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Chapter

Scaling Subspace-Driven
Approaches Using Information
Fusion
Sally Ghanem and Hamid Krim

Abstract

In this work, we seek to exploit the deep structure of multi-modal data to
robustly exploit the group subspace distribution of the information using the
Convolutional Neural Networks (CNNs) formalism. Upon unfolding the set of
subspaces constituting each data modality, and learning their corresponding
encoders, an optimized integration of the generated inherent information is carried
out to yield a characterization of various classes. Referred to as deep Multimodal
Robust Group Subspace Clustering (DRoGSuRe), this approach is compared
against the independently developed state-of-the-art approach named Deep Multi-
modal Subspace Clustering (DMSC). Experiments on different multimodal
datasets show that our approach is competitive and more robust in the presence
of noise.

Keywords: sparse learning, computer vision, unsupervised classification, subspace
clustering, multi-modal sensor data

1. Introduction

Unsupervised learning is a very challenging topic in Machine Learning (ML) and
involves the discovery of hidden patterns in data for inference with no prior given
labels. Reliable clustering techniques will save time and effort required for classifying/
labeling large datasets that might have thousands of observations. Multi-modal data,
increasingly in need for complex application problems, have become more accessible
with recent advances in sensor technology, and of pervasive use in practice. The
plurality of sensing modalities in our applications of interest, provides diverse and
complementary information, necessary to capture the salient characteristics of data
and secure their unique signature. A principled combination of the information
contained in the different sensors and at different scales is henceforth pursued to
enhance understanding of the distinct structure of the various classes of data. The
objective of this work is to develop a principled multi-modal framework for object
clustering in an unsupervised learning scenario. We extract key class-distinct
features-signatures from each data modality using a CNNs encoder, and we subse-
quently non-linearly combine those features to generate a discriminative
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characteristic feature. In so doing, we work on the hypothesis that each data modality
is approximated by a Union of low dimensional Subspaces which highlights underly-
ing hidden features. The UoS structure is unveiled by pursuing sparse self-
representation of the given data modality. The subsequent aggregation of the multi-
modal subspace structures yields a jointly unified characteristic subspace for each
class.

1.1 Related work

Subspace clustering has been introduced as an efficient way for unfolding union of
low-dimensional subspaces underlying high dimensional data. Subspace clustering has
been extensively studied in computer vision due to the vast availability of visual data
as in [1–4]. This paradigm has broadly been adopted in many applications such as
image segmentation [5], image compression [6], and object clustering [7].

Uncovering the principles and laying out the fundamentals for multi-modal data
has become an important topic in research in light of many applications in diverse
fields including image fusion [8], target recognition [9–12], speaker recognition [13],
and handwriting analysis [14]. Convolutional neural networks have been widely used
on multi-modal data as in [15–19]. A multi-modal subspace clustering-inspired
approach was also proposed in [20]. The emphasis of our formulation results in a
different optimization problem, as the multi-modal sensing seeks to not only account
for the private information which provides the complementarity of the sensors, but
also the common and hidden information. This yields, as an end result, a different
network structure than that of [20] with a different application space inspiration. In
addition, the robustness of fusing multi-modal sensor data each with its distinct
intrinsic structure, is addressed along with a potential scaling for viability. A thorough
comparison of our results to the multimodal fusion network in [21] is carried out, with
a demonstration of resilient fusion under a variety of limiting scenarios including
limited sensing modalities (sensor failures). In [22], the authors proposed a deep
multi-view subspace clustering approach that combined global and local structures to
help achieve a small distance between samples of the same cluster and make samples
in different clusters of different views farther. To that end, they used a discriminative
constraint between different views. The discriminative constraint is based on the
Hadamard product between the features extracted by the convolutional auto-encoder
for the different views. In contrast, our approach is based on the minimizing the group
norm, which we proved with a derivation in earlier work [23] and entails a smaller
angle between the different subspaces across all modalities, thus promoting the goal of
obtaining a common latent space. Moreover, minimizing the group norm also pro-
vides as well as group sparse solution along data modalities. Sun et al. [24] proposed a
deep trainable multi-view subspace clustering method, named self-supervised deep
multi-view subspace clustering (S2DMVSC) that learns the common latent subspace
using two losses: spectral clustering loss and classification loss in order to denoise the
imperfect correlations among data points.

In this paper, we prove that our formulation, which is based on the group norm
of the self-representation matrices and the commutation loss between them, pro-
vides a natural way to fuse multi-modal data by employing the self-representation
matrix as an embedding for each data modality, making our approach robust under
different types of potential limitations. It is good to note that our proposed approach
secures the individual sensor data-points relations resulting in more flexibility for
each data modality.
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1.2 Contributions

Building on the work of Deep Subspace Clustering (DSC) [25], we propose a new
and principled multi-modal fusion approach which accounts for a sensor’ capacity to
house private and unique information about some observed data as well as
that information which is likely also captured and hence common to other sensors.
This is accounted for in our robust fusion formulation for multi-modal sensor data.
Unveiling the complex UoS of multi-modal data also requires us to account for scaling
in our proposed formulation and solution, which in turn invokes the learning of
multiple/deep scale Convolutional Neural Networks. Our proposed Multi-modal
fusion approach, by virtue of each sensor information structure (i.e., private
plus shared) seeks to enhance and robustify the subspace approximation of
shared information for each of the sensors, thus yielding a parallel bank of UoS
for each of the sensors. The robust Deep structure effectively achieves scaling
while securing structured representation for unsupervised inference. We compare
our approach to a well-known deep multimodal network [21] which was also
based on [25].

