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Abstract

Excessive application of chemical fertilizers and other agrochemicals can cause 
significant imbalances in soils and agricultural ecosystems. To minimize these 
impacts, biofertilizers and organic fertilizers are needed to maintain a sustainable 
production system. The use of subterranean microorganisms in agriculture to stimu-
late plant growth and improve yields has recently received increasing interest. In this 
context, mycorrhizae represent a viable solution to mitigate these adverse effects. 
Mycorrhizal fungi are able to form a symbiotic relationship with the roots of plants in 
the environment. Mycorrhizal fungus helps the plant to absorb nutrients and water. 
In addition, mycorrhizal fungi play a crucial role in storing carbon (C) in the soil. 
Most previous studies have just considered the effects of AMF species on a specific 
crop in one particular area but have not assessed the balance of AMF in production 
systems in tropical agriculture. This consideration should allow for the optimization 
of cropping practices through a review of the work on the use of AMF in tropical agri-
culture production systems. In this paper, we will discuss, through different examples 
of experiments carried out in the tropics, the performance of different strategies for 
managing the potential of AMF to maintain a sustainable production system.

Keywords: bioinoculation, SDG#2, sustainable agriculture, symbiosis, tropical 
environment

1. Introduction

In Sub-Saharan Africa, the population increase is estimated at 2 billion in 2050. 
This is more than double what it was in 2010 (800 million inhabitants) [1, 2]. Food 
needs will evolve considerably, even four times those of 2010 [1, 3]. Indeed, the tech-
nical performance of African agriculture, particularly crop yields, which are generally 
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low, would not be sufficient to cover such changes in needs [1] without an effective 
alternative in new agricultural technologies. It is, therefore, necessary to expand the 
cultivated land in Africa on a large scale by more than 122 million ha, that is, a growth 
of more than 47% compared to the initial situation in 2010.

In this context, it is essential to have a better yield of corn grains for the self-
sufficiency of the population. Thus, in most cases, producers use chemical agricul-
tural inputs (pesticides and mineral fertilizers), which, in the long run, degrade the 
soil and pollute waterways and the environment. Indeed, the contribution of organic 
fertilizer is necessary for these soils on which chemical fertilizers are used to avoid 
their rapid degradation by water and wind currents [4]. Establishing a reliable and 
sustainable agricultural technology without adverse effects on soil health and the 
environment to meet food needs remains the major concern of researchers in the 
agricultural field. Indeed, the organic farming system remains the best option because 
it obliges farmers to use organic amendment resources of the remains from livestock, 
green organic matter, and other organic manures [5, 6]. Nevertheless, these inputs are 
costly, and their forms remain relatively insoluble. Also, their effects on phosphorus 
availability in soils in organic agriculture are often limited [5, 7].

Techniques for regenerating the health of cultivated soils that incorporate a judi-
cious combination of organic matter of different C/N ratios, on the one hand, and the 
use of the soil microflora and soil fauna, on the other, are needed to reduce the rate of 
mineralization of organic matter supplied to soils, thereby maintaining microbial life 
in these soils for long periods.

Beneficial microorganisms include arbuscular mycorrhizal fungi (AMF) that 
are associated with at least 90% of terrestrial plants [8, 9]. A majority of terrestrial 
plants, especially grapevine [10], are colonized by about 400 arbuscular mycohizal 
fungi that allow them better nutrient uptake and stress tolerance [11]. The interac-
tions between plant, soil, and mycorrhizal fungi are ecologically and agriculturally 
beneficial systems. In nature, most plants are in association with mycorrhizae. 
Thanks to this association, the plant increases its water and nutrient-absorption 
surface. Also, they have better accessibility to the elements available in the soil but 
not accessible. In addition, mycorrhizae contribute to the mobilization of carbon 
(C) in the soil.

In this review, we will synthesize research on the performance of different AMF 
potential management strategies to maintain a sustainable production system.

