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Chapter

Implementation of Associative
Memory Learning in Mobile Robots
Using Neuromorphic Computing
Noah Zins, Yan Zhang and Hongyu An

Abstract

Fear conditioning is a behavioral paradigm of learning to predict aversive events. It
is a form of associative learning that memorizes an undesirable stimulus (e.g., an
electrical shock) and a neutral stimulus (e.g., a tone), resulting in a fear response
(such as running away) to the originally neutral stimulus. The association of concur-
rent events is implemented by strengthening the synaptic connection between the
neurons. In this paper, with an analogous methodology, we reproduce the classic fear
conditioning experiment of rats using mobile robots and a neuromorphic system. In
our design, the acceleration from a vibration platform substitutes the undesirable
stimulus in rats. Meanwhile, the brightness of light (dark vs. light) is used for a neutral
stimulus, which is analogous to the neutral sound in fear conditioning experiments in
rats. The brightness of the light is processed with sparse coding in the Intel Loihi chip.
The simulation and experimental results demonstrate that our neuromorphic robot
successfully, for the first time, reproduces the fear conditioning experiment of rats
with a mobile robot. The work exhibits a potential online learning paradigm with no
labeled data required. The mobile robot directly memorizes the events by interacting
with its surroundings, essentially different from data-driven methods.

Keywords: neuromorphic computing, associative memory learning, mobile robot,
Hebbian learning, fear conditioning

1. Introduction

Associative memory learning is a ubiquitous online learning paradigm in animals
[1–3]. Unlike the data-driven learning schemes of current Artificial Intelligence (AI),
animals have the capability of memorizing the events that occur at the same time or
within a certain time interval. The underlying memorization mechanism in the ner-
vous system is the synaptic connection that becomes strengthened under the stimulus
of the firing neurons evoked by concurrent events. The strengthened synaptic con-
nection enables the response neurons at the conditional pathway to receive a larger
amount of the synaptic transmitter. As a result, the response neuron in the conditional
signal pathway will fire, even though it originally did not become active. In other
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words, the memorization of the relationship between concurrent events is achieved by
signal pathway modification rather than backpropagation. The signal pathway modi-
fication is accomplished by synaptic plasticity. An AI system with associative memory
potentially provides an alternative way of active self-learning by constantly
interacting with environments. The signal pathway modification can be accomplished
with a few training processes, leading to less dependence on large-size datasets. For
data-driven deep learning, for example, Deep Neural Networks (DNNs), the large
datasets prolong training time and increase energy demands. Consequently, the
application of deep learning is highly reliant on bulky supercomputers that are not
feasible and applicable to scenarios that require Size, Weight, and Power (SWaP)
constraints [4, 5]. In addition, massive and labeled data are costly to build or even not
practical to collect, such as the Lunar and Martian terrain data [5].

