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Chapter

Solving and Algorithm for
Least-Norm General Solution to
Constrained Sylvester Matrix
Equation
Abdur Rehman and Ivan I. Kyrchei

Abstract

Keeping in view that a lot of physical systems with inverse problems can be written
by matrix equations, the least-norm of the solution to a general Sylvester matrix
equation with restrictions A1X1 ¼ C1,X1B1 ¼ C2, A2X2 ¼ C3,X2B2 ¼ C4, A3X1B3 þ
A4X2B4 ¼ Cc, is researched in this chapter. A novel expression of the general solution
to this system is established and necessary and sufficient conditions for its existence
are constituted. The novelty of the proposed results is not only obtaining a formal
representation of the solution in terms of generalized inverses but the construction of
an algorithm to find its explicit expression as well. To conduct an algorithm and
numerical example, it is used the determinantal representations of the Moore–Penrose
inverse previously obtained by one of the authors.

Keywords: linear matrix equation, generalized Sylvester matrix equation, Moore-
Penrose inverse

1. Introduction

Standardly, we state  and , respectively, for the complex and real numbers. Let


m�n denote the set of all m� n matrices over , and 
m�n
r stay for a subset of m� n

complex matrices with rank r. The rank of A is denoted by both symbols r Að Þ and
rankA. The (complex) conjugate transpose matrix of A∈

m�n is written by A ∗ and a
matrix A∈

n�n is said to be Hermitian if A ∗ ¼ A. An identity matrix with feasible
shape is denoted by I.

Definition 1.1. The Moore–Penrose (MP-) inverse of A∈
m�n, denoted by A†, is

defined to be the unique solution X to the following four Penrose equations

AXA ¼ A, (1)

XAX ¼ X, (2)

AXð Þ ∗ ¼ AX, (3)

XAð Þ ∗ ¼ XA: (4)
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Matrices satisfying the eqs. (1) and (2) are known as reflexive inverses, denoted
by Aþ.

In addition, LA ¼ I � A†A and RA ¼ I � AA† represent a pair of orthogonal
projectors onto the kernels of A and A ∗ , respectively.

Mathematical models of physical systems with inverse problems especially those
has a finite number of model parameters can be written by matrix equations. In
particular, the Sylvester-type matrix equations have far-reaching applications in
singular system control [1], system design [2], robust control [3], feedback [4],
perturbation theory [5], linear descriptor systems [6], neural networks [7] and theory
of orbits [8], etc.

Some recent work on generalized Sylvester matrix equations and their systems can
be observed in [9–21]. In 2014, Bao [22] examined the least-norm and extremal ranks
of the least square solution to the quaternion matrix equations

A1X ¼ C1,XB1 ¼ C2, A3XB3 ¼ Cc: (5)

Wang et al. [23] examined the expression of the general solution to the system

A1X1 ¼ C1, A2X2 ¼ C3,A3X1 B3 þ A4X2B4 ¼ Cc, (6)

and as an application, the P-symmetric and P-skew-symmetric solution to

AaX ¼ Ca,AbXBb ¼ Cb:

has been established. Li et al. [24] established a novel expression of the general
solution of the system (6) and they computed the least-norm of general solution to
(6). In 2009, Wang et al. [25] constituted the expression of the general solution to

A1 X1 ¼ C1,X1B1 ¼ C2,

A2 X2 ¼ C3,X2B2 ¼ C4,

A3 X1B3 þ A4X2B4 ¼ Cc,

(7)

and as an application, they explored the P,Qð Þ-symmetric solution to the system

AaX ¼ Ca,XBb ¼ Cb,AcXBc ¼ Cc:

Some latest findings on the least-norm of matrix equations and P,Qð Þ-symmetric
matrices can be consulted in [26–30]. Furthermore, our main system (7) is a special
case of the following system

A1X1 ¼ C1,X2B1 ¼ D1,

A2X3 ¼ C2,X3B2 ¼ D2,

A3X4 ¼ C3,X4B3 ¼ D3,

A4X1 þ X2 B4 þ C4X3D4 þ C5X4D5 ¼ Cc,

(8)

which has been investigated by Zhang in 2014.
Motivated by the latest interest of least-norm of matrix equations, we construct a

novel expression of the general solution to the system (7) and apply this to investigate
the least-norm of the general solution to the system (7) in this chapter. Observing that
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systems (5) and (6) are particular cases of our system (7), solving system (7) will
encourage the least-norm to a wide class of problems.

