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Chapter

Brain-Computer Interface: Use 
of Electroencephalogram in 
Neuro-Rehabilitation
Ting Hin Adrian Hui

Abstract

Brain-computer interface is a technology that has been under enormous research 
in the last few decades. It uses brain signals by converting them into action to control 
the external environment. The focus of the future is the application of such technol-
ogy in rehabilitating patients with physical disabilities. This chapter will mainly 
explore the use of EEG (electroencephalogram), a popular non-invasive method, on 
which the brain-computer interface is based. The process of signal extraction, selec-
tion and classification will be discussed. The challenges and techniques in commu-
nication and rehabilitation of people with motor impairment, along with the recent 
research study in this field, will be mentioned.

Keywords: brain-computer interface, electroencephalogram, neuro-rehabilitation, 
sensorimotor rhythm, evoked potential, motor imagery, hybrid, applications

1. Introduction

People with neuromuscular disorder suffer from various degrees of physical dis-
abilities that limit them from interacting with the external world. Patients, who have 
developed stroke for instance resulting in paralysis and speech difficulties, would 
undergo training in traditional ways offered by physiotherapists, occupational and 
speech therapists. However, these trainings do require users’ active participation to 
make rehabilitation effective. By performing such trainings, neuroplasticity can be 
induced through re-establishment of connections between the infarcted regions and 
other functional areas. As people do find traditional training to be tedious and slow, 
they are less motivated in engaging such therapy that results in suboptimal outcome. 
Besides, severely disabled patients who are tetraplegic or in lock-in state may not 
even benefit from the traditional rehabilitation at all. The invent of brain-computer 
interface (BCI) has opened up a new dimension of neurorehabilitation in this much 
needed population. BCI can as well improve neuroplasticity by using the signals 
from the brain and translating them into actions to control the external environ-
ment including robotic arms. Even just by thinking of a movement can exert similar 
control, a huge milestone for the severely disabled individuals to finally regain some 
control over their lives.
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2. Overview of EEG-based BCI

Brain signals can be retrieved via invasive or non-invasive method. Invasive 
methods such as electrocorticography (ECoG) or intracortical point signal acquisi-
tion have the advantages of high temporal and spatial resolution with low artifact 
vulnerability. But with time, the signal quality and sensitivity would diminish. 
Non-invasive methods include electroencephalogram (EEG), magnetoencepha-
lography (MEG), functional MRI (fMRI) and near-infrared spectroscopy (NIS) in 
general have high temporal resolution but with variable signal quality and spatial 
resolution [1].

2.1 Brain signals

EEG is our main focus in this chapter, and its use is widely popular due to low cost, 
low risk, portability and easy to set up. The downside would be poor signal qual-
ity and low spatial resolution. The signal can also be affected by external noise and 
artifact, along with mood and posture of the subjects. Upright posture can improve 
EEG quality due to stronger high-frequency content [2–4]. These brain signals can 
be classified as endogenous (spontaneous) and exogenous (evoked). The commonly 
used endogenous patterns are slow cortical potential (SCP) and sensorimotor rhythm 
(SMR); whereas, exogenous patterns are visual evoked potential (P300) and steady 
state visual evoked potentials (SSVEP) [1].

2.1.1 Slow cortical potential

Slow cortical potential arising from intracortical or thalamocortical region is pro-
jected to different cortical layers that harbor apical dendrites of pyramidal neurons. 
Firing from these neurons can generate motor or cognitive tasks. A negative voltage 
shift causes depolarization of the cortical network, while a positive voltage shift an 
inhibition (Figure 1). Intense training is required to control the shifting in the SCPs 
in order to perform basic tasks. As a result, these long training hours might hinder the 
popularity of the use of such brain signals [1].

