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Abstract

The development of a treatment strategy for neurodegenerative disorders is a 
serious issue for the healthcare world and a crucial subject of discussion. In the past 
two decades, a lot of focus has been placed on identifying the pathophysiological 
processes involved in neuronal death linked to neurodegenerative disorders and 
developing a variety of treatment options for neuroprotection. Numerous research 
teams have studied the use of peptides as neuroprotective treatments for different 
types of neurodegenerative disorders for a long time. The review aims to provide 
details about the roles of erythropoietin (EPO), glucagon-like peptide-1 (GLP-1), 
granulocyte colony-stimulating factor (G-CSF), and oxytocin (OXT) in neurodegen-
erative disorders as well as what cellular and molecular mechanisms they trigger to 
elicit the neuroprotective action, with a focus on neurodegenerative disorders.

Keywords: erythropoietin, glucagon-like peptide-1, granulocyte colony-stimulating 
factor, oxytocin, peptides, neurodegenerative disorders, neuropeptides, neuroprotection

1. Introduction

It is becoming more well-accepted that secondary biochemical alterations that 
result in tissue loss, which are secondary to acute neurodegenerative disorders, 
play a significant role in the development of chronic neurological impairment. 
Neurodegenerative disorders such as motor neuron disease, Alzheimer’s disease 
(AD), Parkinson’s disease (PD), ataxia, spinal muscular atrophy, autism, amyotrophic 
lateral sclerosis, Huntington’s disease, epilepsy, ischemic brain diseases, and central 
nervous system (CNS) diseases, such as stroke have also been linked to molecular 
pathways that contribute to cell damage and cell loss. Due to a lack of clinical efficacy 
or unpleasant side effects, several neuroprotective therapies intended to reduce 
neuronal death have been ineffective. This prompted researchers to investigate 
alternative therapeutic applications, such as peptides as neuroprotective agents [1–5]. 
Notably, several peptides have been applied in clinical settings, including erythropoi-
etin (EPO), glucagon-like peptide-1 (GLP-1), granulocyte colony-stimulating factor 
(G-CSF), and oxytocin (OXT) [6–12]. Figure 1 shows the synergistic neuroprotective 
effects of G-CSF, GLP-1, and EPO.



Translational Neuroprotection - The Way Ahead

2

2. Neuroprotective properties of erythropoietin

Human erythropoietin (EPO) is a 34 kilodalton (kDa) glycoprotein hormone 
formed up of four-helix loops. The gene for it is found on chromosome 7q11.22 and 
produces a 193-amino acid polypeptide chain [13]. The approaches of glycosylation 
and sialylation are also required for EPO to operate normally as they increase EPO’s 
molecule’s longevity and prolong its stay in circulation. The liver is the main site of 
EPO synthesis in individuals during fetal and neonatal life, but renal EPO messenger 
ribonucleic acid levels rise exponentially following 30 weeks of gestation, demonstrat-
ing the shift from the liver to the kidneys as the EPO production zone [14]. Also gener-
ated by cells from numerous organs, with the heart, spleen, lung, testis, ovaries, retina, 
and brain, where it exerts non-erythropoietic roles [15]. The discovery that the brain is 
one of these EPO-producing locations has captured the most interest. It is worth noting 
that prior line analyzing research has found that the pericytes in the brain and kidney 
both are transformed from the neural crest, which might also explain why they serve 
the same role in separate locations. The hippocampus, cortex, and midbrain were all 
reported to yield and express EPO inside the CNS. EPO has also been shown to have a 
crucial role in fostering and boosting neurogenesis, which is important for the growth 
of the brain and blood system [16], restricts cell damage, and prevents oxidation reac-
tions. The peptide may have a favorable impact on the reduction of neuronal disorder 
due to its protective effects and ability to reduce reactive oxygen species (ROS) [6].

