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Chapter

Accident Prediction Modeling
Approaches for European Railway
Level Crossing Safety
Ci Liang and Mohamed Ghazel

Abstract

Safety is a core concern in the railway operation. Particularly, in Europe, level
crossing (LX) safety is one of the most critical issues for railways. LX accidents often
lead to fatalities and weighted injuries and seriously hamper railway safety reputation.
Moreover, according to statistics, collisions between trains and motorized vehicles
contribute most to LX accidents. With this in mind, we will elaborate on accident
prediction modeling for train-vehicle collisions at LXs in this chapter. The methods
and findings discussed in this chapter will offer an in-depth insight for interpreting
significant aspects underlying collision occurrence and facilitate identifying technical
countermeasures to improve LX safety.

Keywords: level crossing safety, train-vehicle collisions, accident prediction
modeling, nonlinear least-squares method, negative binomial regression method,
Poisson regression method, zero-inflated Poisson regression method, zero-inflated
negative binomial regression method, model performance evaluation

1. Introduction

The level crossing (LX) is railway property upon which road users are given
permission to cross [1]. Accidents at LXs give rise to serious material and human
damage, and the majority of accidents are caused by vehicle driver violations. As
demonstrated by accident statistics, LX safety is one of the most critical issues that
railway stakeholders need to deal with [2, 3]. In 2012, there were more than
118,000 LXs in the 28 countries of the European Union (E.U.) [4]. In some E.U.
countries, LX accidents account for up to 50% of railway accidents [5]. In the UK,
LXs account for 11.8 fatalities and weighted injuries on average per year, comprising
8.4% of the total system risk for the railway network [6]. There were 49 collisions
between road vehicles and trains at LXs in Australia in 2011 [7]. In France, the
railway network incorporates more than 18,000 LXs for 30,000 km of railway lines
and around 13,000 LXs show heavy road and railway traffic [8]. In 2016, 111 train-
vehicle collisions at French LXs led to 31 deaths [9]. This number was half the total
number of collisions per year at LXs a decade ago, but still too large [10]. Due to
nondeterministic causes, complex operation background, and the lack of thorough
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statistical analysis based on detailed accident/incident data, the risk assessment of LXs
remains a challenging task. Therefore, there is a pressing need for a series of thorough
analyses to understand the potential reasons for these accidents and to identify prac-
tical countermeasures to prevent accidents at LXs, thus significantly reducing the LX
accidents.

In recent years, the Poisson regression model, negative binomial (NB)
regression model, and other variants of the Poisson regression model [11, 12] have
gained popularity to deal with risk/accident statistics. Ref. [13] adopted the expres-

sions of the estimated expectation value λ̂ as shown in Eq. (1) corresponding to the
Poisson regression and NB regression models, respectively. Ref. [14] employed the
variants of Poisson regression model, namely, the zero-inflated Poisson (ZIP) model
and the hurdle Poisson model, to deal with LX accident prediction involving the data
in North Dakota. Ref. [15] compared the zero-inflated negative binomial (ZINB)
model with the USDOT model [16] by using the LX accident data from Illinois, in
terms of accident prediction accuracy. The results of this study show that the ZINB
model has higher accuracy of prediction. It is worth noticing that the expressions of

estimated λ̂ as shown in Eq. (1) are not appropriate in our current study, since they are
limited to handling zero observations and some impacting variables should not be in

the exponential form. Ref. [17] developed another model of λ̂ as shown in Eq. (2). In
this model, the product of the average daily road traffic V and the average daily
railway traffic T (known as the conventional traffic moment) is adopted. However,
using the conventional traffic moment hinders improving the accuracy of the predic-
tion model:

λ̂Poi ¼ exp
X

m

j¼1

β0 þ βjxj

 !

,

λ̂NB ¼ exp
X

m

j¼1

β0 þ βjxj þ ε

 !

,

(1)

where β is the estimated regression coefficient, x is the impacting variable, and ε is
the gamma-distributed error in NB regression model:

λ̂ ¼ V � Tð Þβ1 exp
X

m

j¼1

βjxj þ σ

 !

, (2)

where σ ¼ β0 in Poisson regression model or σ ¼ β0 þ ε in NB regression model.
Based on these investigations, it is clear that there is a pressing need for an

appropriate accident prediction model that should comprehensively consider contrib-
uting factors toward LX safety. Moreover, such a model should have high predictive
accuracy. Therefore, in the present study, a new accident prediction model is devel-
oped to predict the accident frequency at LXs. Specifically, we focus on the SAL2 type
of LX (i.e., an automated LX system with two half barriers and flashing lights), which
is the most widely used type of LX in France and contributed most to the total number
of accidents at French LXs from 1974 to 2014.
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2. Method

In this section, an advanced accident prediction model is developed, which
enables to rank risky LXs accurately and identify the significant impacting parameters
efficiently. The model considers the average daily road traffic, the average daily
railway traffic, the annual road accidents, the vertical road profile, the horizontal road
alignment, the road width, the crossing length, the railway speed limit, and the
geographic region. The nonlinear least-squares (NLS) method, Poisson regression
method, NB regression method, ZIP regression method, and ZINB regression method
are employed to estimate the respective coefficients of parameters in the prediction
model.