2. Functional diversity of arbuscular mycorrhizal fungi in the rhizosphere

The first classification was established by Taxter [12] and later modified by 
many mycorrhizologists [13, 14]. The classical identification of arbuscular mycor-
rhizal fungi is based on the structural morphology of the spore. Those that have 
similar morphology and form a single type of spore wall are phylogenetically related. 
However, populations of spores isolated and identified from rhizophytic soils do not 
always constitute communities of arbuscular mycorrhizal fungal species that infect 
roots [15]. Nevertheless, the low morphological variation among spores often makes 
their identification difficult.

Schwarzott et al. [16] describe the molecular classification based on in vitro DNA 
amplification of variable regions of the fungal genome from spores or from mycor-
rhized roots [17]. Indeed, multigene analysis has been used to identify arbuscular 
mycorrhizal fungi [18] to confirm the phylogenetic structure proposed by Schüßler 
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et al. [13]. Furthermore, biochemical approaches based on the use of specific anti-
bodies [19] and lipid profiles [20] are also used for the identification of arbuscular 
mycorrhizal fungi.

Morton and Benny [21], who classified arbuscular mycorrhizal fungi in the order 
Glomales, subdivided them into two suborders, Glominae (vesicles forming) and 
Gigasporinae. The Glominae include two large families, the Glomaceae represented by 
the genera Glomus and Sclerocystys, a genus eliminated by Redecker et al. [22], and 
the Acaulosporaceae by Acaulospora and Entrophospora. The Gigasporinae include 
three families, the Gigasporaceae represented by Gigaspora and Scutellospora, the 
Archaeosporaceae represented by the genus Archaeospora, and the Paraglomaceae by 
Paraglomus [23].

Figure 1 shows the phylogenetic classification of the kingdom Mycota (Fungi) 
based on the analysis of 18S rRNA nucleotide sequences [13]. 1Species currently 
named Glomus 2contains Glomus fulvum, Gl. megalocarpum, Gl. pulvinatum; 3contains 
Kuklospora colombiana and Ku. kentinensis (formerly Entrophospora) [25]; 4contains 
one genus with Entrophospora infrequent and A. baltica [25], neither of which are 
phylogenetically characterized; 5Otospora [26] contains Otospora bareai[27].

3. Role of arbuscular mycorrhizal fungi in promoting crop growth

The success of a production technique could depend on controlling the factors 
that influence the development of arbuscular mycorrhizal fungi (AMF). AMF are 
another group of symbiotic soil microbes capable of directly or indirectly influenc-
ing soil properties, affecting plant growth and community structure [28, 29]. Their 
multiple beneficial attributes allow them to be involved in many processes, such as 
biofertilization, biostimulation, and bioprotection [30]. Indeed, AMF confer many 
positive effects on host plants, including promoting plant growth, stabilizing soil 
aggregation, maintaining soil moisture, improving tolerance to abiotic and biotic 

Figure 1. 
Phylogenetic relationships of Glomeromycetes taxa [13, 24].
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stress, and increasing plant biodiversity [30–33]. In addition, these beneficial fungi 
have shown a potential ability to increase crop resilience and performance [34] and 
are known to affect their host plants differently. AMF are present in the soil in the 
form of spores and extra radicular hyphae, as well as in plant roots, with which they 
form a mutualistic association, and are considered an essential component of various 
ecosystems [35, 36]. The most important contribution of AMF fungi to plant growth 
is due to the uptake of phosphorus and other elements by the extra-radical hyphae 
and their transfer to root tissues. Indeed, intra-root hyphae, vesicles, and intra- and 
extra-root spores are structures capable of AMF propagation [37]. In addition to being 
a propagule, vesicles (Figure 2) are a reserve organ; their production is related to the 
stage of AMF development, and their presence can vary with carbon allocation by the 
host plant [39, 40]. However, factors such as low light intensity and defoliation, fac-
tors that limit photosynthesis and thus the carbon content of the plant, significantly 
reduce sporulation as well as colonization of new roots [37]. AMF provides nutrients, 
primarily phosphorus (P) and nitrogen (N), to host plants in exchange for carbon 
(C). The increase in available phosphorus and exchangeable potassium and mag-
nesium levels in the soil of AMF-treated plants would certainly mean more leaves, 
branches, and biomass in AMF-treated plants than in control [41]. Mycorrhization 
of tissue-grown propagules can produce plants with increased levels of biologically 
active secondary metabolites [42]. The exploration of a larger volume of soil and the 
possibility of alteration of primary minerals by mycorrhizal fungi improve the phos-
phate nutrition of plants [43, 44]. This improved acquisition of inorganic nutrients by 
fungal symbionts also concerns other macro- (N, K, Mg, Na, S) and micro- (B, Br, Cl, 
Cu, Cr, Cs, Co, Fe, Mo, Mn, Ni, Si, Zn) soil nutrients [37, 44]. Mycorrhizal associa-
tions play a potential role in the decomposition and mineralization of plant organic 
matter and the mobilization of nutrients to the host plant [44, 45].