Numerous studies have implemented associative memory with neuromorphic
systems [2, 6–13]. However, these studies merely complete a small-scale
association with a few neurons in simulation environments. It is far away from the
capability of associative memory learning to enable animals to self-learn and explore
independently in an unknown environment. In addition, pretraining processes with
labeled datasets are still required for these studies [9–13]. In order to resolve these
limitations of studies on associative learning, we have designed several experiments of
associative memory in real-world scenarios using a mobile robot and neuromorphic
chips. Our system of associative memory is validated by reproducing one of the
classic associative memory learning in rats: fear conditioning. In fear conditioning
experiments, the rats learn to associate a particular neutral Conditional Stimulus (CS),
for example, tone, with an aversive Unconditional Stimulus (US), such as an electrical
foot shock, and show a fear response, freezing or running away. The rats learn fear
conditioning after several training sessions and exhibit long-lasting behavioral
changes. Several brain regions have been proven to be involved in the learning pro-
cess, including frontotemporal amygdala, hippocampus, and so on. The process of fear
conditioning cannot be reproduced by other state-of-the-art associative memory
models [2, 6–13] due to their limited neural network sizes. The simple neural network
models cannot process informative signals, such as visual signals. These informative
signals are processed with large-scale neural assemblies rather than simply a few
neurons in the brains [14–19]. To resolve these limitations, in our design, we use
large-scale biological plausible neurons to process the visual signals. Specifically, in
our system and experimental designs, the mobile robot with sensors serves as the
substitute for the rats in fear conditioning experiments. The neuromorphic chip (Intel
Loihi) provides a computational platform for the associative memory learning opera-
tion. In our experiment, the brightness of a light emulates the visual stimulus, and the
vibration signals from the accelerometer mimic the shock signals to the rats. Thus, the
vibration signals are the unpleasant stimulus, and light is the neutral stimulus. The
movement of the mobile robot emulates the fear response. The perception of the light
and the vibration are separately processed within two different neural assemblies.
Two neural assemblies connect to the response neuron, which stimulates the move-
ment of the robot, with two signal pathways. One signal pathway with a weak synap-
tic connection serves as the conditional signal pathway, while another one with a
stronger synaptic connection is the unconditional signal pathway. Thanks to the
mobile robot providing a platform directly interacting with the environment, we for
the first time, to our best knowledge, implement associative memory as real-time
online learning with no pretrained procedure. The contributions of this paper are
summarized as follows:
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1.Compared to other state-of-the-art works [9–13], we have implemented
associative memory learning with a mobile robot for an online learning scenario
using an Intel Loihi chip.

2.The work reproduces the classic fear conditioning of rats with solid biological
rationales from a cellular level (Hebbian learning) to the behavior level (neural
assembly).

3.Aiming signal pathway modification as the neural network training purpose,
which is a novel learning paradigm of associative memory learning.

4.No labeled datasets are required.

2. Research background

This work aims to develop a novel self-learning paradigm by emulating associative
memory learning of animals. Thus, the study is built upon the reverse engineering of
brain function. In specific, the large-scale computational models of associative mem-
ory learning are implemented by a neuromorphic system. In this section, we first
introduce the state-of-the-art development of neuromorphic computing and systems.
Then, the mechanism of associative memory learning at both macroscopic and micro-
scopic levels is analyzed.

2.1 Neuromorphic system

A neuromorphic system emulates nervous systems, such as human brains, aiming
at implementing Artificial Intelligence [20–25]. Human brains have the capability of
executing sophisticated missions in unbelievably ultra-low energy. The average power
of human brains is as small as �20 watts [1]. In addition, unlike the training process
required for Artificial Neural Networks (ANNs) using big data, the nervous systems
can adjust their responses by constantly interacting with their surroundings. This
learning process is referred to as associative memory learning [1]. These incredible
capabilities of nervous systems are attributed to their parallelization, high degree of
connectivity, adjustable network topology, the colocation of data memory computa-
tion, and spike-based information representation.

Human brains consist of billions of neurons and trillions of synapses forming a
high-degree and three-dimensional neural network. Through this extraordinarily
complex network, an individual neuron can communicate with more than ten thou-
sand other neurons simultaneously. Within this complex neural network, neurons are
mainly signal-processing units, and the synapse between neurons connects organs. As
computing units, the neurons integrate the received spiking signals in their cell body
and send another sequence of spiking signals to other neurons through synapses. The
signal strength received by other neurons is depended on the connection strength of
the synapses. The connection strength among neurons can be adjusted. This feature is
named as synaptic plasticity [1, 26, 27]. In specific, the connection strength among
neurons becomes strong if the presynaptic neuron and postsynaptic neuron fire
together. This synaptic connection strength change inspired a learning paradigm
known as Hebbian learning [28–31].
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In addition, the computational units (neurons) and the memory units (synapses)
are located in close proximity. This structure eliminates one of the biggest inefficien-
cies in the von Neumann architecture that separates computing units and memory at
different locations. The physical separation leads to data needing to be constantly
transferred back and forth between memory and central processing units (CPUs).
Furthermore, neuromorphic systems use sparse and event-based computation, mean-
ing that only a small percentage of the available computing resources are active for a
given task, and they are only activated and consuming power as needed in response to
present events. Neuromorphic computing attempts to exploit these useful properties
by modeling the architecture, neuron and synaptic cells, and the way of learning
observed in the brain, enabling a new era of computers and AI [32].