2.1 Data sources and coding

The dataset used in our study, which cover SAL2 LXs in 21 administrative regions
in mainland France from 2004 to 2013, has been provided by SNCF Réseau (the
French national railway infrastructure manager). Moreover, the dataset includes
10 years of information about annual LX accident frequency, annual roadway accident
statistics and railway, roadway, and LX characteristics. In total, there are 8332 public
SAL2 LXs involved in our investigation. The impacting parameters relevant to LX
accidents considered in our investigation can fulfill the following characteristics: (1)
important in determining accident frequency, (2) more permanent in nature (e.g.,
sight obstruction noted as a problematic factor due to involved alterable construction
topography, vegetation, and other environmental elements), and (3) not accident-
dependent [18]. The statistical characterization of parameters considered in this
investigation are shown in Table 1. It is worth noticing that the road accident factor is
reflected by the ratio of the annual number of road accidents in a given year to the
average number of road accidents per year over the period of 10 years considered,
while the region risk factor is reflected by the general accident frequency per SAL2 in
the corresponding region. Overall, the data coding is shown in Table 2.

2.2 Advanced accident prediction model

Here, we define that the formula of the conventional traffic moment is given as:
Traffic moment = Road traffic frequency � Railway traffic frequency [19]. However,
based on some previous analyses [20], we adopt a variant called “corrected moment,”

or CM for short. CM ¼ Va � Tb, where aþ b ¼ 1 and the optimal value of a in terms
of fitting is calculated to be a ¼ 0:354 according to the statistical analysis performed

by SNCF Réseau [21]. Therefore, we consider V0:354 � T0:646
� �

as an integrated

parameter that reflects the combined exposure frequency of both railway and road
traffic.

The developed advanced model takes into account various variables as interpreted
in Table 2. The general form of the model is shown as follows:

λ10Y ¼ K � FRAcc � Va � Tb
� �

� exp CProfile � IProfile þ CAlign � IAlign þ CWid

�

�Widþ CLeng � Leng þ CRSL � RSLþ CReg � FReg

�

,

(3)
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where λ10Y represents the annual accident frequency at a given SAL2 for a
period of 10 years; FRAcc is the road accident factor, which is a time-dependent
variable and reflects the variation of annual road accidents as time advances; K is the
coefficient of FRAcc; V denotes the average daily road traffic; T denotes the average
daily railway traffic; IProfile is the profile indicator and CProfile is the coefficient of IProfile;

IAlign is the alignment indicator and CAlign is the coefficient of IAlign; Wid is the LX

width and CWid is the coefficient of Wid; Leng is the crossing length and CLeng is the
coefficient of Leng; RSL is the railway speed limit and CRSL is the coefficient of RSL;
FReg is the region factor and CReg is the coefficient of FReg. Note that this model
does not only rank risky LXs accurately but also allow for identifying significant
parameters efficiently.

2.2.1 Regression approaches

In this section, several regression approaches are adopted to estimate the
coefficients associated with the parameters of our model. The nonlinear least-squares
(NLS) technique and Gauss-Newton algorithm [22] are firstly considered to estimate
the variable coefficients in our model. Considering a fitting model function
y ¼ f x, βð Þ, where variable x depends on a vector of l parameters:
β ¼ β1, β2, … , βlð Þ. The goal is to find the vector βwhich can let the model function
fit best the actual observed data in the least-squares sense. In other words, minimize
the sum of residual squares S expressed as follows:

Parameter Description Mean Std. dev.

Railway traffic

characteristics

Average daily railway

traffic

The average number of trains crossing the LX daily; 26.1 30.2

Railway speed limit The maximum permission speed of train within the LX

section;

92.5 42.4

Roadway traffic

characteristics

Average daily road

traffic

The average number of road vehicles crossing the LX daily; 826.8 1.8e+03

Annual road accidents The number of road accidents in a given year; 7.1e+04 9.7e+03

LX characteristics

Alignment Horizontal road alignment shape: “straight”, “curve,”

or “S”;

N/A N/A

Profile Vertical road profile shape: “normal”, “hump,” or cavity”; N/A N/A

Length The entering road width; 9.7 3.9

Width The distance that road vehicles need to cross through

the LX;

5.5 1.4

Region The region of the LX considered; N/A N/A

Table 1.
Statistical characterization of parameters considered.
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S ¼
X

m

i¼1

r2i , m≥ l, (4)

where ri is the residual between the fitting model estimation and the actual
observation, ri ¼ yi � f xi, βð Þ.

The minimum value of S is obtained by solving the gradient function
∂S=∂βj ¼ 0, i.e.,

∂S=∂βj ¼ 2
X

i

ri∂ri=∂βj ¼ 0,

βj ≈ βkþ1
j ¼ βkj þ Δβj,

(5)

where k is the iteration number and Δβj is the shift parameter.