In our proposed approach, we thus define the latent space in a way that safeguards
the individual sensor private information which hence dedicates more degrees of
freedom to each of the sensors. In contrast to the approach in [21]. In our evaluation,
we use two recently released data sets each of which we partition into learning and
validation subsets. The learned UoS structure for each of the data sets is then utilized
to classify new observed data points, which illustrates the generalization power of the
proposed approach. Different scenarios with corresponding additive noise to either
the training set or the testing set, or both, were used to thoroughly investigate the
robustness, and resilience of the clustering approach performance. Experimental
results confirm a significant improvement for our Deep Robust Group Subspace
Recovery network (DRoGSuRe) under numerous limiting scenarios and demonstrate
robustness under these conditions.

The balance of the paper is organized as follows, in Section 2, we provide the
problem formulation, background along with the derivation for our proposed
approach, Deep Robust Group Subspace Recovery (DRoGSuRe). In Section 3, we
describe the attributes of the proposed approach and contrast it to Deep Multimodal
Subspace Clustering algorithm (DMSC). In Sections 4 and 5, we present a substantia-
tive validation along with experimental results of our approach, while Section 6 pro-
vides concluding remarks.

2. Deep robust group subspace clustering

2.1 Problem formulation

We assume having a set of data observations, each represented as a m dimensional
vector xk tð Þ∈

m, where k ¼ 1, 2, … ,n. Moreover, we consider having T data modal-
ities, indexed by t ¼ 1, 2, 3, … ,T. Each data modality can then be described as
xk tð Þ∈

m, where X tð Þ ¼ x1 tð Þ x2 tð Þ… xn tð Þ½ �: Our objective is to assign each set of
data observations into clusters that can be efficiently represented by a low-
dimensional subspace. This is equivalent to finding a partitioning

X1 tð Þ,X2 tð Þ, … ,XP tð Þ
� �

of n½ � observations, where P is the total number of clusters
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underlying each data modality indexed by p. Furthermore, each linear subspace can
be described as Sp tð Þ⊂

m with dim Sp tð Þ≪m.
We will exploit the self-expressive property presented in [1, 26], which entails that

each data observation xi tð Þ can be represented as a linear combination of all features
from the same subspace S xi tð Þð Þ as follows,

xi tð Þ ¼
X

i 6¼j,xj tð Þ∈ S xi tð Þð Þ
wij tð Þxj tð Þ: (1)

If we stack all the data points xi tð Þ into columns of the data matrix X tð Þ: The self-
expressive property can be written in a matrix form as follows,

X tð Þ ¼ X tð ÞW tð Þ s:t:Wii ¼ 0: (2)

The important information about the relations among data samples is then
recorded in the self-representation coefficient matrix W tð Þ. Under a suitable arrange-
ment/permutation of the data realizations, the sparse coefficient matrix W tð Þ is an
n� n block-diagonal matrix with zero diagonals provided that each sample is
represented by other samples only from the same subspace. More precisely, Wij tð Þ ¼
0 whenever the indexes i, j correspond to samples from different subspaces. As a
result, the majority of the elements in W are equal to zero. A diagram showing our
algorithm is depicted in Figure 1.

Our algorithm consists of three main stages; the first stage is the encoder which
encodes the input modalities into a latent space. The encoder consists of T parallel
CNNs, where T is the number of data modalities. Each modality data is fed into one
network, and the output of each network represents the modality data projection into
its corresponding hidden/latent space. The second component of the auto encoder is T
self-expressive layers, the goal of which is to enforce the self-expressive property
among the data observations of each data modality. Each self-expressive layer is a
fully connected layer which independently operates on the output of each encoder.
The last stage is the decoder which reconstructs input data from the self-expressive
layers’ output. The objective function sought through this approximation network is
reflected in Eq. (5). The group sparsity introduced in [23] requires the minimization
of the group norm of matrices W tð Þ, which in turn, entails a smaller angle between
the different spaces across all modalities, thus promoting the goal of obtaining a
common latent space. Note that minimizing group norm provides a group sparse

Figure 1.
Deep robust group subspace clustering diagram.
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solution along data modalities. If we in addition, constrain the coefficient matrices
corresponding to each data modality to commute, therefore, we ensure their sharing
the same eigen vectors. The idea of commutation has been used in [27–29]. We define

Ω = W tð Þf gTt¼1, where W tð Þ = wkj tð Þ
� �

k,j
and the group l-norm Ωk k1,2 as:

Ωk k1,2 ¼
X

k, j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

T

t¼1

w2
k,j tð Þ

v

u

u

t : (3)