Neuromorphic systems utilize specialized neuromorphic chips with artificial neu-
rons. These chips are generally used to operate spiking neural networks (SNNs),
which encode the information with a sequence of spikes just like nervous systems. In
an SNN, neurons communicate with each other with discrete “spike” signals. There
are various types of neuromorphic chips, such as Intel’s Loihi [33, 34]. Unlike tradi-
tional GPUs and CPUs built upon the von Neumann architecture operating on
digital information, Loihi chips are specifically designed for neuromorphic
computing and asynchronous SNNs. To date, two generations of Loihi chips have
been released. The first generation of Loihi chip was revealed in 2017 [33, 34]. Loihi-1
chips consist of 130,000 electronic neurons and 130 million synapses at 128
neuromorphic cores. The advanced 14 nm process of Intel renders the area of the
Loihi-1 chip as small as 60 mm2. Loihi-1 chips implement the digital leaky-and-fire
neurons located on 128 cores. At each core, the communication among neurons is
organized in a mesh configuration. The synapses in Loihi-1 chips are fully
configurable and further support weight-sharing and compression features. The plas-
ticity of synapses can be manipulated with various biologically plausible learning
rules, such as Hebbian rules, STDP, and reward-modulated rules [33, 34]. The firing
behavior of neurons in Loihi chips is implemented when received spikes accumulate
to a threshold value in a certain time; the neurons will fire off their own spikes to their
connected neurons.

Loihi-1 chips are offered with several neuromorphic platforms providing
distinct interfaces for integrating the Loihi-1 chip with other computer systems or
Field-Programmable Gate Array (FPGA) devices. Kapoho bay includes 1–2 Loihi
chips with a USB interface. Nahuku is a 32-chip Loihi board with a standard FPGA
Mezzanine Card (FMC) connector. The FMC connector allows the Nahuku system
to communicate with the Arria FPGA development board. Pohoiki Spring is a large-
scale Loihi chip with 100 million neurons equipped as a server for remote access.
The second generation of the Loihi chips, namely Loihi-2, was introduced in late
2021 [35]. Loihi-2 is fabricated in Intel 4 process, previously referred to as 7 nm
technology. Powered by this advanced technology, the area of the Loihi-2 has been
reduced to 31 mm2 from 60 mm2 of the first generation Loihi chips. Unlike the
rigid neuron models in the last generation of Loihi chips, Loihi-2 realizes fully
programmable neuron models. In Loihi-2, the specific behavior of the neurons can
be programmed with microcode instructions. The microcode instructions support
basic bitwise and math operations that can be used to specify custom neuron
models. The Loihi-2 chip is dedicatedly designed for neuromorphic computing and
edge devices with parallel computations, achieving high computational and energy
efficiency. The comparison between two generations of Loihi chips is summarized in
Table 1.
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2.2 Associative memory learning

Animals have the capability of memorizing different events if they occur at the
same time or with a small time lag. The capability is referred to as associative memory
[1]. Associative memory learning was first studied by Ivan Pavlov in the 1890s when
he was studying salivation reflex actions in dogs [1]. During Pavlov’s experiments, the
dogs originally had a salivation reflex to the presence of food, instead of the sound of
whistles. However, if these two signals were presented together several times, the
dogs salivated even if they only listened to the sound of a whistle with no food
provided. This means the dogs can memorize the sound of whistles as a sign of food
[1, 6, 36] through a learning/memorizing process. Through a series of experiments,
Pavlov concluded that dogs have the capability of associating two originally irrelevant
signals together through a training process, which is referred to as associative memory
learning later. In general, two types of stimuli exist in associative memory learning:
unconditional stimuli (US) and conditional stimuli (CS). The unconditional stimuli
evoke the response with no training required. On the contrary, conditional stimuli
demand an associative learning process to acquire corresponding reactions. For
instance, in Pavlov’s experiments, the presence of food was the unconditional stimu-
lus, and the sound of whistles was a conditional stimulus (CS). After dogs, further
studies have demonstrated that associative memory learning is a self-learning para-
digm of a large variety of animals such as rats, bats, and sea slugs [1].