4. Arbuscular mycorrhizal fungi as biofertilizers to increase crop yield

The work of Xie et al. [46] and Battini et al. [47] on tomato showed that AMFs 
were responsible for P mobilization in inoculated tomato plants. In addition, Balliu 
et al. [48] on tomato plants inoculated with AMF observed a significant increase in 
N uptake. Campo et al. [49] showed the importance of mycorrhizal fungi on growth, 
productivity, and disease resistance in the rice crop. In addition, in the pasture, the dry 

Figure 2. 
Infected corn roots colonized by shrub-shaped mycorrhizal fungi structures. (A: vesicular; h: intra-root hyphae; H: 
extra-root hyphae (×180) [38].
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season appears to favor AMF species diversity. It is possible that the lower humidity 
of this season influences the sporulation of more species [50, 51]. Studies conducted 
by Nekou et al. [52] and Ngakou et al. [53] in Cameroon in 5 agro-ecological zones 
showed that the use of commercial mycorrhizal fungi on cowpea plants improved 
their growth by 17–46%. In Togo, inoculation of soybean plants with mycorrhizae 
resulted in an improvement in plant height from 14 to 32 cm [54]. Also, the work of 
Ngakou et al. [55] on garlic plants inoculated with mycorrhizae under greenhouse 
conditions observed an improvement in plant growth from 4.85 cm to 6.28 cm. Ogou 
et al. [54] obtained in Togo an average mycorrhizae-induced pod gain on soybean of 
+126.83% compared to the control. Moussa et al. [56] reported an average mycorrhizal 
inoculation-induced improvement of 23.4% on Vigna subterranea plants. Hemissi et al. 
[57], in Tunisia, obtained a gain of 20 kg/ha more wheat in mycorrhized plants than 
in control plants. The role of AMF on Drymaria cordata is indicative of the appar-
ent potential of this association to improving production [41]. Similar efficacy of G. 
fasciculatum on the growth and performance of normal and regenerated Andrographis 
paniculata plants has been studied [58]. Numerous works have shown the effectiveness 
of endomycorrhizal symbiosis in improving maize productivity [59–63].

These improvements in plant growth and yield by arbuscular fungi are explained 
by the fact that mycorrhizae degrade and mineralize soil organic matter and mobi-
lize the resulting nutrients to the plant [64, 65]. In addition, mycorrhizae develop 
extra-radical mycelial hyphae that explore a larger volume of soil not accessible to 
plant roots [66]. Solanum lycopersicum, inoculated with  G. fasciculatum significantly 
improved morphological characteristics [67].

Another important point regarding plant health is the presence of toxic metals 
such as Cu, Cd, Zn, and Pb in the soil. It has been suggested that the most appropriate 
use for these elements is potentially toxic elements (PTEs) [68, 69]. AMF are capable 
of absorbing Cu, and 1 g of AMF hyphae has a Cu content of 3–14 mg [70].