We also define [W t1ð Þ,W t2ð Þ� as,

W t1ð Þ,W t2ð Þ½ � ¼ W t1ð ÞW t2ð Þ �W t2ð Þ,W t1ð Þ ¼ 0 (4)

The loss function is then rewritten as,

minW tð Þ=wkk tð Þ¼0

X

T

t1, t2
W t1ð ÞW t2ð Þ½ �k k2 þ Ωk k1,2

þ γ

2

X

T

t¼1

X tð Þ �Xr tð Þk k2F

þ ρ
X

T

t¼1

W tð Þk k1 þ
μ

2

X

T

t¼1

L tð Þ � L tð ÞW tð Þk k2F

(5)

where Xr tð Þ represent the reconstructed data corresponding to modality t, and

L tð Þ is the output of the tth encoder with input X tð Þ. W tð Þ is the sparse weight
function that ties the data observation for modality t. Solving DRoGSuRe in
Tensorflow and using the adaptive momentum based gradient descent method
(ADAM) [30] results in minimizing the loss function. For each data modality, the
weights of the encoder, the self-expressive layer and the decoder are individually
calculated, however, fine-tuning the weights is based on the loss function,
which is a function of the group norm and the pairwise product difference
between sparse coefficient matrices. kk1 denotes the l1 norm, i.e., the sum of
absolute values of the argument. The Lagrangian objective functional may be
rewritten as,

L W tð Þð Þ ¼
X

T

t1, t2
W t1ð ÞW t2ð Þ½ �k k2 þ Ωk k1,2

þρ
X

T

t¼1

W tð Þk k1 þ
γ

2

X

T

t¼1

kX tð Þ�Xr tð Þk2F

þ
X

T

t¼1

μ

2
L tð ÞW tð Þ � L tð Þk k2F

þ
X

T

t¼1

<L tð ÞW tð Þ � L tð Þ,Y tð Þ>

(6)

Assume Ŵ tð Þ ¼ I �W tð Þ, we update W tð Þ as follows,
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Wkþ1 tð Þ ¼ arg minW tð Þ
X

T

t1, t2
W t1ð ÞW t2ð Þ½ �k k2 þ Ωk k1,2 þ ρ W tð Þk k1þ

<Lkþ1 tð ÞW tð Þ � Lkþ1 tð Þ,Yk tð Þ

> þ μk

2
Lkþ1 tð ÞW tð Þ � Lkþ1 tð Þk k2F

(7)

Similar to [4], we utilize linearized ADMM [31] to approximate the minimum of
Eq. (7) since the algorithmic solution is complicated and yields a non-convex optimi-
zation functional. It has been shown that linearized ADMM is very effective for l1
minimization problems and the augmented Lagrange multiplier (ALM) method can
take care of the non-convexity of the problem [32, 33]. Therefore, utilizing an appro-
priate augmented Lagrange multiplier μk, we can compute the global optimizer by
solving the dual problem. The solution to Eq. (7) can be approximated, using linear-
ized soft thresholding, as follows,

Wþ
k tð Þ ¼ prox ρ

μη1

ðWk tð Þ þ
LT
kþ1 Lkþ1Ŵk tð Þ � Yk tð Þ

μk

� �

η1

þ
X

T

t1, t2¼1, t1 6¼t2

Wk t1ð ÞWk t2ð Þðf

�Wk t2ð ÞWk t1ð ÞÞWT
k t2ð Þ þWk mð Þ Wk t1ð ÞWk t2ð Þð

�Wk t2ð ÞWk t1ð ÞÞg (8)

Wkþ1 tð Þ ¼ γ ρ

μη2
Wþ

k tð Þ
	 


(9)

where η1 ≥ Lk k22. We alternatively update L tð Þ as,

Lkþ1 tð Þ ¼ Lk tð Þ þ μk Lk tð ÞŴkþ1 tð Þ � Yk tð Þ
μk

� �

Ŵ
T

kþ1 tð Þ: (10)

where proxβ Ai,j tð Þ
	 


¼ Ai,j tð Þ ∗
max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

T

t¼1

Ai,j tð Þ2
r

�β

� �

,0

 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

T

t¼1

Ai,j tð Þ2
r and

γτ Bi,j

	 


¼ sign Bi,j

	 


∗ max Bi,j

�

�

�

�� τ
	 


,0
� �

. The Lagrange multipliers are updated as

follows,

Ykþ1 tð Þ ¼ Yk tð Þ þ μk Lkþ1 tð ÞWkþ1 tð Þ � Lkþ1 tð Þð Þ (11)

μkþ1 ¼ ϵμk (12)

After computing the gradient of the loss function, the weights of each multi-
layer network, that corresponds to one modality, are updated while other modal-
ities’ networks are fixed. In other words, after constructing the data during the
forward pass, the loss function determines the updates that back-propagates
through each layer. The encoder of the first modality is updated, afterwards,
the self-expressive layer of that modality gets updated and finally the decoder.
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Since the weights corresponding to each modality are dependent on other modal-
ities, we update each part of the network corresponding to each modality with the
assumption that all other networks’ components corresponding to other modalities
are fixed. The resulting sparse coefficient matrices W tð Þ’s, for t ¼ 1, 2, … ,T are
then integrated as follows,