Figure 1. 
Mean traces of positive SCP and negative SCP of a BCI data set.
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2.1.2 Sensorimotor rhythm

The sensorimotor rhythm arising from sensorimotor areas generates β (beta) and 
μ (mu) rhythm mainly used for specific voluntary regulations such as preparation, 
control and execution of motion. Merely the thought of a movement (Figure 2), 
without any external stimuli, can regulate the rhythm amplitudes in these central 
motor areas, which makes it appealing for users with severe motor disabilities. The 
change in the power of band frequency helps differentiate the type of mental tasks 
being carried out. A decrease in band frequency termed event-related desynchro-
nization (ERD) occurs up to 2 seconds before the actual movement. Event-related 
synchronization (ERS) signifies an increase in the band frequency that occurs before 
the end of a movement. The classes of movement that can be identified through SMR 
are left hand movement, right hand movement, movement of the feet and movement 
of the tongue. But the movement between left and right foot and between particular 
fingers of one hand are indistinguishable due to their small representation in the cor-
tical homunculus. Again, it requires intensive training and sufficient mental capacity 
and attention to generate this motor imagery-based EEG signals [1, 4].

2.1.3 Visual evoked potential

Visual evoked potential (P300) occurs at 300 milliseconds after a triggering 
stimulus (Figure 3). Because the potential occurs with high consistency, this posi-
tive voltage peak has been used to mark an event. Although it requires less extensive 

Figure 2. 
Effects of motor imagery on sensorimotor rhythm. On the top shows the frequency spectra during movement at 
rest (dashed line) and during imagination (solid line). During imagination, the amplitude of EEG tracing is 
attenuated as shown on the bottom.
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training compared to SCP and SMR, the usefulness of P300 may be hampered by the 
severity of motor disabilities and degree of fatigue. Another visual evoked potential, 
called steady state visual evoked potentials (SSVEP), requires users’ attention and the 
ability of visual fixation. The potentials are triggered by an oscillating stimulus at a 
fixed frequency, like a flashing letters or digits on a screen. That results in an increase 
in EEG activity, or SSVEP response, at the occipital area with the same frequency as 
the stimulus. However, the requirement of an intact oculomotor function and gaze 
fixation for a period of time has been challenging for some groups of patients. A study 
performed on amyotrophic lateral sclerosis (ALS) patients did not have much success 
due to their inability to control eye movement [1].

2.1.4 Other brain signals

Other techniques that are used to obtain EEG data include auditory evoked 
potential (a corresponding EEG pattern generated after an auditory stimulation), 
vibrotactile evoked potential (a corresponding EEG activity generated after physi-
cal vibrations at a particular frequency), imagined speech (imagination of words or 
sentences for evoking EEG signals), and error-related potential (an activity when 
a mismatch between the subject’s intention and the output response from the BCI 
application is detected). One of the increasingly popular way to obtain EEG data is 
by analyzing EEG spectral changes to monitor users’ drowsiness, attention, mental 
workload, emotions and other states of the mind [2]. This can become handy in 
detecting drivers’ concentration at work, or in criminal cases when lie detector 
machine is employed.

2.2 Architecture of BCI system

Figure 4.

Figure 3. 
Visual evoked potential. This is initially stimulated by flashes on the screen, then captured by the brain producing 
a positive voltage potential occurs at 300 ms after the stimulus.
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2.2.1 Data acquisition and pre-processing

After the raw EEG data has been detected via the scalp electrodes, the data needs 
to remove any signals originated in areas other than the brain such as using the 60 Hz 
notch to clean the intervening frequency and the EMG activity before further analysis 
[1, 3]. After this pre-processing step, signal processing is performed using many dif-
ferent feature extraction techniques to identify specific brain signals that would later 
be translated to system commands [5].

2.2.2 Feature extraction

There are numerous techniques that enable proper signals to be retrieved during 
feature extraction. We will not go into detail into each of the techniques, but some 
common ones are briefly discussed in this section. Time-domain and frequency-
domain are two basic techniques often applied in studies. Using quaternions to 
represent objects within a three-dimensional space offers a better method to aid in 
extracting signals in time-domain analysis especially from motor imagery EEG. Fast 
Fourier transform theory and local characteristic-scale decomposition are approaches 
that are often utilized in frequency-domain analysis. In order to relate the frequency 
content to the temporal domain and vice versa, time-frequency domain analysis helps 
compensate each other’s deficit in decomposing signals in a more dynamic fashion. 
Common spatial pattern (CSP) is advantageous in motor imagery EEG processing 
as it can extract particular information from a particular frequency band. Different 
modifications of CSP are available, and sub-band common spatial pattern offers a 
much better classification accuracy by initially filtering EEG at different sub-bands 
and then tabulating CSP features for each of the bands [4, 5].