We commence with the following lemmas which have crucial function in the
construction of the chief outcomes of the following sections.

Lemma 1.2. [31]. Let A,B, and C be given matrices over  with agreeable dimensions.
Then.

1.r Að Þ þ r RABð Þ ¼ r Bð Þ þ r RBAð Þ ¼ r A B½ �.

2.r Að Þ þ r CLAð Þ ¼ r Cð Þ þ r ALCð Þ ¼ r
A

C

� �

.

3.r Bð Þ þ r Cð Þ þ r RBALCð Þ ¼ r
A B

C 0

� �

:

Lemma 1.3. [32]. Let A, B, and C be known matrices over  with right sizes. Then

1.A† ¼ A ∗Að Þ†A ∗ ¼ A ∗ AA ∗ð Þ†:

2.LA ¼ L2
A ¼ L ∗

A ,RA ¼ R2
A ¼ R ∗

A :

3.LA BLAð Þ† ¼ BLAð Þ†, RACð Þ†RA ¼ RACð Þ†:

Lemma 1.4. [33]. Let Φ,Ω be matrices over  and

Φ ¼
Φ1

Φ2

� �

, Ω ¼
Ω1 Ω2
� �

, F ¼ Φ2LΦ1 , T ¼ RΩ1Ω2:

Then

LΦ ¼ LΦ1LF, LΩ ¼
LΩ1 �Ω

†
1Ω2LT

0 LT

" #

,

RΩ ¼ RTRΩ1 , RΦ ¼
RΦ1 0

�RFΦ2Φ
†
1 RF

" #

,

where Φþ
1 , Ω

þ
1 are any fixed reflexive inverses, LΦ1 and RΩ1 stand for the projectors

LΦ1 ¼ I �Φ
þ
1 Φ1, RΩ1 ¼ I � Ω1Ω

þ
1 induced by Φ1, Ω1, respectively.

Remark 1.5. Since the Moore-Penrose inverse is a reflexive inverse, this lemma
can be used for the MP-inverse without any changes. It has taken place in ([32],
Lemma 2.4).

Lemma 1.6. [34]. Suppose that

B1XC1 þ B2YC2 ¼ A (9)

is consistent linear matrix equation. Then.

1.The general solution of the homogeneous equation

B1XC1 þ B2YC2 ¼ 0,
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can be expressed by

X ¼ X1X2 þ X3, Y ¼ Y1Y2 þ Y3,

where X1 � X3 and Y1 � Y3 are general solution to the system

B1X1 ¼ �B2Y1, X2C1 ¼ Y2C2, B1X3C1 ¼ 0, B2Y3C2 ¼ 0:

By computing the value of unknowns in above and using them in X and Y,
we have

X ¼ S1LGURHT1 þ LB1V1 þ V2RC1 ,

Y ¼ S2LGURHT2 þ LB2W1 þW2RC2 ,

where S1 ¼ Ip, 0
� �

, S2 ¼ 0, Is½ �,T1 ¼
Iq

0

� �

, T2 ¼
0

It

� �

,G ¼ B1, B2½ �, and

H ¼
C1

�C2

� �

; the matrices U,V1,V2,W1 and W2 are free to vary over :

2.Assume that Eq. (9) is solvable, then its general solution can be expressed as

X ¼ X0 þ X1X2 þ X3, Y ¼ Y0 þ Y1Y2 þ Y3,

where X0 and Y0 are any pair of particular solutions to (9).