At each iteration step, the model is linearized by approximation to the first-order

Taylor series expansion about βk:

f xi, βð Þ≈ f xi, β
k

� �

þ
X

l

j¼1

βj � βkj

� �

∂f xi, β
k

� �

=∂βj ≈ f xi, β
k

� �

þ
X

l

j¼1

JijΔβj, (6)

where Jij is the element of Jacobian matrix J and ∂ri=∂βj ¼ �Jij.

Therefore, ri can be rewritten as:

Parameter Data coding

Railway traffic

characteristics

Average daily railway traffic Numerical, used directly;

Railway speed limit Numerical, used directly;

Roadway traffic

characteristics

Average daily road traffic Numerical, used directly;

Annual road accidents Road accident factor: Annual road accidents in a given year/Average road

accidents per year over the period observed;

LX characteristics

Alignment Alignment indicator: 0, 1, and 2 represent “straight”, “curve,” and “S,”

respectively;

Profile Profile indicator: 0 and 1 represent “normal” and “hump or cavity,”

respectively;

LX width Numerical, used directly;

Crossing length Numerical, used directly;

Region Region risk factor, highlighting the general LX-accident-prone region: The

number of SAL2 accidents over the observation period in the region considered/

The number of SAL2 LXs in the region considered;

Table 2.
Parameters considered and data coding.
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ri ¼ Δyi �
X

l

s¼1

JisΔβs,

Δyi ¼ yi � f xi, β
k

� �

:

(7)

By substituting the above expressions into the gradient equation in Eq. (5),
we obtain the normal equation and its matrix notation:

X

m

i¼1

X

l

s¼1

JijJisΔβs ¼
X

m

i¼1

JijΔyi,

JTJ
� �

Δβ ¼ JTΔy:

(8)

For an NLS model, S should be modified as follows:

S ¼
X

m

i¼1

W iir
2
i , m≥ l: (9)

Therefore, the matrix notation of normal equation for an NLS model is expressed
as follows:

JTWJ
� �

Δβ ¼ JTWΔy: (10)

These aforementioned equations form the basis of the Gauss-Newton algorithm for
solving an NLS problem.

In fact, the Poisson regression model shown as Eq. (11) is a natural choice for
modeling accident occurrence:

Poi X ¼ kð Þ ¼
λke�λ

k!
, k ¼ 0,1,2, … , (11)

where Poi X ¼ kð Þ is the probability of k accidents occurring, k∈, and λ is the
expectation value of the number of accidents.

However, [23] indicates that accident frequency is likely to be over-dispersed
(see Eq. (12)) and suggests using the negative binomial (NB) regression model as an
alternative to the Poisson model:

VAR Xð Þ

¼ E Xð Þ

>E Xð Þ, for over‐dispersed

<E Xð Þ, for under‐dispersed

:

8

>

<

>

:

(12)

The NB model as a special case of Poisson-Gamma mixture model is a variant of
the Poisson model designed to deal with over-dispersed data [11, 24, 25]. The
over-dispersion could come from several possible sources, e.g., omitted variables,
uncertainty in exposure data, covariates, or nonhomogeneous LX environment [26].
The NB model considered in this study has the following expression:

PNB X ¼ kð Þ ¼
Γ kþ 1

α

� �

Γ kþ 1ð ÞΓ 1
α

� �

1

1þ αλ

� �1=α
αλ

1þ αλ

� �k

, k ¼ 0,1,2, … , (13)
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where PNB Xð Þ is the probability of k accidents occurring, k∈, α is the dispersion
parameter, and λ is the expectation of the number of accidents.

The relationship between the mean value and the variance in the NB model is
given as follows:

VAR Xð Þ ¼ αE Xð Þ2 þ E Xð Þ, (14)

if α<0, there is an under-dispersion; if α>0, there is an over-dispersion; in the
case where α ¼ 0, the NB model reduces to the Poisson model.

In practice, the count data may contain extra zeros relative to the Poisson or NB
distribution. In this case, the ZIP or ZINB regression model is useful for analyzing
such data [27]. The ZIP model is expressed as follows:

PZIP X ¼ kð Þ ¼
ωþ 1� ωð Þ exp �λð Þ, for k ¼ 0

1� ωð Þ exp �λð Þλk=k!, for k>0
,

�

(15)

where PZIP X ¼ kð Þ is the probability of k accidents occurring, k∈, λ is the
expectation value of the number of accidents, and log ω

1�ω

� �

¼ z0γ is the ZI link

function that z0 is the ZI covariate and γ is the corresponding ZI coefficient. The mean
value and variance of ZIP model are E Xð Þ ¼ 1� ωð Þλ and VAR Xð Þ ¼ 1� ωð Þλ 1þ ωλð Þ.