Figure 1. 
The synergistic neuroprotective effects of G-CSF, GLP-1, and EPO promote neurogenesis, axon growth, and 
synaptic functioning while decreasing cell apoptosis, inflammation, and oxidative stress. Individually, G-CSF 
stimulates neural stem cells, EPO enhances angiogenesis, and GLP-1 decreases microglial activity.
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Erythropoietin receptor (EPOR) has a 225-amino acid subunit, a 23-amino-acid 
outer membrane segment, and a 235-amino-acid intracellular subunit. EPO activates 
secondary chemical signals like the signal transducer and activator of transcription 5 
(STAT5), phosphatidylinositol 3-kinase (PI3K), and mitogen-activated protein kinase 
(MAPK) through the hematopoietic system’s attachment of EPO to its target, which 
proceeds in homodimerization [17]. EPO is a bioactive molecule that is formed in the 
brain and has an essential function in neural growth and synapse formation control. 
EPOR has been detected in vitro grown rat oligodendrocytes and astrocytes, and 
recombinant human EPO (rhEPO) treatment increases their development and repro-
duction, hinting that the EPO/EPOR linkage is vital in angiogenesis after trauma. The 
four specific EPOR versions that are present in various tissues are described [18].

1. The brain has the canonical isoform, which is primarily expressed in the hema-
topoietic system. EPO activates this subunit, which modulates EPO’s activity in 
inflammation and hypoxia in neurons [19].

2. Neuronal cell safeguard is an expression of EPOR’s second form. In this scenario, 
the EPOR monomer connects the beta common receptor (βcR; CD131), a charac-
teristic target portion of interleukin (IL)-3, IL-5, and granulocyte-macrophage 
colony-stimulating factor (GM-CSF). The most prominent theory is that di-
merization causes the development of a particular tissue-building receptor. The 
classical homodimer upregulating tends to be activated by the stimulation of this 
sensor in an identical method [20].

3. The substantia nigra’s dopaminergic neurons have a tertiary version of the recep-
tors, which is shorter than the full-length form and causes an alteration in the 
known to possess subdomain. The absence of STAT phosphorylation in the EPOR 
abridged isoform raises the possibility of another, as of before unidentified, 
mode of action [7].

4. Finally, it has been confirmed that the rat brain has a periplasmic soluble form of 
the receptor. Besides the subsequent mediators being activated, this isoform engag-
es with EPO. Therefore, EPO’s contact with other EPOR forms is limited due to its 
decreased accessibility. When there is ischemia, this isoform’s translation is signifi-
cantly suppressed, which starts a process that fights comprehensive EPOR [19].

EPO’s main purpose is to manage the growth of hematopoietic cells, so it is 
essential to identify if targeting neural cells may have a strong effect. The modulatory 
effects of EPO on neuroplasticity may affect neural precursor cells of other sources as 
well. These actions may include rapid maturation and enhanced progenitor growth, 
which has been seen in hypoxic mesencephalic progenitor cells [21]. Additionally, 
brain stem cells generated from the spinal cord exhibited EPO-driven neurogenesis. 
Brain-derived neurotrophic factors can be induced by EPO to potentially stimulate 
neurogenesis. EPO promotes regeneration while also assisting in the suppression of 
apoptosis. Apoptosis is diminished by the engagement of the cascade EPOR molecules 
Janus kinase 2 and PI3K and the control of the regulatory protein Bad (the Bcl-2 
associated agonist of cell death) [22].

EPO is synthesized in the kidneys and released into circulation in response to hypoxia. 
By focusing on EPO as a cascade protein controlled by hypoxia, the hypoxia-inducible 
factor-1 alpha (HIF-1α) was in effect discovered [19]. Conversely, it currently appears 
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that HIF-2α, also known as endothelial PAS domain protein 1, is much more essential 
than HIF-1 in driving the overexpression of EPO under deprivation [23]. The finding 
is that EPO and EPOR are generated in the brain’s hippocampus and telencephalon, 
the two areas particularly vulnerable to hypoxia. Hence, it is theoretical to assume 
that EPO has a biological process in the brain that serves as a defense against hypoxia 
and perhaps ischemia [18]. In several additional neurodegenerative disorders, ROS 
also plays a role in causing cell damage and neuronal loss. In a rat model of vascular 
dementia reported by Erbas et al., EPO anti-oxidative capabilities particularly 
decrease beta-amyloid-induced apoptosis and boost tyrosine hydroxylase (TH) 
positive neural cells [24]. A crucial additional point in the stability of HIF and, thus, 
the synthesis of EPO is the creation of ROS generation in both hypoxia and hyperoxia. 
Although enhanced prolyl hydroxylation and thus reduced HIF function are heavily 
related to ROS blocking, it is unclear how extra or insufficient oxygen affects cell 
damage in the brain [25].