WTotal ¼
X

T

t¼1

W tð Þ (13)

Integrating the sparse coefficient matrices helps reinforcing the relation between
data points that exist in all data modalities, thus establishing a cross-sensor consis-
tency. Furthermore, adding the sparse coefficient matrices reduces the noise variance
introduced by the outliers. A similar approach was introduced in [34] for Social
Networks community detection, where an aggregation of multi-layer adjacency
matrices was proved to provide a better Signal to Noise ratio, and ultimately better
performance. To proceed with distinguishing the various classes in unsupervised
manner, we construct the affinity matrix as follows,

A ¼ WTotal þWT
Total (14)

where A∈
n�n. We subsequently use the spectral clustering method [35] to

retrieve the clusters in the data using the above affinity matrix as input.

2.2 Theoretical discussion

In order to justify the multiple banks of self-expressive layers, we assume that each
modality X tð Þ may be expressed as a private information contribution Xp tð Þ and a
shared information Xs tð Þ such that,

X tð Þ ¼ Xs tð Þ þXp tð Þ (15)

The shared information can be represented as follows,

Xs tð Þ ¼
X

T

t¼1

F W tð Þ ΠsX tð Þð Þð Þ (16)

where Πs ¼ ∩t¼1,… ,T Πt
s . Xs tð Þ and Xp tð Þ are distinct and will hence lie in

different subspaces, which will hence be mapped to different components in
W tð Þ. Similarly for the subspaces spanned by Xp tið Þ and Xp tj

	 


, i 6¼ j, the

corresponding components of W tið Þ and W tj
	 


will almost surely not coincide.

On the other hand, the components of W tið Þ and W tj
	 


corresponding to Xs tið Þ
and Xs tj

	 


will almost surely coincide, thus justifying the construction of a layered
WTotal, and thereby improving the SNR. In addition, the decoder will help protect
and maintain the private information corresponding to each modality Xp tð Þ by
ensuring that data can be reconstructed again from the latent space with minimal
loss. In the following, we will elaborate more on how aggregating affinity matrices
should impact the overall clustering performance. The idea of aggregating affinity
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matrices is not new, in fact, it has been used extensively in clustering and com-
munity detection field. For example, in [36], the authors proposed a method that
combines the self-similarity matrices of the eigenvectors after applying a Singular
Value Decomposition on clusters. In [37], they proposed merging the information
provided by the multiple modalities by combining the characteristics of individual
graph layers using tools from subspace analysis on a Grassmann manifold. In [38],
they propose a multilayer spectral graph clustering (SGC) framework that per-
forms convex layer aggregation.

Proposition: The persistent differential scaling of m-modal Group Robust Sub-
space Clustering Fusion yields an order m-improvement resilience over the singly
differential scaling fusion.

The proof of the proposition can be found in Appendix A. We basically show that
by perturbing one or more data modalities, our proposed approach introduces less
error to the overall affinity matrix as compared to DMSC. Hence, preserving the
performance and yielding a graceful degradation of the clustering accuracy as an
increasing number of modalities get corrupted by noise.

3. Affinity fusion deep multimodal subspace clustering

For completeness, we provide a brief overview of the Deep Multimodal
Subspace Clustering algorithm which was proposed in [4]. As noted earlier for
DRoGSuRe and similarly for Affinity Fusion Deep Multimodal Subspace clustering
(AFDMSC), the network is composed of three main parts: a multimodal encoder,
a self-expressive layer, and a multimodal decoder. The output of the encoder
contributes to a common latent space for all modalities. The self-expressiveness
property applied through a fully connected layer between the encoder and the decoder
results in one common set of weights for all the data sensing modalities. This marks a
divergence in defining the latent space with DRoGSuRe. Our proposed approach, as a
result, safeguards the private information Xp tð Þ; t ¼ 1, … ,T individually for each of
the sensors, i.e., dedicating more degrees of freedom for each of the sensors. This
contrasts with AFDMSC. The reconstruction of the input data by the decoder, can
yield the following loss function to secure the proper training of the self-expressive
network,

Figure 2.
Deep multimodal subspace clustering diagram.
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minW∣wkk¼0 Wk k2 þ
γ

2

X

T

t¼1

X tð Þ �Xr tð Þk k2F þ
μ

2

X

T

t¼1

L tð Þ � L tð ÞWk k2F, (17)

whereW represents the parameters of the self expressive layer,X tð Þ is the input to
the encoder,Xr tð Þ denote the output of the decoder and L tð Þ denotes the output of the
encoder. μ and γ are regularization parameters. An overview for the DMSC approach
is illustrated in Figure 2.