The studies in neuroscience exhibit that signal pathway modification and synaptic
plasticity are highly related to associative memory learning [1, 22]. In a nervous
system, the shapes of the spiking signals are almost identical (spikes), whether the
signals come from the sensation of light or hearing. Thus, neuroscientists hypothesize
that brains distinguish these signals by the signal pathways they are traveling to rather
than their shapes. This hypothesis is much more straightforward in invertebrates that
have simple nervous systems. Figure 1 illustrates part of the nervous system of
Aplysia that has two signal pathways from siphon to the gill and from tail to the gill,
separately.

With these two signal pathways, Aplysia can accomplish a simple version of
associative memory learning by memorizing the touch on the tail and stimulus from
the siphon. When the tail of an Aplysia is touched, its gill shrinks, demonstrating an
unconditional signal pathway. On the contrary, the gill does not shrink if the siphon is
cut, exhibiting a conditional signal pathway. By applying a touch to the tail and
stimulus on the siphon at the same time several times, the gill motor neuron becomes
more responsive to the touch on the siphon alone. At the cellular level, the concurrent
stimuli on the siphon and tail lead to a spiking signal overlapping when the stimuli are

Feature Loihi-1 [33, 34]. Loihi-2 [35]

Technology Intel 14 nm Intel 4 (7 nm)

Die Area 60 mm2 31 mm2

Max # Neurons/Chip 128,000 1 million

Max # Synapses/Chip 128 million 120 million

Neuron Model Generalized digital LIF Fully programmable

Table 1.
Introduction to Loihi and Loihi 2 chips.
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applied at the same time, shown in Figure 1. As a result, the synaptic connection
among neurons, from the siphon to the gill, becomes stronger than the original state.
This means the signal pathway from the siphon to the gill becomes unimpeded from
blocked. These experiments on Aplysia demonstrate two critical factors for associative
memory learning: (1) signal pathway modification and (2) synaptic plasticity.

For more complicated animals, such as rats, the sensation signals are processed not
in individual neurons but in a group of neurons. These groups of neurons are referred
to as neural assemblies [29, 37–39]. For example, fear conditioning experiments in rats
involve two types of stimuli: electric shock on the food and a sound as neutral stimuli.
These two types of signals are processed at different neural regions: auditory thalamus
and somatosensory thalamus. The experimental goal is to let the rats associate the
neutral sound with undesired electric shock by applying these two stimuli at the same
time. Thus, it is one type of associative memory learning scheme. The studies have
strong experimental evidence showing that signal pathway modification potentially
occurs in lateral nucleus because the output signals from the auditory thalamus and
somatosensory thalamus converge at the lateral nucleus [1]. This hypothesizes that
associative memory learning in higher animals is accomplished via the association of
two, or several, neural assemblies together rather than individual neurons.

3. Reproducing fear conditioning using mobile robots

In this section, we introduce our experimental design for reproducing fear condi-
tioning using mobile robots. In specific, we select visual signals, the brightness of light
as the conditional stimulus, and vibration signals as the unconditional stimulus.
Vibration signals emulate electric shock applied on the foot of rats in fear conditioning
experiments, while light signals serve as a neutral stimulus. We select the Leaky

Figure 1.
Illustration of associative memory learning of Aplysia.
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Integrate and Fire (LIF) neuron model to build neural assemblies for both UC and CS
signal pathways due to its simplicity. In our experiments, the Nengo simulator has
been used to implement the system [40]. Our mobile robot is controlled with the
Robot Operating System (ROS) [41].