EPO has become a versatile tissue-protective mediator, in part because of its anti-
inflammatory characteristics [26]. In fact, rhEPO penetrates the blood–brain barrier 
(BBB) whenever given to rats with localized ischemic injury, reducing the extent 
of the lesion by 50 to 75% [27]. In a laboratory autoimmune encephalitis form of 
multiple sclerosis, rhEPO inhibited the production and secretion of proinflammatory 
cytokines and growth factors, as well as the migration of cytokines through into the 
site of inflammation [23].

The second most prevalent neurodegenerative disorder is PD. Bradykinesia, 
stiffness, and tremor are only a few examples of motor and nonmotor features. 
Alpha-synuclein clusters, which are essential parts of Lewy bodies, and the growth of 
dopaminergic neurons in the atrophied substantia nigra pars compacta are two crucial 
pathogenic indicators [28]. According to a particular report of autophagy signals 
along with AMP-activated protein kinase and Unc-51-like autophagy activating kinase 
1, EPO therapy stimulates the autophagy mechanism in rotenone-treated SH-SY5Y 
neurons (a neuroblastoma cell line called SK-N-SH that has triple-subcloned) [29]. 
EPO has various neuroprotective effects on astrocytes, microglia, and synapses and 
is implicated in the control of neuroinflammation. In fact, EPO prevents the death of 
vascular endothelium and the arousal of astrocytes, which maintains the BBB [30]. 
According to studies, EPO reduces levels of tumor necrosis factor-alpha (TNF-α) and 
increases levels of TH in rats that have had parkinsonism brought on by rotenone or 
6-hydroxydopamine. This suggests that EPO may function through modulating neuro-
inflammation in order to achieve its goals [24]. In a lipopolysaccharide-induced autistic 
rat model, EPO was also effective in enhancing cognition and neurochemistry [31].

The most prevalent kind of dementia, AD, is clinically defined by a memory defi-
cit that worsens with time and a deterioration in cognitive abilities. Extracellular neu-
ritic plaques induced by amyloid-beta (Aβ) formation and internal neuro-fibrillary 
bundles caused by hyperphosphorylation of the tau protein are the disease’s defining 
features. The earliest signs that EPO could help with cognitive skills came from stud-
ies on non-neurological diseases when individuals receiving EPO during hemodialysis 
showed an increase in their mental abilities. Traditional pharmaceutical therapy for 
AD comprises acetylcholinesterase inhibitors, N-methyl-D-aspartate antagonists, 
and their potential combinations since no cure has been discovered [32]. EPO’s health 
benefits have first been investigated at the molecular scale, employing both robust cell 
cultures and primary hippocampus neurons [16]. The chemical appears to be effec-
tive by blocking the apoptotic mechanism and protecting against Aβ toxicity [33]. 
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Additionally, it is probable to notice a decline in the inflammatory activity and an 
elevation in antioxidant responses. EPO seemed to minimize cell damage, inflamma-
tion, and tau hyperphosphorylation while enhancing neurogenesis [25]. On abnor-
malities in neuroplasticity, the chemical appears to have a repair impact [33]. This, in 
addition to the fact that EPOR is present in the hippocampus, raises the prospect that 
EPO may have clinical benefits in this situation [31].

Acute ischemic stroke is caused by a temporary or irreversible decrease in cerebral 
blood flow that is typically related to the blockage of a cerebral artery, an emboliza-
tion, or localized thrombosis. A protective effect against ischemia injury is provided 
by the stimulation of HIFs, which stimulates downstream factors including EPO and 
vascular endothelial growth factor [23]. In hypoxic in vitro models, EPO expression 
levels in both rat astrocytes and neurons. EPO begins to act on frontal neuron progen-
itor cells, implying its role in neurogenesis. Bioactivity rises after EPO administration 
in primary hippocampal and cortical neurons exposed to cerebral ischemia, indicat-
ing its role in apoptosis and cell healing. By recovering hippocampal CA1 neurons 
from deadly ischemic damage, rhEPO treatment reduced ischemia-induced memory 
deficit. Other researchers reported that the indigenous EPO/EPOR system protects 
hypoxic astrocytes and oligodendrocyte progenitor cells, indicating that suppressing 
endogenous EPO in astrocytes results in diminished preservation of oligodendrocyte 
precursor cells and cell apoptosis [34].