4. Experimental results

4.1 Dataset description

We will evaluate our approach on two different datasets. The first dataset we will
use is the Extended Yale-B dataset [39]. The same dataset has been used extensively in
subspace clustering as in [1, 40]. The dataset is composed of 64 frontal images of 38
individuals under different illumination conditions. In this work, we will use the
augmented data used in [4], where facial components such as left eye, right eye, nose
and mouth have been cropped to represent four additional modalities. Images
corresponding to each modality have been cropped to a size of 32�32. A sample image
for each modality is shown in Figure 3. The second validation dataset we use is the
ARL polarimetric face dataset [41]. This consists of facial images for 60 individuals in
the visible domain and in four different polarimetric states. All the images are spatially
aligned for each subject. We have also resized the images to 32�32 pixels. Sample
images from this dataset are shown in Figure 4.

Figure 3.
Sample images from the augmented extended Yale-B Dataset. (a) Face. (b) Left eye. (c) Right eye. (d) Mouth.
(e) Nose.
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4.2 Network structure

In the following, we will elaborate on how we construct the neural network for
each dataset. Similar to [4], we implemented DRoGSuRe with Tensorflow and used
the adaptive momentum based gradient descent method (ADAM) [30] to minimize

the loss function in Eq. (5) with a learning rate of 10�3.
In case of ARL dataset, we have five data modalities and will therefore have 5

different encoders, self-expressive layers and decoders. Each encoder is composed of
three neural layers. The first layer consists of 5 convolutional filters of kernel size 3.
The second layer has 7 filters of kernel size 1. The last layer has 15 filters with kernel
size equals 1.

For EYB dataset, we also have five data modalities, therefore, we have 5 different
encoders, self-expressive layers and decoders. Each encoder is composed of three
neural layers. The first layer consists of 10 convolutional filters of kernel size 5. The
second layer has 20 filters of kernel size 3. The last layer has 30 filters of kernel size 3.

4.3 Noiseless results

In the following, we compare the performance of our approach versus the DMSC
approach when learning the union of subspaces structure of noise-free data. First, we
divide each dataset into training and validation sets to be able to classify a newly
observed dataset, using the structure learned through the current unlabeled data. The
ARL expression dataset used for training consists of 2160 images per modality. The
validation baseline images include 720 images total per modality. For the EYB, we

Figure 4.
Sample images from the ARL polarimetric dataset. (a) Visible. (b) DoLP. (c) S0. (d) S1. (e) S2.
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randomly selected 1520 images per modality for training and 904 images for valida-
tion. The sparse solution W tð Þ corresponding to each data modality, provides impor-
tant information about the relations among data points, which may be used to split
data into individual clusters residing in a common subspace. Observations from each
object can be seen as data points spanning one subspace. Interpreting the subspace-
based affinities based on W tð Þ as a layered set of networks, we proceed to carry out
what amounts to modality fusion. The T sparse matrices are added to produce one
sparse matrix for both modalities, WTotal, thereby improving performance. Observa-
tions associated with one object/individual are clustered as one subspace where the
contribution of each sensor is embedded in the entries of the WTotal matrix. For
clustering by WTotal, we apply spectral clustering.

After learning the structure of the data clusters, we validate our results on the
validation set. We extract the principal components (eigen vectors of the covariance
matrix) of each cluster in the original (training) dataset, to act as a representative
subspace of its corresponding class. We subsequently project each new test point onto
the subspace corresponding to each cluster, spanned by its principal components. The
l2 norm of the projection is then computed, and the class with the largest norm is
selected to be the class of this test point. For DRoGSuRe, we use the coefficient matrix
WTotal in Eq. (13) to cluster the test data points coming from all data modalities. We
compare the clustering output labels with the ground truth for each dataset. The
results for ARL and EYB datasets are depicted in Tables 1 and 2 respectively. From the
results, it is clear that DRoGSuRE technique for the fused data remarkably outper-
forms DMSC in case of ARL dataset. The reason behind the significant improvement is
the layered structure of our proposed approach that constructs the latent space in a
way that safeguards the individual sensor private information which hence dedicates
more degrees of freedom to each of the sensors. In addition, the ARL dataset structure
offers modalities that are different in nature and individually provides new informa-
tion in contrast to the EYB dataset. However, in case of EYB dataset and in the
noiseless case, DMSC performed better than DRoGSuRe.

4.4 Noise training with single and multiple modalities

In the following, we test the robustness of our approach in the case of noisy
learning. We distort one modality at a time by shuffling the pixels of all images in that

Learning Validation

DMSC 97.59% 98.33%

DRoGSuRe 100% 100%

Table 1.
Performance comparison for ARL dataset.

Learning Validation

DMSC 98.82% 98.89%

DRoGSuRe 98.42% 98.76%

Table 2.
Performance comparison for EYB dataset.
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modality during the training phase. By doing so, we are perturbing the structure of the
sparse coefficient matrix associated with that modality, thus impacting the overall W
matrix for both DRoGSuRe and DMSC. Testing with clean data, i.e., no distortion,
demonstrates the impact of perturbing the training and hence performing an

DMSC L DMSC V DRoGSuRe L DRoGSuRE V

Mod 0 87.17% 86.67% 95.37% 95%

Mod 1 91.67% 90% 98.29% 98.33%

Mod 2 92.77% 92.78% 99.17% 99.44%

Mod 3 90.55% 90.57% 99.31% 99.44%

Mod 4 92.78% 91.11% 96.44% 96.67%

Table 3.
ARL dataset: Distorting one modality.