2.2.3 Feature selection and classification

The most common feature selection techniques include principal component 
analysis (PCA), filter bank selection and evolutionary algorithms. PCA helps to 
reduce dimensionality, while filter bank selection is specific for CSP extraction tech-
nique. Due to the high computational demands and large size feature set, evolutionary 

Figure 4. 
The architecture of a brain computer system consists of signal acquisition from the brain, pre-processing, feature 
extraction, feature selection, classification and eventually application to external devices that provides feedback to 
users.
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algorithm can further select a more appropriate feature by hybrid approach so to 
improve accuracy at the cost of time [4, 5]. For classification and modeling of the con-
trol system, linear discriminant analysis (LDA), support vector machines (SVM) and 
artificial neural networks (ANN) are the frequently used classifiers [6]. LDA is a lin-
ear classifier that is simple to use but it may not be good enough to process non-linear 
EEG data. SVM is a non-linear classifier that handles well with high dimensionality 
data; however, it takes more time for processing. ANN is another non-linear classifier 
that requires long handling time to process large computational data. It is known to be 
highly adaptive but also over-fitting; therefore, it may fail to predict future observa-
tions reliably [6]. Eventually, neurofeedback system relays back to the users so they 
can make modification in their brain patterns and improve the system.

3. Use of brain signals in reality

3.1 Slow cortical potential

Slow cortical potential as mentioned previously requires subjects to control the 
upward and downward shifting of polarity to select letters, words or pictograms. A 
system is developed to allow subjects to communicate through writing: first phase 
requires basic training for regulating own SCP amplitude by mental strategies either 
above or below a certain threshold to move the cursor at a specific space or time; and, 
the second phase requires selecting and rejecting letters by self-managing own SCP 
amplitudes to form words and phrases. One study also helps subjects to browse the 
Internet by training them to self-regulate SCP amplitudes to move up or down the 
cursor in order to select or discard a command [1].

3.2 P300 evoked potential

P300 is late positive evoked potential occurs after an external task-stimulus. The 
users are given different options of commands or stimuli, and the system needs to 
detect which stimuli can elicit P300 to exert its role on various systems like painting, 
spelling, web browsing and controlling of external devices [1]. Various BCI-controlled 
humanoid applications have been discussed in [6] like grasping a glass of water by 
robotics in ALS patients, controlling the navigation of a robot via telepresence. Using 
hybrid BCI by combining the brain signals (P300) and the biological feedback signals 
generated by some other parts of the body are also seen in executing the command 
[6]. The advantage of using P300 is its high accuracy. However, the performance is 
not consistently at a high level, mainly affected by the severity of the disease and the 
lack of motivation by repeatedly doing the same training routine [1].

3.3 Sensorimotor rhythm

Sensorimotor rhythm requires subjects to use mental strategies or motor imag-
ery to enable motor execution (ME). For subjects who have motor disabilities, the 
thought of movement can suppress EEG rhythm leading to desynchronization, 
resulting in movement initiation. Motor imagery can enhance motor learning process 
by neuroplasticity [7, 8]. With both MI and ME derived from sensorimotor areas such 
as primary motor area, supplementary motor area and premotor cortex, SMR can 
be manipulated to help the disabled towards rehabilitation. The differences in the 
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BCI performance may be related to the number of folds and thickness of individuals’ 
cortices which may have an impact on the functional networks. The emotional and 
mental processes such as fatigue, memory load, attention and reaction time, along 
with gender, age and lifestyle all contribute to the inter- and intra-variability in SMR-
based BCI motor performance. Overall, subjects with high motor variability including 
force field adaptation, speed/trajectory, motivational factors and strong resting EEG 
amplitudes have a higher probability of achieving better BCI performance, hence 
better neuroplasticity and rehabilitation outcome [8].