High EPO dosages are beneficial in term neonates with hypoxic–ischemic 
encephalopathy (HIE) when the damage has not yet been established [35]. Animal 
studies have revealed that EPO can be given at high dosages around 6 hours after the 
beginning of brain damage to have a meaningful neuroprotective role. EPO poten-
tially impacts the processes of cerebral flow restitution, angiogenesis, and neurore-
generation in this environment, reducing ischemia damage. Research data also show 
that EPO can be used as an adjuvant therapy with hypothermia or as a supplement for 
hypothermia in HIE [2].

3. Neuroprotective properties of glucagon-like peptide-1

The glucagon-like peptide-1 (GLP-1), a 30-amino acid peptide hormone, is 
synthesized in the intestinal endocrine L-cells by differential processing of the 
proglucagon gene. It is a member of the incretin subfamily. The “incretin effect” is 
when incretins cause the pancreas to release more insulin when blood sugar levels 
are high. Even before it leaves the gut, the hormone GLP-1 is quickly digested and 
rendered inactive by the enzyme dipeptidyl peptidase IV. This raises the probability 
that GLP-1 receptor (GLP-1R)-expressing sensory neurons in the liver and intestine 
communicate GLP-1 effects [36, 37]. There are the highest concentrations of GLP-1R 
in the pancreas, the gut, and the CNS, although they are also found in small amounts 
in the heart, the vasculature, the kidneys, and the lungs [38].

The GLP-1 is a complex hormone with a wide range of metabolic effects, includ-
ing the glucose-dependent stimulation of insulin secretion, a reduction in stomach 
emptying and food intake, an increase in natriuresis and diuresis, and a modification 
of rodent B-cell proliferation. GLP-1 primarily acts as an incretin hormone by stimu-
lating insulin secretion and inhibiting glucagon release, which together help to reduce 
postprandial glucose excursions. It has consequences for learning and memory, 
reward behavior, and palatability and has cardio-neuroprotective effects, reducing 
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inflammation and apoptosis. In addition to many GLP-1-based pharmacotherapies 
being tested in clinical settings for the treatment of obesity, GLP-1R agonists are 
successfully used in the clinic to treat type 2 diabetes mellitus (T2DM) and its related 
complications such as diabetic nephropathy [37, 39, 40].

Different from the intestinal system, GLP-1 is also produced in the brain, notably 
in the nucleus tractus solitarius (NTS) in the brainstem in particular. The paraven-
tricular nucleus and arcuate nucleus are two regions of the hypothalamus that have 
GLP-1-expressing neurons. The management of appetite is aided by GLP-1 release, 
which also promotes a feeling of satiety [8, 41].

GLP-1 receptors are found in the substantia nigra, amygdala, hippocampus, 
hypothalamus, and NTS, as well as in cortical regions such as the lateral prefrontal 
cortex. These receptors may be stimulated to promote neurogenesis and synaptogen-
esis and to guard against oxidative stress, neuroinflammation, and apoptosis [41–44]. 
It is important to note that while blood-borne GLP-1 and GLP-1R agonists rapidly 
penetrate the BBB, incretins and their receptors are expressed in the CNS [3, 9].

In both humans and animals, GLP-1 modulates autonomic function and the stress 
response by activating the hypothalamic–pituitary–adrenal axis. It has antiapoptotic, 
neuroprotective, and neuromodulatory properties. GLP-1 agonism may have neuro-
protective effects by lowering microglial activation, which in turn lowers the release 
of M1 macrophages (e.g. TNF-α and IL-1β). GLP-1 affects synaptic transmission 
and plasticity in the rat hippocampus, at least in part through glutamate absorption. 
Additionally, it has been shown that astrocytes express the GLP-1R, which is linked 
to the suppression of neural inflammation. In cell cultures, activation of the GLP-1R 
was associated with neurite outgrowth and neurotrophic impacts, such as hippocam-
pus neurogenesis. Additionally, the receptor’s upregulation in the hippocampus was 
connected to improvements in learning and memory [44]. On the other hand, GLP-1R 
expression in the hypothalamus was reported to be reduced in people with T2DM [45].

Preproglucan and consequently GLP-1 are mostly produced by proprotein con-
vertase 1/3 expressing neurons in the caudal region of the dorsal vagal complex’s 
(DVC) medial NTS and, to a lesser extent, the area postrema. Afferent vagal inputs, 
such as gastric distention, the activation of peripheral GLP-1Rs, or the release of the 
satiety-related hormones leptin and cholecystokinin, enhance the activity of prepro-
glucagon-expressing neurons in the NTS. The NTS neurons create proglucagon and/
or GLP-1-positive projections that are directed into the olfactory bulb, several hypo-
thalamic nuclei, the bed nucleus of the stria terminalis, the lateral and medial septal 
nuclei, the amygdaloid complex, the septohippocampal area, the nucleus accumbens, 
and, less frequently, the medullary reticular formation, dorsal motor nucleus of the 
vagus, and the cortex. The GLP-1R is broadly distributed in the CNS, in contrast to 
the NTS, where GLP-1 production and distribution are limited [4].