The ZINB model is expressed as follows:

PZINB X ¼ kð Þ ¼

ωþ 1� ωð Þ 1þ αλð Þ�1=α, for k ¼ 0

1� ωð Þ

Γ kþ
1

α

� �

Γ kþ 1ð ÞΓ
1

α

� �

1

1þ αλ

� �1=α
αλ

1þ αλ

� �k

, for k>0
,

8

>

>

>

>

>

<

>

>

>

>

>

:

(16)

where PZINB X ¼ kð Þ is the probability of k accidents occurring, k∈ and λ is the
expectation value of the number of accidents. The mean value and variance of ZINB
model are E Xð Þ ¼ 1� ωð Þλ and VAR Xð Þ ¼ 1� ωð Þλ 1þ ωλþ αλð Þ. The ZINB reduces
to the ZIP in the limit α ! 0.

However, the NB and ZINB models are limited to handling under-dispersed data
(α<0) [11]. That is why [13] proposed the Gamma model to handle under-dispersed
samples. The Gamma model is given as follows:

PG X ¼ kð Þ ¼ Gamma βk, λð Þ � Gamma β kþ 1ð Þ, λð Þ, (17)

where PG Xð Þ is the probability of k accidents occurring, k∈, λ is the expectation
of the number of accidents, and β is the dispersion parameter. If β> 1, there is an
under-dispersion; while β< 1, there is an over-dispersion and if β ¼ 1, the Gamma
model reduces to the Poisson model. However, the Gamma model shown in Eq. (18) is
limited to the time-dependent observation assumption and zero observations, since
general Γ xð Þ restricts discrete responses to positive values:

Gamma βk, λð Þ ¼

1, for k ¼ 0
1

Γ βkð Þ

ðλ

0
uβk�1e�udu

, for k>0 :

8

>

>

>

<

>

>

>

:

(18)
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According to the above discussion, the restriction between mean value and vari-
ance can be used to identify an appropriate regression model. Therefore, we firstly
make preliminary variance analysis by means of group classification. Namely, the
annual accidents at a given SAL2 during the 10 years were divided into 100 groups
with the same number of samples in each group. Then, the variance and mean value of
accidents in each group were calculated, respectively, to analyze the relationship
between the group variance and the group mean value. The variance analysis shows
that the variance and mean value are very close to each other. Hence, we performed
meticulous analyses to assess the NLS regression, the Poisson regression, the ZIP
regression, the NB regression, and the ZINB regression methods with regard to SAL2
LXs in our accident dataset so as to identify which model is more effective.

2.2.2 Regression modeling results

NLS regression:
When applying the NLS regression, the form of λ10Y is given by Eq. (3).

The estimated coefficients computed by NLS regression are provided in Table 3.
∣t� statistic∣> 1:96 is introduced to identify the significant parameters corresponding
to a 95% confidence level. As a result, the railway speed limit, the average daily
railway traffic, the average daily road traffic, the annual road accidents, the
LX-accident-prone region, the road alignment, the LX width, and the crossing length
have been shown to have significant and positive influence on SAL2 accident
frequency. However, the test shows that the road profile is not a significant factor
(∣t� statistic∣ ¼ 0:635< < 1:96); thus, the impact of road profile could be neglected.
Moreover, the coefficients of the considered variables with the exponential form can
reflect the sensitive degrees of the SAL2 accident frequency to these variables,
respectively. According to these sensitive degrees (rank indicated in brackets), the
LX-accident-prone region factor is the most sensitive contributor among these
variables.

In order to assess the predictive accuracy of accident occurrence estimated by
the NLS regression model λ10Y combined with the NB and ZINB distributions (see
Section 3.1), we adopt the maximum likelihood estimation (MLE) method to estimate
the dispersion parameter α of the dataset [28]. As expressed by Eq. (19) and Eq. (20),
the values of α in NB and ZINB distributions are estimated, respectively, using
R language to solve ∂l=∂α ¼ 0:

Parameter Coefficient Estimated value Standard error t-statistic Significant

K 2.703e-05 5.078e-06 5.322 �

IProfile CProfile 3.626e-02 5.706e-02 0.635

IAlign CAlign 3.427e-01 (2) 2.942e-02 11.648 �

Wid CWid 9.847e-02 (3) 1.494e-02 6.589 �

Leng CLeng 2.084e-02 (4) 4.284e-03 4.865 �

RSL CRSL 3.089e-03 (5) 7.586e-04 4.072 �

FReg CReg 4.962e-01 (1) 1.722e-01 2.882 �

Table 3.
Results of the λ10Y NLS regression model.
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l αð ÞNB ¼ ln
Y

n

i

PNB Xi ¼ yi
� �

 !

¼
X

yi ln λið Þ � yi þ α�1
� �

ln 1þ αλið Þ þ
X

yi�1

v¼0

ln 1þ αvð ÞÞ,

 

(19)

l αð ÞZINB ¼ ln
Y

n

i

PZINB Xi ¼ yi
� �

 !