DMSC L DMSC V DRoGSuRe L DRoGSuRE V

Mod 0 & 1 82.22% 82.78% 92.27% 94.58%

Mod 1 & 2 91.11% 91.11% 97.22% 97.36%

Mod 0 & 3 85.51% 82.56% 93.01% 95.42%

Mod 1 & 4 91.67% 89.44% 97.22% 97.36%

Mod 2 & 3 90% 89.72% 97.69% 97.78%

Table 4.
ARL dataset: Distorting two modalities.

DMSC L DMSC V DRoGSuRe L DRoGSuRE V

Mod 0 87.96% 88.5% 93.29% 94.69%

Mod 1 91.84% 91.15% 95.79% 97.46%

Mod 2 89.01% 88.72% 98.03% 97.57%

Mod 3 92.69% 91.81% 95.59% 96.68%

Mod 4 91.45% 91.59% 97.17% 97.35%

Table 5.
EYB dataset: Distorting one modality.

DMSC L DMSC V DRoGSuRe L DRoGSuRE V

Mod 0 & 2 86.64% 85.18% 96.84% 96.13%

Mod 0 & 4 87.83% 89.16% 94.54% 95.8%

Mod 1 & 4 86.38% 86.06% 94.21% 95.8%

Mod 2 & 3 88.22% 84.96% 91.58% 93.92%

Mod 3 & 4 88.03% 86.28% 94.08% 95.35%

Table 6.
EYB dataset: Distorting two modalities.
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inadequate training, e.g., insufficient data or non-convergence. This can also be con-
sidered as augmenting the training data with new information or a new view for one
modality which might not necessarily contained in the testing or the validation data.
Moreover, we repeat the same experiment with the distortion of two modalities before
learning the sparse coefficient matrices for both DMSC and DRoGSuRe. The results
for the ARL dataset are depicted in Tables 3 and 4, while results for the EYB dataset
are shown in Tables 5 and 6. For ARL dataset, we refer to Visible, S0, S1, S2 and DoLP
as Mod 0, 1, 2, 3 and 4 respectively. For EYB Dataset, we refer to Face, left eye, nose,
mouth and right eye as mod 0, 1, 2, 3, and 4. We refer to each modality as Mod, where
L denotes learning and V denotes validation results. From the results, it is clear that
DRoGSuRe is showing a significant improvement in the clustering accuracy as com-
pared to DMSC for both learning and validation set. The reason for that, is again, due
to the fact that perturbing one or two modalities would have less impact on the overall
performance for DRoGSuRe in comparison to DMSC.

4.5 Testing with limited noisy testing data

In the following, we study the effect of using noiseless data for training while
validating with noisy and missing data. We add Gaussian noise to one data modality in
the validation set and vary the SNR by varying the noise variance. We subsequently
assume that we only have one modality available at testing. Then, we keep increasing
the number of available noiseless data modalities beside the noisy modality. We

Figure 5.
ARL noiseless training and validating on limited noisy data.
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average the results considering all different combinations of data modalities for ARL
and EYB datasets. The results are depicted in Figures 5 and 6 respectively. For the
ARL dataset, we note the increasing gap between DMSC and DRoGSuRe as we aug-
ment the sensing capacity with noise-free modalities. On the other hand, for the EYB
dataset and at lower SNR, the performance of DRoGSuRe is slightly worse than DMSC
which might be explained by the results in Table 2; as the training accuracy for DMSC
is slightly better than DRoGSuRe in the case of clean training. However, at higher
SNR, the performance of the two approaches is very close.

4.6 Missing modalities during testing

In the following, we evaluate the performance of DRoGSuRe and DMSC in case of
missing data modalities during testing. It is not uncommon to have one or more
sensors that might be silent during testing, thus justifying this experiment for further
assessment. We try different combinations of available modalities during testing, and
we average the clustering accuracy for each trial. Results are depicted in Figures 7 and
8 for ARL and EYB data respectively. Again, we notice a significant improvement for
DRoGSuRe over DMSC for ARL Dataset. For EYB dataset, there is a slight improve-
ment for DRoGSuRe over DMSC. The reason behind the slight improvement is
because our approach introduces less error to the overall affinity matrix as compared

Figure 6.
EYB noiseless training and validating on limited noisy data.
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to DMSC. Hence, preserving the performance and yielding a graceful degradation of
the accuracy although DMSC was the state of the art for the EYB dataset.

5. Feature concatenation

Here we propose a rationale along with an alternative solution for enhancing the
performance for EYB multi-modal data. Due to the specific structure of the EYB
multi-modal data, the concatenation of the features corresponding to each modality is
a reasonable alternative. By doing so, we are adjoining together the features
representing each part of the face. Since the four modalities correspond to non-
overlapping partitions of the face, the feature set corresponding to each partition will

Figure 7.
Missing modalities during testing for ARL dataset.