In the treatment of stroke and neurodegenerative disorders such as AD, PD, 
amyotrophic lateral sclerosis, autism, schizophrenia, and other diseases such as 
diabetic retinopathy, ocular hypertension, and glaucoma, GLP-1 and GLP-1R have 
demonstrated remarkable neuroprotective effectiveness [3, 46–50].

GLP-1 analogs (including liraglutide, lixisenatide, semaglutide, exendin-4, and 
NLY01) exhibit strong anti-inflammatory effects. GLP-1R/gastric inhibitory polypep-
tide receptor (GIPR) dual agonists inhibited microgliosis, astrogliosis, and the expres-
sion of toll-like receptor-4 in a manner comparable to GLP-1 mimetics, however, they 
had a greater impact. Analogs of the GLP-1R (such as oxyntomodulin and exenatide) 
promote synaptogenesis, preserve synapses, increase hippocampus synaptic plastic-
ity, and improve learning and memory [4, 49].
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Alzheimer’s disease and PD, both kinds of neurodegenerative disorders, have been 
linked to impaired insulin signaling [51]. The main clinical sign of AD is progressive 
ongoing dementia, which can be distinguished from other forms of dementia by 
intellectual symptoms such as memory loss and behavioral issues as well as cognitive 
symptoms such as reduced cognition. Similarities between AD and T2DM, which 
is thought to be a high-risk factor. Neurofibrillary tangles, which are shaped by 
hyperphosphorylated tau protein and can build up into oligomers and/or Aβ plaques, 
are one of the neuro-pathological characteristics of AD. Aβ buildup in AD has the 
potential to damage synapses and cause neuroinflammation by triggering astroglia 
and microglia cells [4, 52, 53].

Additionally, in vivo research using PD models has shown that unusually ele-
vated levels of TNF-α and interferon-gamma (IFN-γ) secretion support the TNF-α/
Janus kinase/signal transducer and activator of transcription and IFN-γ/MAPK/
extracellular signal-regulated kinase-mediated activation of nuclear factor kappa-B 
in microglia and astroglia, respectively. Therefore, chronic neuroinflammation in 
AD and PD results in the permeabilization of the BBB by TNF-α and IL-1β; immune 
cell infiltration into the CNS; mitochondrial and axonal abnormalities; synaptic 
damage; and insulin resistance in the brain, as well as microglial, astrocyte, and 
neuronal malfunction and death [4].

GLP-1 directly promotes neurite development and synaptogenesis, in addition to 
shielding synapses from amyloid and oxidative damage. Additionally, GLP-1R activa-
tion has demonstrated synapto-protective qualities by promoting cytoskeletal actin/
tubulin polymerization to induce neurite multiplication, branching, outgrowth in 
cell cultures (PC12, SH-SY5Y), and adult sensory neurons. It has been demonstrated 
in the rat model that lixisenatide, a GLP-1R agonist, also inhibits synaptic dam-
age brought on by Aβ buildup, supporting spatial memory by influencing the PI3K 
pathway [4, 54].

Exenatide (exendin-4, a synthetic peptide containing 39 amino acids) was 
shown in studies to protect against ischemia-induced neuronal death by upregu-
lating GLP-1R expression, primarily in gamma-aminobutyric acid–releasing 
(GABAergic) interneurons or astrocytes in the gerbils’ hippocampal CA1 region. 
After a stroke in mice, it reduced neurological impairments. When administered 
4 weeks before and 2–4 weeks after generating stroke in diabetic rats, a clinical 
dose of exendin-4 also decreased cell damage, stopped microglial infiltration, and 
enhanced stroke-induced neuroblast production and proliferation of neural stem 
cells [3]. GLP-1 and GLP-1R agonists provide protection for many systems as well 
as CNS, by promoting neurogenesis and synaptogenesis and preventing oxidative 
stress, neuroinflammation, and apoptosis.