3.1 Neuron model

In our experiment, a mobile robot is placed on a vibration platform and uncondi-
tionally responds to the acceleration signals, which will be detected with an inertial
measurement unit (IMU). The acceleration signals emulate the unpleasant stimulus in
the fear conditioning experiment in rats. The conditional stimulus is mimicked with
the brightness of a light. Two neural assemblies will be built for processing these UC
and CS signals. At last, the movement of a mobile robot is controlled by the motion
neurons. We design several specific neurons for precepting the brightness of lights,
detecting vibrations, and controlling mobile robots. All these neurons are customized
from classic Leaky Integrate and Fire (LIF) neurons, which are characterized using
the following eqs. [42]:

Cm
dVm

dt
¼ GL EL � Vmð Þ þ A ∗ Iapp,

ifVm >V ththenVm ¼ Vreset, (1)

τRC ¼ Cm=GL, (2)

where Cm is the membrane capacitance, Vm is the membrane potential, GLis the
leak conductance, A is the input signal gain, ELis the leak potential, Iapp is the input
current, and τRC is the RC time constant. The specific values of these parameters in
our design are summarized in Table 2.

For all the neurons in Table 2, the membrane potential is fixed at 1 V, and input
gain is modified instead. They all use the Nengo LIF model’s default τRC of 0.02 sec-
onds because it is sufficient for our desired functionality. The other two parameters
are calculated and optimized based on our experimental setups so that they can
produce the desired responses for their respective uses. In specific, for the vibration
detection neuron, gain (A) and bias (Vreset) are empirically derived so that it fires with
vibration stimulus input instead of a small sudden move. The movement response
neuron is a typical LIF configured to spike whenever it receives any sustained input
spikes, either from vibration neurons or from brightness neurons. The brightness
neuron is the Layer 3 neuron in Table 3 and is a LIF neuron with empirically derived
gain and bias so that it fires only when the Light Feature neurons have a high enough
collective output. More details regarding how these neurons work will be introduced
in subsequent sections.

Neuron types τRC A Vreset (V) Vth(V)

Vibration neuron 0.02 1.3 0.6 1.0

Brightness neuron 0.02 0.3 �1.0 1.0

Movement neuron 0.02 1.0 0.01 1.0

Table 2.
LIF neuron parameters.
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3.2 Vibration perception

The accelerometer within the onboard IMU of the mobile robot is used to measure
the acceleration. In our experiment design, acceleration is used for evaluating the
degree of vibration. Our vibration platform generates vibration signals with 1.2 mm
amplitude at 25 Hz. In general, the IMU measures three-dimensional accelerations
from x, y, and z directions as shown in Figure 2a. In Figure 2a, the acceleration in the
z-axis (vertical) has the largest magnitude as it includes the intrinsic gravity of the
earth (9.8 m/s2). Because the mobile robot should only count the acceleration from the
vibration platform, the gravity effect is removed from z-direction by subtracting the
standard gravity (9.8 m/s2). Thus, the resultant acceleration, which is used for evalu-
ating the vibration states, is calculated by the equation:

ares ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ax2 þ ay2 þ az � 9:8ð Þ2
q

, (3)

where ares is the resultant acceleration and ax, ay, and az are the accelerations in X-
axis, Y-axis, and Z-axis, respectively. The resultant acceleration measured by our
mobile robot is depicted in Figure 2b. The resultant acceleration is imported into the
vibration detection neuron. A vibration detection neuron, implemented with LIF, is
connected to the accelerometer, and it fires if the detected acceleration is larger than
its threshold (shown in Figure 3). At last, a movement neuron is specifically designed
to control our mobile robot moving away from the vibration platform with specific
direction and speed. The motion neuron is also implemented by a LIF neuron. The
parameters of motion neuron are listed in Table 2. The active motion neuron will
trigger a specific movement (escape) response that commands the mobile robot to
move away from the vibration platform at a speed of 0.3 m/s.

LCA neuron layer τRC(s) A Vreset (V) Vth (V)

Layer 2 ∞ 1.0 -λ = 0.85 1.0

Layer 3 0.02 0.3 �1.0 1.0

Table 3
LCA neuron parameters in layers 2 and 3.

Figure 2.
(a) Acceleration data of IMU for three dimensions denoted as X-axis (blue), Y-axis (orange), and Z-axis (green).
(b) Resultant acceleration.
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3.3 Visual perception with sparse coding and locally competitive algorithm

In order to process visual stimuli, we designed an artificial neural network (ANN)
to activate the output neuron if the light is on. Figure 4 illustrates the brightness of
the light captured by the stereo camera equipped with our mobile robot. The stream of
visual signals captured by the camera is sent to the computer via ROS. As the images
arrive, their resolution is 24x48 pixels, and the pixel brightness is normalized to the
range between �1 and 1.