¼

P

ln ωið Þ þ 1� ωið Þ 1
1þαλi

� �1=α
, ifyi ¼ 0

P

ln ωið Þ þ lnΓ
1

α
þ yi

� �

� lnΓ 1þ yi
� �

� lnΓ
1

α

� �

þ
1

α
ln

1

1þ αλi

� �

þ yi ln 1�
1

1þ αλi

� �

, ifyi >0

:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(20)

Poisson regression:
When applying the Poisson regression, the general form of λ10Poi is

given by e
Pm

j¼1
β0þβjxj . Therefore, we need to transform Eq. (3) into the following

expression:

λ10Poi ¼

0, if FRAcc ¼ 0, V ¼ 0 or T ¼ 0

exp K1 þ CF � FRAcc þ CCM � CMþ CProfile � IProfile þ CAlign � IAlignþ
�

CWid �Widþ CLeng � Leng þ CRSL � RSLþ CReg � FRegÞ, ifFRAcc 6¼ 0,

V 6¼ 0, and T 6¼ 0

8

>

>

>

<

>

>

>

:

(21)

The results estimated through the Poisson regression approach are shown in
Table 4. According to these results, being similar to the NLS case, one can notice that
the road profile is not significant (∣t� statistic∣ ¼ 0:621< < 1:96). On the other hand,
with an exponential form, the impact of road accident factor FRAcc is weakened,
namely the impact of FRAcc with an exponential form is not significant when using
Poisson regression approach (∣t� statistic∣ ¼ 1:913< 1:96). Furthermore, according to

Parameter Coefficient Estimated value Standard error t-statistic Significant

K1 �9.562 0.440 �21.714 �

FRAcc CF 0.636 0.332 1.913

CM CCM 0.005 (6) 2.949e-04 17.144 �

IProfile CProfile �0.076 0.122 �0.621

IAlign CAlign 0.326 (2) 0.069 4.756 �

Wid CWid 0.206 (3) 0.026 8.051 �

Leng CLeng 0.030 (4) 0.009 3.232 �

RSL CRSL 0.011 (5) 0.001 7.895 �

FReg CReg 1.725 (1) 0.334 5.165 �

Table 4.
Regression results of λ10Poi.

9

Accident Prediction Modeling Approaches for European Railway Level Crossing Safety
DOI: http://dx.doi.org/10.5772/intechopen.109865



the sensitive degrees of these parameters with the exponential form (rank indicated in
brackets), once again the LX-accident-prone region factor is the most sensitive con-
tributor among these parameters.

NB regression:
When applying the NB regression, the general form of λ10NB is given by

e
Pm

j¼1
β0þβjxjþε

, and it still requires to be expressed by Eq. (21). The dispersion
parameter α is estimated at 3.2394 in our study through the iterative estimation
algorithm automatically. The estimated results of the NB regression are shown in
Table 5. According to the results associated with the NB regression approach, it is
worth noticing that the road profile is still not significant
(∣t� statistic∣ ¼ 0:850< < 1:96). One can also notice that the impact of FRAcc with an
exponential form is not significant as well, when using the NB regression approach
(∣t� statistic∣ ¼ 1:793< 1:96). Moreover, according to the sensitive degrees of these
parameters with the exponential form (rank indicated in brackets), the LX-accident-
prone region factor is still the most sensitive contributor among these parameters.

ZIP regression:
When applying the ZIP regression, the general form of λ10ZIP is given by

e
Pm

j¼1
β0þβjxj , and it still requires to be expressed by Eq. (21). The estimated results of

the ZIP regression are shown in Table 6 and (for nonzero observations) and Table 7
(for zero-inflation observations).

According to the results associated with the ZIP regression approach, it is worth
noticing that, as for the nonzero related model, FRAcc, IProfile, IAlign, and Leng are not

significant (< 1:96). Moreover, according to the sensitive degrees of other significant
parameters with the exponential form (rank indicated in brackets), the LX-accident-
prone region factor is still the most sensitive contributor among these parameters.
While as for the zero-inflation model, only the Wid, RSL, and FReg are significant
(> 1:96).

ZINB regression:
When applying the ZINB regression, the general form of λ10ZINB is given by

e
Pm

j¼1
β0þβjxjþε

, and it still requires to be expressed by Eq. (21). The values of dispersion
parameter α for nonzero observations and zero-inflation observations are estimated at

Parameter Coefficient Estimated value Standard error t-statistic Significant

K1 �9.424 0.457 �20.615 �

FRAcc CF 0.616 0.343 1.793

CM CCM 0.006 (6) 3.762e-04 16.493 �

IProfile CProfile �0.107 0.126 �0.850

IAlign CAlign 0.298 (2) 0.072 4.159 �

Wid CWid 0.199 (3) 0.028 7.173 �

Leng CLeng 0.031 (4) 0.010 3.201 �

RSL CRSL 0.010 (5) 0.001 7.034 �

FReg CReg 1.508 (1) 0.351 4.294 �

Table 5.
Regression results of λ10NB.
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3.8102 and 1.4069, respectively, in our study through the iterative estimation algo-
rithm automatically. The estimated results of the ZINB regression are shown in
Table 8 (for nonzero observations) and Table 9 (for zero-inflation observations).
According to the results associated with the ZINB regression approach, it is worth
noticing that, as for the nonzero related model, CM, IAlign, and Wid are significant

(> 1:96). One can also notice that according to the sensitive degrees of the three
parameters (rank indicated in brackets), the LX width is the most sensitive contribu-
tor among them. While as for the zero-inflation model, only the FRAcc and CM are
significant (> 1:96).