4. Neuroprotective properties of granulocyte colony-stimulating factor

Granulocyte colony-stimulating factor (G-CSF), now referred to as colony-stim-
ulating factor 3 (CSF-3), is a 25-kDa glycoprotein that is encoded by the Csf3 gene on 
the human chromosome 17 [55]. It is a growth factor that promotes the proliferation, 
differentiation, and survival of hematopoietic progenitor cells. G-CSF is essential for 
the migration of hematopoietic stem cells as well as the proliferation and differentia-
tion of granulocyte progenitors. It promotes the differentiation of hematopoietic 
progenitor cells into neutrophils and modulates neutrophil migration, as well as 
having trophic effects on several cell types, including neurons [56–58].
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G-CSF typically influences myeloid cell development from progenitor cells to mature 
neutrophil granulocytes during hematopoiesis [59–61]. It functions via a homodimeric 
granulocyte colony-stimulating factor receptor (GCSF-R) and is expressed on myeloid 
cells ranging from myeloblasts to mature neutrophils. GCSF-R is found at a low den-
sity on the cell surface (700–1500 per cell) and has a strong affinity for G-CSF. Low 
occupancy at the receptors is adequate to achieve the maximum biological response. 
G-CSFR is composed of a single extracellular domain, a transmembrane domain, and an 
intracellular domain [62, 63]. The extracellular domain contains immunoglobulin (Ig)-
like domains, a cytokine receptor homologous (CRH) domain, and three fibronectin 
(FN)-III-like repeats. The Ig-like domains and the CRH domain are important in G-CSF 
binding, whereas the FN-III-like repeats are involved in receptor dimer stability [64]. 
Numerous cells, including bone marrow, fibroblasts, macrophages, endothelial cells, 
glial cells, and neurons of various brain regions, all contain G-CSFRs [65–67]. G-CSF 
regulates hematopoietic cell proliferation, differentiation, and survival primarily via 
activating the Janus kinase/STAT, Ras/MAPK, and AKT/PI3K pathways [58].

G-CSF has been demonstrated to increase neutrophil chemotaxis and phagocy-
tosis, as well as increase bactericidal and fungicidal activities, antibody-induced cell 
toxicity, and complement receptor expression (CD11b, CG18b, CD35) [67]. G-CSF 
administration stimulated monocytes to produce IL-10 and mobilizes T helper type 2 
cells, promoting dendritic cells, which may contribute to the reduction of T cell reac-
tivity [68]; G-CSF also increases the survival of neutrophils and their progenitors, 
including stem cells. Clinical studies have shown that the duration of severe neutrope-
nia following chemotherapy is shortened and neutrophil counts recover more quickly 
when G-CSF is administered to cancer patients who have had both allogeneic and 
autologous bone marrow transplantation [69].

Recent research has demonstrated the neuroprotective impact of G-CSF treatment, 
which is due to its high antioxidant, anti-inflammatory, and antiapoptotic properties 
[10, 11]. In a number of ischemic rodent models, G-CSF has been demonstrated to 
provide long-term neuroprotection by encouraging somatic growth and improving 
sensorimotor and neurocognitive skills [70, 71]. The neuro-regenerative and neu-
roprotective properties of G-CSF have also been demonstrated in preclinical studies 
in a number of neurodevelopmental disorders, including autism, spinal cord injury, 
cerebral ischemia, PD, and AD [5, 10, 72–74]. To investigate the possibility of using 
G-CSF for AD treatment, two different Aβ protein aggregate-induced AD mice models 
were used. Interestingly, they found that G-CSF-induced bone marrow stem cell 
release enhanced neurogenesis around Aβ plaques in mouse brains and greatly restored 
the neurological function of AD mice [75]. Recombinant human G-CSF (filgrastim) 
was authorized for use by the Food and Drug Administration in 1991 to treat cancer 
patients receiving myelotoxic chemotherapy [76]. According to a wealth of research, 
the G-CSF molecule and its recombinant form, filgrastim, have the potential to treat 
cerebral ischemia, stroke, and neurodegenerative disorders such as Huntington’s dis-
ease, amyotrophic lateral sclerosis, AD, and PD [58, 77]. The therapeutic efficacy and 
safety of G-CSF are supported by all available clinical and preclinical research data, 
establishing its value as a treatment for neurodegenerative disorders.