An ANN model based on 2D sparse coding is used for detecting the brightness of
lights to further determine whether the light is on or off. The goal of sparse coding is
to represent an input vector with a linear combination of features from a dictionary.
This can be modeled by the LASSO optimization function:

E ¼
1

2
x�Φ � ak k22 þ λ � ak k1, (4)

a ∗ ¼ argmin
a

E að Þ, (5)

where the features Φi are columns of the dictionary matrix Φ, and the sparse code
a ⃰ is the set of coefficients ai for which the reconstruction (Φ � a) of the input x
minimizes the cost (E). The sparsity penalty λ reduces the amount of non-zero terms
in a by penalizing its 1-norm.

Typically, the sparse code a⃰ is used to reconstruct x or as the input to a classifier.
In 2D image sparse coding, we divided the image into patches the size of the features

Figure 3.
Vibration detection neuron response to the acceleration input: (a) input vibration signals; (b) membrane potential
of the vibration detection neuron; (c) output spiking signals of the vibration detection neuron.

Figure 4.
Sights of the light off and on.
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Φj. Thus, each patch is a sparse-coding optimization problem. As shown in Figure 5,
the light image is divided into 9 sub-regions, which are further partitioned into
patches. The Spiking Locally Competitive Algorithm (LCA) model [43] is used to
solve Eq. (6) and Eq. (7):

_u ¼
1

τ
Φ

Tx� u� Φ
Tϕ� I

� �

� a
� �

, a ¼ Tλ uð Þ (6)

Tλ uð Þ ¼ 0 if u≤ λ, else Tλ uð Þ ¼ u� λ (7)

where ai is the firing rate of neuron i, ui is the average soma current, τ is the
discrete time step, and Tλ is the thresholding function that determines if neuron i will
fire.

Figure 6 illustrates a spiking LCA network for solving one image patch (Figure 5).
The model consists of the first layer for the input x and the second layer for the sparse
code a∗. The firing rates of each neuron are the coefficients ai. The neurons in the
second layer are referred to as feature neurons as each of them is associated with one
feature Φi. Typically, an overcomplete dictionary is used in sparse coding, resulting in
a having a larger size than x. Our model represents each patch with only two features,
light and dark. Thus, the dictionary in Figure 6 only contains two features. The
dictionary could be made complete by having more feature neurons than the size of x,

Figure 5.
Image region layout and patch structure.

Figure 6.
LCA network for one patch including input neurons (Layer 1) and path neurons (Layer 2).
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9 in this case. There could be copies or variations of light and dark features to make
the dictionary overcomplete.

The convolutional stride between the image patches is equal to the width of one
patch (3 pixels), resulting in no overlap between them. This simplifies the LCA model
by removing connections between feature neurons in overlapping patches. The neural
network contains a third layer with one neuron for each of the 9 regions in the image
as illustrated in Figure 7. The third layer has one neuron as an output neuron inte-
grating the light feature neurons of every patch. In Figure 7, each neuron at layer 1
simply has a firing rate proportional to the pixel intensity it represents, serving as a
spike generator. The neurons at layer 2 and layer 3 are Integrate and Fire neurons with
the parameters listed in Table 3. The layer 2 neurons are the LCA neurons in a single-
layer LCA configuration. The parameters of the Integrate and Fire LCA feature neu-
ron in layer 2 are implemented via the Vreset parameter, which was empirically
adjusted until the desired response was achieved from the feature neurons. The other
parameters are assigned according to the LCA model [43]. The neurons in layer 3 have
the parameters derived for brightness neurons from Table 2.

When the high brightness signals of the light (Figure 4a) enter the network, the
light feature neurons in the center patches start to fire. The light-off image
(Figure 4b) subsequently reduces the activity in the neurons. These images are
alternately presented as inputs, shown in Figure 8. This causes the neurons in layer 3
to fire for the center region from the time periods 0 s to 2 s and 4 s to 6 s, as shown in
Figure 9. Those are the times the light is on in our experiment.