It can also be written as
X ¼ X0 þ S1LGURHT1 þ LB1V1 þ V2RC1 ,

Y ¼ Y0 þ S2LGURHT2 þ LB2W1 þW2RC2 :

Lemma 1.7. [35]. Let A1,B1,C1,C2 be given matrices over  with agreeable sizes and
X1 to be determined. Then the system

A1X1 ¼ C1,X1B1 ¼ C2, (10)

is consistent if and only if

RA1C1 ¼ 0, C2LB1 ¼ 0, A1C2 ¼ C1B1: (11)

Under these conditions, the general solution to (10) can be established as

X1 ¼ A†
1C1 þ LA1C2B

†
1 þ LA1U1RB1 ,

where U1 is a free matrix over  with accordant dimension.
Lemma 1.8. [36]. Let A, B, and C be known matrices over  with agreeable dimen-

sions, and X be unknown. Then the matrix equation

AXB ¼ C (12)

is consistent if and only if AA†CB†B ¼ C. In this case, its general solution can be
expressed as
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X ¼ A†CB† þ LAV þWRB, (13)

where V,W are arbitrary matrices over  with appropriate dimensions.
In [37], it is proved that (13) is the least squares solution to (12), and its minimum

norm least squares solution is XLS ¼ A†CB†.
Lemma 1.9. [25]. Let Ai,Bi,Ci, i ¼ 1, … , 4ð Þ, and Cc be given matrices over  with

agreeable dimensions, and X1,X2 to be determined. Denote

A ¼ A3LA1 ,B ¼ RB1B3,C ¼ A4LA2 ,D ¼ RB2B4,

N ¼ DLB,M ¼ RAC, S ¼ CLM,

E ¼ Cc � A3A
†
1C1B3 � AC2B

†
1B3 � A4A

†
2C3B4 � CC4B

†
2B4:

Then the following conditions are tantamount:

1.System (7) is resolvable.

2.The conditions in (11) are met and

RA2C3 ¼ 0, C4LB2 ¼ 0, A2C4 ¼ C3B2,

RMRAE ¼ 0,RAELD ¼ 0,ELBLN ¼ 0,RCELB ¼ 0:

(14)

3.The equalities in (11) and (14) are satisfied and

MM†RAD
†D ¼ RAE, CC†ELBN

†N ¼ ELB:

In these conditions, the general solution to the system (7) can be written as

X1 ¼ A†
1C1 þ LA1C2B

†
1 þ LA1A

†EB†RB1 � LA1A
†CM†EB†RB1�

�LA1A
†SC†EN†DB†RB1 � LA1A

†SV1RNDB†RB1þ

þLA1 LAU1 þ Z1RBð ÞRB1 ,

(15)

X2 ¼ A†
2C3 þ LA2C4B

†
2 þ LA2M

†RAED
†RB2 þ LA2LMb

S†SC†EN†RB2

þLA2LM V1 � S†SV1NN†
� �

RB2 þ LA2W1RDRB2 ,
(16)

where U1,V1,W1 and Z1 are free matrices over  with agreeable dimensions.
Since the general solutions of considered systems are expressed in terms of gener-

alized inverses, another goal of the paper is to give determinantal representations of
the least-norm of the general solution to the system (7) based on determinantal
representations of generalized inverses.

Due to the important role of generalized inverses in many application fields,
considerable effort has been exerted toward the numerical algorithms for fast and
accurate calculation of matrix generalized inverse. In general, most existing methods
for their obtaining are iterative algorithms for approximating generalized inverses of
complex matrices (some recent papers, see, e.g. [38–40]). There are only several
direct methods for finding MP-inverse for an arbitrary complex matrix A∈

m�n. The
most famous is method based on singular value decomposition (SVD), i.e. if

A ¼ UΣV ∗ , then A† ¼ VΣ
†U ∗ . The computational cost of this method is dominated

by the cost of computing the SVD, which is several times higher than matrix–matrix
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multiplication. Another approach is constructing determinantal representations of the

MP-inverse A†. A well-known determinantal representation of an ordinary inverse is
the adjugate matrix with the cofactors in entries. It has an important theoretical
significance and brings forth Cramer’s rule for systems of linear equations. The same is
desirable to have for the generalized inverses. Due to looking for their more applicable
explicit expressions, there are various determinantal representations of generalized
inverses (for the MP-inverse, see, e.g. [41, 42]). Because of the complexity of the
previously obtained expressions of determinantal representations of the MP-inverse,
they have little applicability.