5. Role of glomalin secreted by mycorrhizal fungi

The growth of mycorrhizal hyphae in the soil is accompanied by the production of 
glomalin (a glycoprotein), which improves the aggregation of soil particles [44, 71]. 
Glomalin is a hydrophobic protein. Glomalin, an N-linked glycoprotein [72], which 
is considered to be an AMF gene product, is defined as a protein secreted by AMF 
hyphae and spores [73]. It contains iron (2–5%), oxygen (4–6%), phosphorus 
(0:03–0.1%), carbon (36–59%), hydrogen (33–49%), and nitrogen (3–5%) [73–75]. 
The reddish-brown appearance of glomalin extracts is due to the iron content [71, 75]. 
According to Wright [76], the concentration of glomalin in soils is very high com-
pared to humic acid, especially in the presence of insoluble humus or minerals in 
soils treated with sodium hydroxide. The glomalin secreted by the mycorrhizae in the 
soil allows the stabilization and optimization of the PTE. Moreover, in addition to its 
beneficial roles for the soil, in the rhizosphere of plants, it plays a protective role for 
the microorganism and the plant roots against toxins [73]. There is a strong relation-
ship between glomalin concentration and soil aggregate stability [75, 77]. Because of 
this role, glomalin preserves unstable compounds in soil aggregates and thus reduces 
the degradation of soil organic matter [78]. N-linked glomalin [72], which is consid-
ered the gene product of AMF, is defined as a glycoprotein secreted by AMF hyphae 
and spores [73]. Glomalin, plays an excellent protective role for hyphae as well as 
promotes soil aggregation.
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Glomalin is measured from the soil as Glomalin-Related Soil Protein (GRSP) 
[78–80]. Among soil microorganisms, AMF have the ability to stabilize soil structure, 
which reduces stress at the plant level [81, 82]. Indeed, glomalin produced by arbus-
cular mycorrhizal fungi is one of the key factors of soil quality. It is essential for the 
formation of soil aggregates because it is one of the components of soil organic matter 
[75, 83]. Also, it contributes to the nutrient storage capacity and water holding capacity 
[83]. Land use change can alter the abundance and diversity of arbuscular mycor-
rhizal fungi species and the content of glomalin-related soil protein (GRSP) in the soil 
[84–86]. Glomalin from the decomposition of hyphae wall and spores of mycorrhizal 
fungi even after their death is quantified in soil as GRSP [87, 88]. GRSP is considered 
an essential component of the soil organic carbon (SOC) pool in terrestrial ecosystems 
[80, 89]. Indeed, GRSP is a key link in appreciating soil fertility, its water holding 
capacity, and aeration and nutrient content for better plant productivity [90].

GRSP is composed of two soil proteins: the easily extractable protein (EE-GRSP) 
and the total protein (T-GRSP). Assuming the C content of glomalin to be 32% [91], 
concerning equivalent dry mass of soil. The contribution of TG to SOC varies from 
season to season in agroforestry and forest [92]. Indeed, it is higher during the dry 
season compared to the rainy season, when it is 5.69% in soils under pasture, fol-
lowed by AS3 (4.5%) and AS2 (4.31%). The work of Driver et al. [93] on Rhizophagus 
intraradices (N.C. Schenck & G.S. Sm). C. Walker & A. Schüßler showed that 80% of 
the glomalin secretion came from the wall of hyphae and spores.

The glomalin secreted by the mycorrhizae in the soil allows the stabilization and 
optimization of the PTE. In addition, glomalin plays a protective role for microorgan-
isms and plant roots against toxins [73].