The sparse coding network operates at Intel Loihi neuromorphic chip for power and
energy estimation. Our associative memory neural networks are implemented with
Nengo simulator and further deployed into Loihi chips by Intel’s NxSDK as a backend
[44]. The NxSDK contains a built-in LCA network implementation, which can be
connected to the rest of the SNN. The parameters from Table 3were used to create the
same LCA network from Nengo for deployment on Loihi. In the Loihi chip, the synaptic
weights only have a 4-bit resolution, instead of a 24-bit resolution in typical

Figure 7.
Neural network for light detection in the center region. Note: The dark feature neurons in Layer 2 are not shown.
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computational platforms. Thus, the time of one simulation is reduced from 1 ms to 20 ms
at the Loihi platform. The measured powers are shown in Figure 10. The average VDD
power is 30 mW, and the average VDDM power is 29 mW. In Figure 10, the VDDIO has
a relatively negligible contribution to the total power, while VDD and VDDM have
effectively equal contributions. The power is measured and reported with the average
consumption across every 8 timesteps while the experiment is under operation.

Figure 8.
Membrane potential of light feature neurons (Layer 2) in center region image patches.

Figure 9.
Spiking signals of Layer 3 neuron.

Figure 10.
Power consumption for sparse coding network with the Loihi chip. The VDD represents the compute logic; VDDM
is the SRAMs, and VDDIO is the IO interface.
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3.4 Associative memory learning experiment and results

Figure 11 illustrates the comparison of signal pathway modification between our
SLN system and fear conditioning of rats. In our design, the brightness signal from
light serves as a conditional stimulus, and the acceleration from the vibration platform
is the unconditional stimulus. These two signals emulate the electric shock and sound
signals in fear conditioning experiments. The movement of our mobile robot away
from the vibration platform emulates the fear response of rats. The red arrows
(Figure 11) represent the weak synaptic connections in the conditional signal path-
way, while the blue arrows represent the unconditional pathway with weaker synaptic
connections. During associative memory learning, the synaptic connection (red
arrow) will be strengthened by Hebbian learning.

In the brains of rats, shock signals and tone signals are processed at different neural
regions: auditory thalamus and somatosensory thalamus. The output signals from
these two regions converge at lateral nucleus [1]. Originally, the rat has no fear
reaction to a neutral tone. However, when the tone is presented with a foot shock
associated with tone signals, the rat starts memorizing the relationship between the
tone and the shock. After multiple times, the tone alone will stimulate a fear response,
indicating the accomplishment of the associative memory learning [1].

Our experimental setup to emulate fear conditioning using our mobile robot is
shown in Figure 12. The mobile robot is placed on a testing platform, which is
constructed with 9 wooden boxes. The dimension of each box is 23 in (L) � 23 in
(W) � 8 in (H). A vibration plate is installed underneath the center platform, which is
marked in red square in Figure 12a. The vibration plate can provide vibration signals
(15–40 Hz) emulating an unpleasant stimulus (the electrical shock) in fear learning on
the rats. The other eight platforms with no installed vibration plate are marked in
green-dashed squares in Figure 12.

For the fear response, the robot is expected to move away from the vibration
platform to the neutral location if unpleasant stimuli, such as vibration, are applied.

Figure 11.
(a) Our SLN system for associative memory learning implementation. (b) Fear conditioning in rats.
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The specific experimental procedures aiming to reproduce the experimental process
of rats in fear conditioning are:

1.Turn on the light, expecting no response (testing conditional signal pathway).

2.Turn on the vibration platform, and the robot moves (testing the unconditional
signal pathway).

3.Reset the robot position.

4.Turn on the light, and then turn on the vibration platform; the robot moves
(conducting the associative memory learning process such that the conditional
and unconditional stimuli are provided at the same time).

5.Reset the robot position.

6.Turn on the light alone, and the robot moves, indicating that associative memory
learning is accomplished successfully.