3. Model performance evaluation and discussion

In this section, we will assess the performance of our prediction models while
determining an appropriate statistical distribution to be combined with the models, in
such a way as to ensure the most accurate estimation of the probability of accidents

Parameter Coefficient Estimated value Standard error t-statistic Significant

K1 �1.128e+01 7.586e-01 �14.867 �

FRAcc CF 3.717e-01 4.202e-01 0.885

CM CCM 6.221e-03 (4) 4.336e-04 14.347 �

IProfile CProfile �1.855e-01 1.513e-01 �1.226

IAlign CAlign 1.483e-01 8.786e-02 1.688

Wid CWid 4.397e-01 (2) 6.625e-02 6.636 �

Leng CLeng 3.971e-02 1.725e-02 1.904

RSL CRSL 1.432e-02 (3) 2.069e-03 6.921 �

FReg CReg 2.319 (1) 6.655e-01 3.484 �

Table 6.
Count model regression results of λ10ZIP.

Parameter Coefficient Estimated value Standard error t-statistic Significant

K1 �1.574e+01 4.276 �3.680 �

FRAcc CF �1.104 1.646 �0.671

CM CCM 1.584e-03 1.450e-03 1.093

IProfile CProfile �4.355e-01 6.531e-01 0.505

IAlign CAlign �1.185 6.141e-01 �1.931

Wid CWid 1.024 (2) 2.241e-01 4.571 �

Leng CLeng 8.231e-02 4.190e-02 1.964

RSL CRSL 4.117e-02 (3) 1.449e-02 2.840 �

FReg CReg 5.861 (1) 1.748 3.353 �

Table 7.
Zero-inflation model regression results of λ10ZIP.
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occurring at a given SAL2 in a given year. The Bayesian information criterion (BIC)
[29], Akaike’s information criterion (AIC) [30], the Pearson chi-square statistic (PCS)
test [31], and the degree of freedom (DF) are used to evaluate the goodness of fit
(GOF) of the model. They can be respectively expressed as follows:

BIC ¼ nþ n� ln 2πð Þ þ n� ln RSS=nð Þ þ lþ 1ð Þ ln nð Þ, (22)

AIC ¼ nþ n� ln 2πð Þ þ n� ln RSS=nð Þ þ 2 lþ 1ð Þ, (23)

PCS ¼
X

n

i¼1

Oi � λið Þ2

λi
, (24)

DF ¼ n� lþ 1ð Þ, (25)

where RSS is the sum of the squares of residuals between the annual accident
frequencies observed and the annual accident frequencies estimated, n is the sample

Parameter Coefficient Estimated value Standard error t-statistic Significant

K1 �7.128 0.734 �9.709 �

FRAcc CF 0.671 0.413 1.624

CM CCM 4.486e-03 (3) 4.991e-04 8.990 �

IProfile CProfile �5.886e-02 0.144 �0.406

IAlign CAlign 0.371 (1) 8.274e-02 4.495 �

Wid CWid 0.145 (2) 4.558e-02 3.175 �

Leng CLeng 3.219e-03 1.203e-02 0.268

RSL CRSL 2.558e-03 1.954e-03 1.309

FReg CReg 0.795 0.446 1.783

Table 8.
Count model regression results of λ10ZINB.

Parameter Coefficient Estimated value Standard error t-statistic Significant

K1 �4.036 2.190 �6.709 �

FRAcc CF 0.260 (1) 1.456 2.179 �

CM CCM 6.685e-02 (2) 1.838e-02 3.636 �

IProfile CProfile 0.705 0.544 1.296

IAlign CAlign 0.535 0.328 1.632

Wid CWid 8.873e-02 0.180 0.491

Leng CLeng 0.114 6.639e-02 1.725

RSL CRSL 5456e-03 6.629e-03 0.823

FReg CReg 1.632 1.679 0.972

Table 9.
Zero-inflation model regression results of λ10ZINB.
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size, l is the number of independent exponential parameters, λi is the annual accident
frequency expected, and Oi is the annual accident frequency observed.

The BIC and AIC are used to test the relative quality of models for a given dataset.
Smaller BIC and AIC values indicate a better model fitting. The PCS test is used to
determine if there is a significant difference between the values expected and the
values observed. The PCS is roughly equal to DF if the model fits the data perfectly
without any dispersion. Namely, the closer the PCS is to the DF, the better the model
fits the data [14].