Figure 8.
Missing modalities during testing for EYB dataset.
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solely provide complementing information. A similar idea is proposed in [4] and is
referred to as Late concatenation, where the multi-modal data is integrated in the last
stage of the encoder. Their resulting decoder structure remains the same for either
affinity fusion or late concatenation. This entails de-concatenating the multi-modal
data prior to decoding it. Our proposed approach on the other hand, results in a self-
expressive layer being driven by the concatenated features from the M encoder
branches. Afterwards, we feed the self-expressive layer output to each branch of the
decoder. The concatenated information results in a more efficient code for the data,
thereby resulting in an overall parsimonious with a sparse structure of the decoder,
results in a decoder composed of three neural layers. The first layer consists of 150
filters of kernel size 3. The second layer consists of 20 layers of kernel size 3. The third
layer consists of 10 layers of kernel size 5. Our approach is illustrated in Figure 9. We
optimize the weights of the auto-encoder as follows,

minW∣wkk¼0ρ Wk k1 þ
γ

2

X

T

t¼1

X tð Þ �Xr tð Þk k2F þ
μ

2

X

T

t¼1

N �NWk k2F, (18)

where N ¼ L 1ð Þ L 2ð Þk kL 3ð Þ L 4ð Þk kL 5ð Þ½ �.
We compared the performance of our proposed approach against the late concat-

enation approach in [4] and the results are depicted in Table 7 for the EYB dataset.
From the previous table, we can conclude that concatenating the features from the

encoder and feeding the concatenated information to each decoder branch achieves a
better performance for this type of multi-modal data structure. The reason behind this
enhancement is the combination of efficient extraction of the basic features from the
whole face and finer features from each part of the face. Promoting more efficiency as
noted, this concatenation may also be intuitively viewed as adequate mosaicking, in
which different patterns complement each other. In the following, we will show how

Figure 9.
CNN Concatenation Network.

Learning Validation

DMSC Late Concatenation 95.66% 94.7%

CNN Concatenation Network 99.28% 99.3%

Table 7.
Concatenation performance for EYB dataset.

16

Neuromorphic Computing



Figure 10.
Missing modalities during testing for EYB dataset.

Figure 11.
EYB noiseless training and validating on limited noisy data.
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our proposed approach performs in two cases: missing and noisy test data. The results
of the new proposed approach, which we refer to as CNNs concatenation network, is
compared to the state-of-the-art DMSC network [4]. We start by training the auto-
encoder network using 75% of the data and then we test on the rest of the data. In
Figure 10, we show how the performance degrades by decreasing the number of
available modalities at testing from five to one. From the results, it is clear how the
CNNs concatenation network outperforms the DMSC network. Additionally, we
repeated the same experiment we performed in subsection 4.5. We train the network
with noiseless data and then add Gaussian noise to one data modality at the testing.
Additionally, we vary the number of available modalities at testing from one to four.
The results are depicted in Figure 11. From the results, it is clear how the concatenated
CNNs is more robust to noise than DMSC.

In addition, we have utilized the Concatenation network to perform object cluster-
ing on the ARL data. We compare the clustering performance of the concatenation
network with both DMSC and DRoGSuRe. The results are depicted in Table 8. From
the results, we conclude that DRoGSuRe still outperforms the other approaches for
the ARL dataset. Although the number of parameters involved in training the
DRoGSuRe network is higher than other approaches, since there are multiple self-
expressive layers, however, DRoGSuRe is more robust to noise and limited data avail-
ability during testing.

6. Conclusion

In this paper, we proposed a deep multi-modal approach to fuse data through
recovering the underlying subspaces of data observations from data corrupted by
noise to scale to complex data scenarios. DRoGSuRe provides a natural way to fuse
multi-modal data by employing the self-representation matrix as an embedding for
each data modality. Experimental results show a significant improvement for
DRoGSuRe over DMSC under different types of potential limitations and provides
robustness with limited sensing modalities. We also proposed the concatenated CNNs
model, which can work better for different multi-modal data structures.
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Learning Validation

DMSC 97.59% 98.33%

DRoGSuRe 100% 100%

CNN Concat 99.44% 99.17

Table 8.
Concatenation performance for ARL dataset.
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A. Appendix. Parameter perturbation analysis

To theoretically compare our proposed variational scaling fusion approach
DRoGSuRe to DMSC, we proceed by way of a first order perturbation analysis on the

parameter set Wi of respectively either technique i ¼ 1, 2. This will, in turn impact

the associated affinity matrix Ai, which as we will later elaborate directly impacts the
subspace clustering procedure which is central to the inference following the fusion
procedure.