The synaptic weights are modified based on Hebbian learning [42, 45]. Hebbian
learning states that when the pre- and postsynaptic neurons are both active at the
same time, the synaptic weights between them will be modified using the eqs.
[42, 45]:

w ¼ ηrirj, (8)

where the ri and rj are firing rates of pre- and postsynaptic neurons, respectively,
and the η is the learning rate, determining the changing rate of synaptic weight. In our

experiment, the learning rate η is 2� 10�4. Figure 13 shows that the initial synaptic
weights between the brightness detection neuron (CS) and the movement neuron are
small. Consequently, the brightness stimulus of the light cannot be delivered to the
movement neuron to stimulate it to fire. As a result, the synaptic weights between the
brightness detection neuron and movement neuron stay constant. When the vibration
(US) is applied to the vibration detection neuron, the movement neuron starts to fire.
When the vibration and light are applied to the system, both the brightness detection
neuron and the movement neuron are active, resulting in the synaptic weight’s

Figure 12.
Fear conditioning imitation experimental setup with the mobile robot: (a) top view; (b) side view.

14

Neuromorphic Computing



increase. Figure 13 illustrates that the synaptic weights increase when the vibration
and light stimuli are both applied. However, the first overlapping time frame is not
long enough to establish a significant synaptic weight modification. Thus, a sequence
of weak spiking signals is observed from the response neuron after the vibration is
removed, which is marked in Figure 13. In contrast, the second overlapping period is
longer than the first one, which leads to a larger increase in synaptic weights. Thereby,
after learning, the response neuron (movement detection neuron) will fire with a
visual stimulus (light) even with no vibration stimulus. This demonstrates an accom-
plishment of associative memory learning.

In the experiments, the synaptic weights between the brightness detection neuron
and the movement neuron are modified during the training process. As a result, after
associative memory learning, the mobile robot will move away from the vibration
platform under the stimulus of light, even with no vibration signal presented, dem-
onstrating successful online learning in real-time. Compared to other state-of-the-art
associative memory works listed in Table 4, we reproduce the classic fear condition-
ing experiments of rats using a mobile robot and the Loihi chip rather than simply
simulation. In addition, the scales of our neural networks outperform other works.

4. Conclusion

In this paper, we implement a classic self-learning paradigm in rats: associative
memory learning (fear conditioning) using a mobile robot and a neuromorphic system

Figure 13.
Change of synaptic weight during associative memory learning.
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(Loihi chip) in an online learning scenario. In specific, we use a mobile robot as the
substitute for the rats in fear conditioning experiments. Two signal pathways are
assigned for conditional and unconditional stimuli. In our experiments, vibration
signals emulate unconditional stimuli, while brightness of lights is assigned as condi-
tional stimuli. Originally, the mobile robot only moves when it detects vibration
signals. After providing these two signals at the same time several times, the robot
performs a movement when light signals are present alone. The detections of lights
and vibrations are implemented with Integrate and Fire Neurons. In addition, the
movement of the robot is controlled by the specific-designed response neurons. The
signal pathway modification during associative memory learning is implemented with
Hebbian learning. Compared to other state-of-the-art works, our work successfully
reproduces the fear conditioning of rats in a real-world scenario with no labeled data
and pretraining process.

Acknowledgement

As Intel Neuromorphic Research Community (INRC) members, the authors would
like to thank Intel Labs for providing the neuromorphic Loihi chips for our online
learning studies.

Neuron Synapse Dataset Learning

scheme

Biology scenarios

[9] 6 3 N/A Simulation N/A

[10] 3 1 N/A Simulation N/A

[11] 5 6 N/A Simulation N/A

[12] 3 1 N/A Simulation N/A

[46] 3 1 N/A Simulation N/A

[47] 3 2 N/A Simulation N/A

[48] 3 2 N/A Simulation Cellular Association in

Aplysia

[6] 20 100 Pretrained with datasets Simulation N/A

This work 1419 1420 No dataset for

pretraining

Experiment Fear conditioning of rats

Table 4.
Comparison of scale and association capability with other state-of-the-art works.
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