6.  Mechanisms employed by arbuscular mycorrhizal fungi for salt stress 
amelioration

Soil salinity is a global problem because it negatively affects plant productivity and 
yield, especially in arid and semi-arid regions of the world. Under salt stress, plant 
growth and biomass have suffered a setback. The reasons may be the unavailability of 
nutrients and the expenditure of energy to counteract the toxic effects of NaCl. This 
is because excess salt decreases the availability of soil water to plants, inhibits plant 
metabolism and nutrient uptake, and is also responsible for osmotic imbalance [94]. 
Among the various biotechnological techniques used to combat the harmful effects 
of salt stress, the use of arbuscular mycorrhizal fungi (AMF) is considered an effec-
tive approach for bioenhancement of salt stress [95]. Possible mechanisms for salinity 
stress mitigation by AMF include: (1) enhancing plant nutrient uptake, particularly P; 
(2) elevating the K/Na ratio; (3) providing higher osmosolute accumulation; and (4) 
maintaining higher antioxidant enzyme activities [94]. AMF adjust all physiological 
and biochemical properties of the host plant (Figure 3) [96–98]. The mycorrhizal sym-
biosis with the roots of plants includes several stages, namely, (i) the formation of the 
appessoriun (ap), (ii) the penetration and development of hyphae into the root cortex 
(a), and (iii) the formation of vesicles in the root cortex (v). The salinity has a very 
negative impact on the productivity of the plant. Indeed, it inhibits the fundamental 
needs of the plant in water and nutrients, which leads to its physiological dryness and 
the decrease of the osmotic potential. Nevertheless, with the symbiosis of arbuscular 
mycorrhizal fungi, the plant resists saline stresses by a better absorption of water and 
nutrients. The action of mycorrhizae can be summarized as: (i) increased accumulation 
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of osmolytes, which allows a decrease in osmotic potential; (ii) efficient management of 
water and photosynthesis; and (iii) production of antioxidants to scavenge ROS [96].

AMF can protect cucumber growth from salt stress [99]. However, AMF inocula-
tion ameliorated the negative effects by increasing biomass; pigment synthesis; 
antioxidant enzyme activity, including superoxide dismutase, catalase, ascorbate 
peroxidase, and glutathione reductase; and ascorbic acid content, which might be the 
result of lower levels of lipid peroxidation and electrolyte leakage. Mycorrhization 
has been found to increase the capacity of the host plant by improving its growth and 
biomass [96]. Colla et al. [100] reported improved growth, yield, water status, nutri-
ent content, and fruit quality of Cucurbita pepo plants colonized by Glomus intraradi-
ces when exposed to salinity stress. Under NaCl stress, the combination of mycorrhizal 
fungi with compost significantly improved plant growth; P, K+, N, and Ca2+ uptake; 
leaf water potential; stomatal conductance; all antioxidant enzyme activities; and pro-
line and soluble sugar content [101]. The application of anti-salinity increased the yield 
of green bean pods under all levels of salinity stress, especially with AMF followed by 
B. Megatherium, compared to non-inoculated plants [102].

The positive action of AMF under salt stress may be due to higher concentration of 
osmolytes (glycine-betaine, sugars) and polyamines and more and larger plastoglobules 
(higher concentration of α-tocopherol) in AMF-inoculated plants compared to in non-
AMF-inoculated plants. While lower Na + and Cl—ions provide less ion toxicity, higher 
osmolytes and tocopherols provide osmotic adjustment and better ability to scavenge 
free radicals generated by salt stress, respectively [103]. Landwehr et al. [43] reported 
abundant AMF spores in extremely alkaline soils with a pH as high as 11, independent 
of soil types and NaCl, Na2CO3, Na2SO4, or CaSO4 salt types, although the degree of 
colonization varied among individuals. Saint-Etienne et al. [104] reported significant 

Figure 3. 
The intricate functioning of arbuscular mycorrhizal fungi in ameliorating salt stress in plants [96].



Symbiosis in Nature

8

negative correlations between salt levels and soil mycorrhizal infection (measured as 
most probable number values); that is, as soil salinity increased from 5 to 22%, the level 
of infection decreased from 301 to 20 most probable numbers per 100 g of soil. Under 
salt stress conditions, a beneficial effect of AMF symbiosis has been observed on water 
status, osmolyte accumulation, and plant growth of Phragmites australis [105].

However, it should be noted that in the presence of NaCl, colonization of plant 
roots by some AMF is reduced [106], probably due to the suppression of arbuscular 
mycorrhizae formation due to the effect of NaCl on its fungi [95, 106, 107]. In addi-
tion, in the presence of NaCl, spore germination is delayed [107].