Many BCI systems have been using SMR by means of spelling, cursor movement, 
and control of external devices for communication to the external world. Creating a 
virtual environment to work under, subjects are more motivated in controlling move-
ment in this framework resulting in better performance with fewer runs of training [1].

4. BCI applications in rehabilitation

The applications for BCI systems in rehabilitation include motor neuroprosthetics, 
computer/machine interfaces, video games, speech and communication, medita-
tion, and even art. The famous Hebbian theory, developed by Canadian psychologist 
Donald Hebb, described that with repeated stimulation of the postsynaptic neurons by 
presynaptic neurons, the efficacy of synaptic transmission would increase resulting in 
neuroplasticity. Besides, using the traditional rehabilitation therapy, BCI system can 
help “replace” and “restore” neurological functions by training patients to produce more 
reliable brain signals and to activate devices to assist movement [1, 3]. Patients with dif-
ferent cortical lesions may produce different oscillatory rhythm of neural activation [3].

4.1 Motor imagery

Evidence shows by using motor imagery, SMR can be trained to translate into com-
mands to control and regulate voluntary activity. Just by imagining left or right hand 
movement, the right or left hemisphere respectively is activated, and the signals can 
be further processed and classified. To master MI-based BCI, subjects can undergo 
two approaches. The discrete trial, considered as tedious and lengthy, instructs them 
to perform cues within a timeframe while providing on-screen feedback on their 
results. On the other hand, continuous pursuit looks more promising as subjects 
are told to control a cursor in a moving icon on-screen. This provides a game-like 
approach so the subjects are more engaged with stronger brain signals being detected 
along with fewer training sessions required [9]. The challenges of using motor imag-
ery are the requirement of a near-intact neurophysiological and psychological state 
of the users. This becomes a challenge to post-stroke patients with reduced in such 
mental and physical capacities [4].

4.2 Other paradigms

Other paradigms including spelling, induced emotions and facial-movement have 
also been tested to control wheelchair, prosthetic hand and robotic arm. Spelling 
the desired command has a higher accuracy but subjects may get fatigue with 
continuously spelling words to elicit the command. Inducing emotions is mentally 
demanding, while facial movement is more intuitive and easier to generate. Besides, 
this movement has lower illiteracy rates and higher accuracy rates. Merging different 
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paradigms, for example combining traditional MI and facial movement, can increase 
the number of classes or control functions to overcome poor classification accuracy 
of MI system. Some studies require subjects to perform sequential movement to 
bring out a command. This increases the latency as each command takes up around 
3 seconds. Therefore, more time is required for execution. No comparisons have been 
made so far between traditional and sequential command paradigm. Whether it is 
feasible to increase accuracy at the expense of increasing latency remains a question to 
be explored [9]. Combining another biosignal to increase the number of commands is 
called hybrid BCIs. To enhance the control of prosthetics or orthotics, merging EEG 
with EMG has become increasingly popular [9].

4.3 EEG: EMG application

Combined use of EEG and surface EMG in rehabilitative applications can control 
the effector’s devices with a pathway starting from the cortical level down to the 
muscular level. EEG first explores the whole brain neuronal network, while EMG 
measures the train of motor unit action potentials that can help in motor planning 
with quantitative measurement in motor control abnormalities and muscular activa-
tion patterns. They combine with BCI or biofeedback methods to control external 
devices and guide rehabilitation. Using cortico-muscular coherence as signal analysis, 
it can “detect voluntary movements in spastic subjects, assess the effectiveness of 
rehabilitation strategies and serve as biomarker for motor recovery” [10]. As most of 
the experiments are done as pilot studies, more clinical trials are needed to evaluate 
the EEG–EMG applications [10].