The log-likelihood statistic test (LL) is adopted to assess the GOF of the accident
frequency prediction model combined with a statistical distribution. The larger the
LL, the more preferred the model [14]. The mathematical expression of the LL is
given as follows:

LL ¼
X

n

i¼1

ln P̂i

� �

, (26)

where n is the sample size and P̂i is the estimated probability of accident frequency

observed. P̂i is computed respectively according to the accident frequency prediction
model combined with the Poisson or the NB distribution.

3.1 Model performance comparison among variants of λ10Y

The results of AIC, BIC, and PCS statistical tests are shown in Table 10 with the
goodness ranked in brackets. The following findings are obtained: 1) considering AIC
and BIC, the λ10Y model gives better results, since the AIC and BIC values
corresponding to the λ10Y model are much smaller than those for the λ10Poi, λ10NB,
λ10ZIP, and λ10ZINB models; 2) in terms of PCS test, the λ10Y model is also the most
effective one, since the PCS of λ10Y model is closer to DF (DFs of λ10Y , λ10Poi, λ10NB,
λ10ZIP, and λ10ZINB are considerably approximative).

LL test results are shown in Table 10. One can notice that, for the λ10Y model
combined with either the Poisson or NB distribution, its GOFs are significantly better
than λ10Poi and λ10NB models’ GOFs according to the LL test. Furthermore, the GOF of
λ10Y combined with the NB distribution (NB-λ10Y) is better than when combined with
the Poisson distribution (POI-λ10Y).

Test POI-λ10Y NB-λ10Y λ10Poi λ10NB λ10ZIP λ10ZINB

AIC �190,744 (1) �190,744 (1) �187,804 (5) �189,942 (2) �188,312 (4) �189,826 (3)

BIC �190,670 (1) �190,670 (1) �187,720 (5) �189,858 (3) �188,176 (4) �189,935 (2)

PCS 65,796 (1) 65,796 (1) 125,495 (5) 123,715 (4) 118,185 (3) 110,496 (2)

DF 83,313 83,313 83,311 83,311 83,311 83,311

LL �2599 (2) �2596 (1) �2732 (6) �2711 (5) �2701 (4) �2631 (3)

Goodness score

(the lower,

the better)

5 4 21 14 15 10

Table 10.
Model GOF comparison among variants of λ10Y .
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3.2 A comparison between λ10Y and two existing reference models

In this section, we compare the present model λ10Y with other two models which
are widely used in existing related works. As mentioned in Section 1, the first widely
used model is given in Eq. (1) [13, 14, 18]. In our study, this model can be specified as
follows:

λTV ¼
exp K2 þ CV � V þ CT � T þ CF � FRAcc þ CProfile � IProfile þ CAlign

�

�IAlign þ CWid �Widþ CLeng � Leng þ CRSL � RSLþ CReg � FReg

�

,
(27)

where the average daily road traffic V and the average daily railway traffic T are
applied separately in exponential form.

The second model as shown in Eq. (2) (e.g., [17, 32]) is specified as Eq. (28) in our
study:

λMon ¼
exp K3 þ CM � ln V � Tð Þ þ CF � FRAcc þ CProfile � IProfile þ CAlign

�

�IAlign þ CWid �Widþ CLeng � Leng þ CRSL � RSLþ CReg � FReg

�

,
(28)

where the conventional traffic moment V � T is applied.
It should be noted that the ZIP and ZINB models were also investigated for λTV and

λMon but resulted in no higher goodness-of-fit values and a quite small number of
significant parameters compared with the Poisson and NB models and, hence, were
not reported in this section. The Poisson and NB regression results of the λTV and λMon

are shown in Tables 11–14, respectively. One can notice that the impacts of road
profile and road accident are still not significant in the λTV and λMon. The AIC, BIC,
PCS, and LL tests and observed/estimated accident frequency comparison are given in
Table 15. According to the quality test results discussed in Section 3.1, the λ10Y
combined with the NB distribution (NB-λ10Y) shows the best prediction performance
among the four investigated combinations. Therefore, we will only compare the NB-

Parameter Coefficient Estimated value Standard error t-statistic Significant

K2 �9.807 0.413 �22.223 �

V CV 1.098e-04 (7) 1.613e-05 6.811 �

T CT 8.777e-03 (6) 1.115e-03 7.869 �

FRAcc CF 0.636 0.333 1.913

IProfile CProfile �1.445e-01 1.209e-01 �1.195

IAlign CAlign 3.319e-01 (2) 6.747e-02 4.919 �

Wid CWid 2.059e-01 (3) 2.483e-02 8.292 �

Leng CLeng 3.952e-02 (4) 7.868e-03 5.024 �

RSL CRSL 1.154e-02 (5) 1.487e-03 7.759 �

FReg CReg 1.750 (1) 3.463e-01 5.053 �

Table 11.
Poisson regression results of λTV .
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Parameter Coefficient Estimated value Standard error t-statistic Significant