5. Neuroprotective properties of oxytocin

The CNS’s glial, microglial, and neuronal interactions are incredibly dynamic and 
responsive to various stimuli. As chemical messengers that communicate both within 
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the brain and between the brain and the body, hormones are essential for the body’s 
homeostasis. OXT is a nonapeptide generated in the hypothalamic paraventricular 
(PVN), supraoptic (SON), and accessory nuclei (AN) [78, 79]. Via G-protein-coupled 
receptors, OXT affects the central and peripheral nervous systems. Various peripheral 
tissues, including the pancreas, blood vessels, ovary, thymus, skin, placenta, testis, 
heart, adipocytes, and kidney, also generate it [80]. OXT is crucial for aggression, sex-
ual and maternal behavior, neuromodulation, social memory, and bonding. It helps in 
the evacuation of milk from the mammary gland during breastfeeding and is a power-
ful stimulator of uterine contractions [81]. The structure of vasopressin, a similar 
nonapeptide with only two amino acid differences from OXT, is extremely similar to 
that of OXT. Oxytocin receptor (OXTR), which together with the related V1a, V1b, 
and V2 vasopressin receptor subtypes form a subfamily of the large G protein-coupled 
receptor superfamily, is the sole receptor for OXT that is currently known [82].

Studies have shown that lower levels of central endogenous OXTergic activity are 
related to social behavior profiles that are compromised [83, 84]. Several psychiatric 
disorders such as social anxiety, major depressive disorder, autism spectrum dis-
order, addiction, depression, and schizophrenia have been connected to disturbed 
brain OXTergic signaling [78, 85]. Numerous animal experiments published in 
the literature demonstrate OXT’s neuroprotective properties. The immune system 
regulation, social neuroprotection, antiapoptotic, anti-inflammatory, and antioxida-
tive actions of the OXT hormone are among its neuroprotective properties. It also 
controls the immunological and autonomic nervous systems in addition to the brain 
and reproductive system [86]. There are several medicines that have side effects 
including autotoxicity, neurotoxicity, and nephrotoxicity. Since oxidative stress 
and inflammation are important in the pathogenesis of neurological disorders, and 
the antioxidant/anti-inflammatory properties of OXT are widely recognized, there 
has been numerous research on OXT’s positive effects in neurotoxicity prevention 
[85, 87]. Microglia, the brain, and the spinal cord’s resident macrophages are the 
innate immune system’s main line of defense. Microglia and astrocyte intercom-
munication controls the inflammatory response in the brain. TNF-α, IL-1, IL-6, and 
IL-12 are a few proinflammatory cytokines that are produced and secreted in relation 
to M1 microglia polarization, which in general react to defend tissue and increase 
the elimination of infections. Overactivation or dysregulation of the M1 microglia 
phenotype, on the other hand, may increase neuronal damage caused by pathogenic 
stimuli and toxins, resulting in more extensive damage to neighboring neurons. 
Recent studies showed that OTX is important in the regulation of microglial reactiv-
ity in the growing brain [88, 89]. The relationship between neuroinflammation, 
microglial activation, and neuronal death has also been explored in several neurode-
generative disorders, including autism, frontotemporal dementia (FTD), ALS, PD, 
AD, and Huntington’s disease. Recent research has revealed that autistic brains have 
activated microglia. OXT treatment has been shown to diminish activated microglia 
in the hippocampus and amygdala and enhance the behaviors of autistic mice, 
lowering anxiety, depression, and repetitive behavior, as well as improving social 
contact [90]. According to a study, depending on the type of memory test and the 
psychobiological importance of the stimuli, the effects of intranasally administered 
OXT in humans revealed that the hormone selectively affected memory performance 
[91]. In their research, Erbaş et al. investigated the neuroprotective effects of OXT 
on rotenone-induced PD in rats. According to their research, oxytocin may protect 
dopaminergic neurons from rotenone-induced injury while also restoring them 
[92]. Postmortem brain tissue from patients with Huntington’s disease with varying 
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Peptides Role in neuroprotection Function

EPO Neurogenesis↑

Neurotrophic effects↑

Promotes and enhances neurogenesis by activating brain-derived neurotrophic factors and acting on neural progenitor cells

Oxidative stress↓

Mitochondrial dysfunction↓

Restricts cell damage and reduces neurological dysfunction via its protective effects and ability to minimize reactive oxygen 
species

Neural growth↑

Synaptic plasticity↑

Activates secondary chemical signals (STAT5, PI3K, and MAPK) and functions in neural growth and synapse formation 
control

Functional recovery↑ Promotes rapid maturation and enhanced progenitor growth in hypoxic mesencephalic progenitor cells