4.4 Other studies

Voznenko [11] studies the design of wheelchair control that uses thoughts, voice or 
gestures to mobilize a wheelchair. The use of combined BCI-FES (functional electrical 
stimulation) as designed by Muller-Putz study [4] helps send impulses to the patients’ 
paralyzed arm/leg by artificially contracting the muscles. Therefore, the patients can 
have a more authentic experience. In [4], a number of studies have also been men-
tioned. Muller-Putz and Pfurtschscheller’s study [12] uses 4 flickering stimuli with each 
one representing a different function of the arm based on SSVEP system. Subjects can 
select a movement by looking at a particular stimulus. Elstob and Secco [13] uses motor 
imagery-BCI to control a prosthetic arm that consists of 5 different types of movement. 
Using virtual reality, BCI controlled robotic arms can potentially guide subjects’ arm 
movement in post-stroke rehabilitation, like the system proposed by Luu [14]. It is sug-
gested that brain activities be measured while users are moving on a treadmill, and then 
“provide visual feedback to the user on their movements through a virtual avatar” [4].

4.5 Modalities in rehabilitation

While research has mainly focused on motor rehabilitation, targets on improv-
ing tactile stimulus alone has been lacking. Sensory and motor cortices share the 
same somatic organization and are inseparable in improving and restoring func-
tion. Without sensory input, the rehabilitation of limbs would not be complete. 
Development of sensory-motor closed loop systems, or the bidirectional BCI, should 
improve the efficiency of rehabilitation in the future. In communication rehabilita-
tion, patients with aphasia can regulate their evoked potentials (SCP, SMR, P300) 
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to communicate by producing letters via a speller system. Limited by the severity of 
cognitive impairment in poststroke or neurodegenerative patients, they may not be 
benefited from BCI as some basic cognitive levels are required to understand and 
manipulate the application. Providing neurofeedback via motor imagery and P300 
system may enhance the rehabilitative process in this group of populations. In sum, 
there is still a lot of research required in poststroke cognitive training [3].

5. Challenges and future direction

Finding the most effective technique for features extraction and selection has 
been a challenge as each technique has its own advantages and disadvantages. Besides, 
EEG itself is also highly non-linear and artifact-prone. Together, a low classification 
accuracy may result. Combining different classifiers or biosignals can improve this 
accuracy, but the training time to master the control is much prolonged which in 
turn affects the overall efficiency. Future studies using subjects with pathological 
disorders instead of healthy ones are encouraged so to increase the generalizability 
in the biomedical field. In terms of non-biomedical applications such as art, gaming 
and entertainment, this is a potential market that contributes to economic growth. 
However, developing a “dependable system with stable performance with different 
mental states” that can adapt to different environments is the main goal to gain its 
public acceptance in the next decade (Table 1) [4].

Method Description Characteristics Application 

in reality

Slow cortical 

potential 

(SCP)

• Endogenous signal to cause voltage 

shifting

• Negative voltage shift causing 

depolarization

• Positive voltage shift causing 

inhibition

• Requires intense training Formation 

of words 

and phrases, 

browse 

internet 

by moving 

cursor to 

select or 

discard a 

command

Sensorimotor 

rhythm 

(SMR)

• Endogenous signal to generate β 

(beta) and μ (mu) rhythm

• Regulate rhythm amplitudes in 

central motor areas by motor imagery

• Change in power of band frequency 

to differentiate the type of mental 

tasks

• Requires intense training

• Requires mental capacity

Spelling, 

cursor 

movement, 

controlling 

external 

devices [11, 

13]

Visual 

evoked 

potential

• Exogenous signal to generate a 

potential:

• at 300 ms after a triggering stimulus 

(P300)

• triggered by an oscillating stimulus at 

a fixed frequency (SSVEP)

• High consistency and 

accuracy

• Requires intact oculomotor 

function and gaze fixation

• Requires shorter training 

time

Painting, 

spelling, 

controlling 

external 

devices [12]

Table 1. 
Comparative analysis of various methods used for recording features.
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6. Conclusion

We have discussed the basic architecture of BCI system using EEG as brain signals 
to control external devices in rehabilitation and communication. Exogenous and 
endogenous signals elicited by external stimuli and motor imagery respectively can 
enhance neuroplasticity and improve motor function. However, research on other 
modalities such as sensory and cognition are still at its primitive stage. Applications in 
the biomedical field are blooming but challenges in creating the best system that fits 
in all conditions still remain.

© 2023 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
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