Adopting the original formulation for the first persistently differential scaling
approach, namely that T modalities are jointly exploited, results in,

X1 tð Þ ¼ x1
1 tð Þx12 tð Þ…x1

n tð Þ
� �

, where x1
k tð Þ∈

m, t ¼ 1, 2, … ,T represents the kth

observation. The second approach only effectively uses only one subspace structure of

the fused modalities X2 tð Þ ¼ x1
1x

1
2 … x1

n

� �

.
A first order perturbation on the data may be due to noise or to a degradation of a

given sensor, and results in a perturbation of the UoS parameters,

~W
i

1 ¼ Wi
1 þ δi (A1)

For the first method, each modality will have an associated subspace cluster

parameter set W1
t

� �

t¼1,… ,T
, with W1

t ∈
n�n. The overall parameter set for

DRoGSuRe can then be written as,

~W
1 ¼ ~W

1

1 þW1
2 þ … þW1

m (A2)

Where the unperturbed overall sparse coefficient matrix is written as follows,

W1
tot ¼ W1

1 þW1
2 þ … þW1

m. A similar development follows for method 2, with the
difference that the contributing modalities are fused a priori.

Proof. We first write the affinity matrix associated with DRoGSuRE as,

~A
1 ¼ ~W

1

tot þ ~W
1

tot

� �T
(A3)

~A
1 ¼ ~W

1

1 þW1
2 þ … þW1

m þ ~W
1

1 þW1
2 þ … þW1

m

� �T
(A4)

where the superscript T denotes transpose. This is equivalent to,

~A
1 ¼ ~A

1

1 þ
XT

i¼2
A1

i (A5)

Where 0≤ ~A
1

1 i, jð Þ≤ 1þ δ1 . The unperturbed collective affinity matrix A1 can be

similarly written A1 ¼
PT

i¼1A
1
i with the unity constraint on each entry of all matrices.

We may also write the magnitude of the difference as,
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A1 � ~A
1

�

�

�

�

�

� ¼ δ1 þ δ1
	 
T

(A6)

Letting ∆ ¼ δ1 þ δ1
	 
T

∈
n�n, and assuming ϵ ¼ max i,j ∆½ �i,j, we can write,

A� ~A
�

�

�

�

F
≤ nϵ (A7)

Given the ∆matrix individual entry bounds, we conclude that,

0≤ ϵ≤
1

t
(A8)

Since DMSC assumes having one sparse coefficient matrix W for all data modali-
ties, which is equivalent to only one subspace structure of the fused modalities

X2 tð Þ ¼ x2
1 … x2

n

� �

. Therefore, the UoS parameters will be perturbed by δ2 as follows,

~W
2 ¼ W2 þ δ2 (A9)

The affinity matrix associated with DMSC can be written as follows,

~A
2 ¼ ~W

2 þ ~W
2

� �T
, which is equivalent to,

~A
2 ¼ W2 þ δ2 þ W2

	 
T þ δ2
	 
T

(A10)

Similarly, the unperturbed affinity matrix will be as follows,

A2 ¼ W2 þ W2
	 
T

(A11)

From Eqs. (A10) and (A11), the magnitude of the difference can be written as
follows,

∣A2 � ~A
2
∣ ¼ δ2 þ δ2

	 
T
(A12)

Letting γ ¼ δ2 þ δ2
	 
T

∈
n�n, i.e., A2 � ~A

2
�

�

�

�

�

� ¼ γ, and assuming Ψ ¼ max i,j γ½ �i,j,

we can write A2 � ~A
2

�

�

�

�

�

�

F
≤nΨ . Given the γ matrix individual entry bounds, we

conclude 0≤Ψ ≤ 1. If we only perturb one modality, knowing that 0≤A i, jð Þ≤ 1,
therefore the error could lie between 0≤Ψ ≤ 1, which entails either creating a fake
relation between two data points or erasing an existing relation. ϵ and Ψ are random
variables that do not have to follow a specific distribution, however, in any case

E ϵ2
	 


≪E Ψ 2
	 


and therefore SNRDRoGSuRe ≫ SNRDMSC:

In light of the above two bounds, and the results of [42], where it is shown that the

spectral clustering dependent on the respective projection operators PW1 and ~P
~W

1

onto the vector subspaces spanned by the principal eigenvectors of W1
tot and

~W
1

tot of
may be written as,

PW1 � ~P
~W

1

�

�

�

�

�

�

F
≤

ffiffiffi

2
p

α1
A1 � ~A

1
�

�

�

�

�

�

F
(A13)
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where α1 is the spectral gap between the kth and kþ 1ð Þst eigen value of A1,

λ1k � λ1kþ1

�

�

�

�. Similarly, for DMSC, the bound on the projection operators is,

PW2 � ~P
~W

2

�

�

�

�

�

�

F
≤

ffiffiffi

2
p

α2
A2 � ~A

2
�

�

�

�

�

�

F
(A14)

where α2 ¼ λ1k � λ1kþ1

�

�

�

�. SinceW1
1,W

1
2, … ,W1

T happen to commute and if they

happen to be diagonalizable, therefore, they share the same eigenvectors. As a result, the

eigenvectors ofW1
1 þW1

2 þ … þW1
T are also the same and the corresponding eigen-

value that is the sum of the corresponding eigenvalues ofW1
1,W

1
2, … andW1

T:Therefore,

λ1k ≫ λ2k From all the above, we can conclude that smaller error yielding to better cluster-
ing, hence preserving the performance, yields the improvement by the T-factor noted in
the proposition and shown in the two perturbation developments.
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