Regeneration↑ Promotes regeneration assisting in the suppression of apoptosis

Maintains the blood–brain barrier↑ Prevents the death of vascular endothelium and the arousal of astrocytes

Neuroinflammation↓ Reduces levels of tumor necrosis factor-alpha, declines the inflammatory activity, and elevates antioxidant responses

Inhibition of apoptosis↑ Blocks the apoptotic mechanism and protects against amyloid beta toxicity, minimizes cell damage, and tau 
hyperphosphorylation in Alzheimer’s disease

Cognition↑ Reduces ischemia-induced memory deficit, protects hypoxic astrocytes and oligodendrocyte progenitor cells in acute ischemic 
stroke

Neurodegeneration↓ Impacts the processes of cerebral flow restitution, angiogenesis, and neuroregeneration reducing the effects of ischemia in 
hypoxic–ischemic encephalopathy

GLP-1 Apoptosis↓ Promotes neuroprotective, neuromodulatory, and antiapoptotic activities.

Inflammation↓ Lowers microglial activation and the release of M1 macrophages

Cognition↑ Promotes synaptogenesis, preserves synapses, increases hippocampal synaptic plasticity, and improves learning and memory

Synaptogenesis↑ Promotes neurite development and synaptogenesis shielding synapses from amyloid and oxidative damage.

Neuroprotection↑ Reduces neurological impairments

G-CSF Cell survival↑
Apoptosis↓

Regulates hematopoietic cell proliferation, differentiation, and survival via activating the Janus kinase/STAT, Ras/MAPK, and 
AKT/PI3K pathways

Neuroinflammation↓

Regeneration↑

Increases neutrophil chemotaxis and phagocytosis

Neurotrophic effects↑ Stimulates monocytes to produce IL-10, mobilizes T helper type 2 cells, and promotes dendritic cells

Neurogenesis↑ Releases enhanced neurogenesis around Aβ plaques and restores the neurological function of Alzheimer’s disease
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Peptides Role in neuroprotection Function

OXT Neuroprotection↑ Mediates social neuroprotection, antiapoptotic, and antioxidative actions

Neural growth↑

Neurogenesis↑

Controls the immunological and autonomic nervous systems

Brain development↑ Regulates the microglial reactivity in the growing brain to diminish activated microglia in the hippocampus and amygdala

Cognition↑ Lowers anxiety, depression, and repetitive behavior and improves social contact

Neurodegeneration↓

Neuroinflammation↓

Protects dopaminergic neurons from rotenone-induced injury and restores

EPO: erythropoietin, GLP-1: glucagon-like peptide-1, G-CSF: granulocyte colony-stimulating factor, OXT: oxytocin.
↑: enhance.
↓: decrease.

Table 1. 
An overview of the roles and effects of peptides in neuroprotection.
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Vonsattel grades (grades 2–4) that had been immunohistochemically processed 
showed a selective 45% loss of OXT neurons and smaller cell sizes in the remain-
ing OXT neurons [93]. Individuals with the mutant HTT gene had a significant 
38% reduction in OXT cerebrospinal fluid levels, according to a recent study [94]. 
Patients with motor manifest and premanifest Huntington’s disease have been found 
to have a positive correlation between OXT plasma levels and depression in a clinical 
study [95]. Additionally, a selective OXT loss in HD, ALS, and FTD has been linked 
to hypothalamic pathology [96]. OXT’s anti-inflammatory and neuroprotective 
effects suggest that it may represent a possible therapeutic approach for the treat-
ment of neurodegenerative and neurodevelopmental disorders.

Table 1 summarizes the functions and neuroprotective properties of peptides 
(EPO, GLP-1, G-CSF, and OXT).

6. Conclusion

Although neurodegenerative disorders are pathological conditions linked to aging, 
neurodegeneration frequently goes undetected for a long time and neuronal death 
happens gradually over the course of a lifetime before the first clinical signs can be 
observed. Increasing preclinical and clinical evidence demonstrating the efficacy 
of EPO, GLP-1, G-CSF, and OXT in treating various brain diseases shows that these 
molecules are versatile and have strong immunomodulatory, anti-inflammatory, anti-
apoptotic, and neuroprotective properties. Given their beneficial effects on the brain, 
immunological system, reproductive system, and autonomic nervous system, these 
peptides hold promise as potential future treatments for neurodegenerative disorders.
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