K2 �9.882 4.531e-01 �21.810 �

V CV 1.155e-04 (7) 1.683e-05 6.861 �

T CT 9.152e-03 (6) 1.234e-03 7.416 �

FRAcc CF 0.607 3.402e-01 1.784

IProfile CProfile �1.532e-01 1.243e-01 �1.232

IAlign CAlign 3.240e-01 (2) 6.988e-02 4.636 �

Wid CWid 2.212e-01 (3) 2.579e-02 8.575 �

Leng CLeng 3.895e-02 (4) 8.415e-03 4.629 �

RSL CRSL 1.160e-02 (5) 1.529e-03 7.589 �

FReg CReg 1.739 (1) 3.575e-01 4.864 �

Table 12.
NB regression results of λTV .

Parameter Coefficient Estimated value Standard error t-statistic Significant

K2 �11.816 4.540e-01 �26.023 �

ln V � Tð Þ CM 4.036e-01 (2) 2.776e-02 14.538 �

FRAcc CF 6.359e-01 3.325e-01 1.913

IProfile CProfile �6.279e-02 1.205e-01 �0.521

IAlign CAlign 2.875e-01 (3) 6.799e-02 4.228 �

Wid CWid 1.185e-01 (4) 3.296e-02 3.596 �

Leng CLeng 2.213e-02 (5) 9.530e-03 2.322 �

RSL CRSL 8.811e-03 (6) 1.350e-03 6.527 �

FReg CReg 1.446 (1) 3.358e-01 4.307 �

Table 13.
Poisson regression results of λMon.

Parameter Coefficient Estimated value Standard error t-statistic Significant

K2 �11.850 4.628e-01 �26.603 �

ln V � Tð Þ CM 4.034e-01 (2) 2.822e-02 14.297 �

FRAcc CF 6.368e-01 3.382e-01 1.883

IProfile CProfile �7.103e-02 1.230e-01 �0.578

IAlign CAlign 2.848e-01 (3) 6.960e-02 4.092 �

Wid CWid 1.214e-01 (4) 3.361e-02 3.612 �

Leng CLeng 2.204e-02 (5) 9.752e-03 2.260 �

RSL CRSL 8.892e-03 (6) 1.368e-03 6.500 �

FReg CReg 1.480 (1) 3.428e-01 4.316 �

Table 14.
NB regression results of λMon.
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λ10Y with the λTV and λMon combined with the Poisson and NB distributions, respec-
tively, in the following content.

As shown in Table 15, the AIC, BIC, and PCS results related to the λ10Y model are
better than those for the λTV and λMon models. Moreover, in terms of the LL test, the
NB-λ10Y is still the most preferred one.

4. Conclusions

Based on our study, some remarks need to be highlighted as follows:

1.The corrected traffic moment proposed is more effective in estimating
automobile-involved LX accidents frequency compared with the conventional
traffic moment, single average daily railway traffic or single average daily road
traffic. It is worth mentioning that the average daily railway traffic with a power
of 0.646 has a more decisive impact on the LX accident frequency than the
average daily road traffic with a power of 0.354. Moreover, the higher the
combined exposure of railway and roadway traffic, the higher the likelihood of
an accident occurring.

2.According to the analyses above, the form of λ10Y highlights the impact of road
accident factor FRAcc, while the impact of FRAcc is neglected in λ10Poi, λ10NB, λTV ,

and λMon models (see Tables 4, 5, 11–14). The impact of road accidents on the
risk level was likely to be ignored in the previous studies related to LX safety
analysis.

3.We originally introduce the region LX-accident-prone factor (see Table 2) in
this study to interpret the variation of LX accident statistics with regard to
various regions. According to the sensitive degrees of variables ranked in
Table 3, among the LX characteristics, the risk of LX accidents is most sensitive
to the region LX-accident-prone factor. However, in many past studies, the
impact of LX local region is neglected. In fact, the regional accident history varies
from one region to another, which correspondingly has varying degrees of
impact on the LX accident frequency in different regions.

Test NB-λ10Y POI-λTV NB-λTV POI-λMon NB-λMon

AIC �190,744 (1) �177,914 (5) �179,842 (4) �183,714 (3) �186,532 (2)

BIC �190,670 (1) �177,610 (5) �179,738 (4) �183,587 (3) �186,191 (2)

PCS 65,796 (1) 121,715 (5) 119,133 (4) 118,511 (3) 115,634 (2)

DF 83,313 83,310 83,310 83,311 83,311

LL �2596 (1) �2722 (5) �2703 (3) �2705 (4) �2683 (2)

Goodness score

(the lower, the better) 4 20 15 13 8

Table 15.
Model GOF comparison among λ10Y , λTV , and λMon.
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To sum up, the develop model λ10Y has trustworthy goodness of fit. Moreover, it
shows relatively high prediction accuracy for LX accident frequency prediction when
combined with the NB distribution.
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