering that MP pollu-
tion is a symptom of human-made environmental change and a valid example of 



Advances and Challenges in Microplastics

8

Author details

Dalia Saad
School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, 
Johannesburg, South Africa

*Address all correspondence to: dalia.saad@wits.ac.za

society-nature interaction, their mitigation requires a lot more than technological 
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