7. Interactions between mycorrhizae and beneficial rhizobacteria

Plant growth and development can be promoted or inhibited by microorganisms in 
the rhizosphere [108]. The synergistic action between plant growth promoting rhizo-
bacteria (PGPR) and mycorrhizae (AMF) is of great importance for the improvement 
of productivity and sustainability of agricultural and natural ecosystems [109–111]. 
The beneficial effect of the interaction between RMPs and MFAs is demonstrated by 
several authors [108, 112, 113]. Indeed, the phytohormones produced by PGPRs allow 
a good development of the plant roots, which favors the colonization of the latter by 
AMF [112, 114]. According to Hodge [113], the accumulation of photosynthetic prod-
ucts is affected by the activities of AMF on PGPR in the mycorrhizosphere. As a result 
of increasing mycorrhizal colonization by PGPR, glomalin production increases [115].

The latest studies have shown various abiotic factors that have had marked effects on 
plant growth and development. Among these, N soil, pH, temperature, erosion, waterlog, 
salinity, heavy metals, fungicides, and drought are the major factors that affect plant 
growth [116, 117]. Hence, plant growth and yield will be affected [118]. However, diverse 
research [119, 120] have explored the significance of beneficial rhizobacteria and mycor-
rhizae in the growth and development of several plants in stress environments (Figure 4).

This positive interaction mainly occurs among PGP rhizobacteria, mycorrhizae, and 
plants [122]. The addition of a single bacterial inoculum might have core effects on the 
rhizosphere structure. Still, it will depend on whether the fresh inoculum is already a 
part of that bacterial population or not [123]. Similarly, it can be more effective when a 
combination of PGPR is used [124]. The inoculum composed of the mixture of PGPR 
and AMF, due to the synergistic effect of its two microorganisms, allows for better 
colonization and nutrient uptake by plant roots [122]. In the same way, the rise in root 
exudates by the microbes triggers the fungus growth and hence increases the rate of root 
colonization BN [108]. After the inoculation of 20 different Medicago truncatula assents 
with Funneliformis mosseae strains, several interesting results on physiology and gene 
expression at the level of individual plants were observed [125]. Studying the P. fluorescens 
C7R12, it was shown as an operative biocontrol mediator in comparison to the Fusarium 
species [126]. Antifungal metabolites produced by Pseudomonas, instead of inhibiting 
the action of the G. mosseae strain, allowed the colonization of the roots by the hyphae 
of the latter [127]. In addition, the synthesis of Rhizobia exopolysaccharides (EPSs) 
improved the synergy between bacterial strains and mycorrhizal structure [128]. Thus, 
the combination of the rhizobacteria can raise the activity of arbuscular mycorrhizae in 
the symbiotic association [129]. The occurrence of PGP rhizobacteria, as well as mycor-
rhizae in the rhizosphere, can encourage the growth of fungus hyphae by enhancing cell 
permeability and help the roots in penetration to fungus [130], and fungus hyphae can 
raise the activities of bacterial strains, which solubilize the phosphorus [62, 131–134]. 
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In addition, AMF increase plant uptake of water and mineral elements, especially phos-
phorus, to the plant [135]. This is because the elongation of the extra-radical mycelium 
increases the exchange surface between soil minerals and plant roots. Thus, areas inacces-
sible to the plant are explored by the extra-root mycelia to collect water and nutrients and 
transfer them to the host plant, allowing for improved growth, yield, and quality of plant 
production [134]. Moreover, Raklami et al. noted that the field inoculation with PGPR- 
Rhizobia-mycorrhizae improved growth, nutrition, and productivity of bean and wheat 
plants compared to the uninoculated control and other treatments based on PGP rhizo-
bacteria as well as mycorrhizae. All the treatments were beneficent for Vicia faba L. and 
Triticum durum L. plants. The best treatment was the inoculation with PGPR- Rhizobia-
mycorrhizae. Plant growth under normal or stressful situations could be improved by the 
use of PGP rhizobacteria and mycorrhizal strains, alone or in combination [118].
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Potential mechanisms used by PGP Rhizobacteria and mycorrhizae for improving plant growth under stress 
circumstances [121].
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