In this chapter, we will use the determinantal representations of the MP-inverse
recently obtained in [43].

Lemma 1.10. [43,Theorem 2.2] If A∈
m�n with rankA ¼ r, then the Moore-Penrose

inverse A† ¼ a†ij

� 	

∈
n�m possess the following determinantal representations

a†ij ¼

P

β∈ Jr,n if g A ∗Að Þ
:i a ∗

:j

� 	

















β

β
P

β∈ Jr,n
A ∗Aj jββ

¼

P

α∈ Ir,m jf g AA ∗ð Þj: a ∗
i:

� �



















α

α
P

α∈ Ir,m
AA ∗j jαα

: (17)

Here Aj jαα denote a principal minor of A whose rows and columns are indexed by
α≔ α1, … , αkf g⊆ 1, … ,mf g,

Lk,m≔ α : 1≤ α1 <⋯< αk ≤mf g, and Ir,m if g≔ α : α∈Lr,m, i∈ αf g:

Also, a ∗
:j and a ∗

i: denote the jth column and the ith row of A ∗ , and Ai: bð Þ and A
:j cð Þ

stand for the matrices obtained from A by replacing its ith row with the row vector

b∈
1�n and its jth column with the column vector c∈

m, respectively.
The formulas (17) give very simple and elegant determinantal representations of

the MP-inverse. So, for any A∈
m�n
r , we have sum of all principal minors of r order

of the matrices A ∗A or AA ∗ in denominators and sum of principal minors of r order

of the matrices A ∗Að Þ
:i a ∗

:j

� 	

or AA ∗ð Þj: a ∗
i:

� �

that contain the ith column or the jth

row, respectively, in numerators into (17).
Note that for an arbitrary full-rank matrix A, Lemma 1.10 gives a new way of

finding an inverse matrix.

Corollary 1.11. If A∈
m�n with rankA ¼ min m, nf g, then the inverse A�1 ¼

a�1
ij

� 	

∈
n�m possess the following determinantal representations:

a�1
ij ¼

A ∗Að Þ
:i a ∗

:j

� 	

















A ∗Aj j
if rankA ¼ n,

AA ∗ð Þj: a ∗
i:

� �



















AA ∗j j
if rankA ¼ m:

8

>

>

>

>

>

<

>

>

>

>

>

:

These new determinantal representations of the Moore-Penrose inverse have been
obtained by the developed novel limit-rank method in the case of quaternion matrices
[44] as well. This method was successfully applied for constructing determinantal
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representations of other generalized inverses in both cases for complex and
quaternion matrices (see e.g. [45–47]). It also yields Cramer’s rules of various matrix
equations [48–54].

The remainder of our chapter is directed as follows. In Section 2, we
provide a new expression of the general solution to our system (7) and discuss its
least-norm. The algorithm and numerical example of finding the anti-Hermitian
solution to (7) are presented in Section 3. (7). Finally, in Section 4, the conclusions
are drawn.

2. A new expression of the general solution to the system

Now we demonstrate the principal theorem of this section (7).

Theorem 2.1. Assume that S1 ¼ Ip1 0
� �

, S2 ¼ 0 Ip2
� �

, T1 ¼
Iq1
0

� �

, T2 ¼
Iq2
0

� �

,

G ¼ A C½ �,H ¼
B

�D

� �

, H1 ¼ LA1LA,H2 ¼ LA1S1LG,H3 ¼ RHT1RB1 ,H4 ¼ LA2LC,H5 ¼

LA2S2LG,H6 ¼ RHT2RB2 and the system (7) is solvable, then the general solution to our
system can be formed as

X1 ¼ A†
1C1 þ LA1C2B

†
1 þ LA1A

†EB†RB1 � LA1A
†CM†EB†RB1�

�LA1A
†SC†EN†DB†RB1 þH1V1RB1 þH2UH3 þ LA1V2RBRB1 ,

(18)

X2 ¼ A†
2C3 þ LA2C4B

†
2 þ LA2M

†RAED
†RB2 þ LA2LMS

†SC†EN†RB2þ

þH4W1RB2 þH5UH6 þ LA2W2RDRB2 ,
(19)

where U,V1,V2,W1, and W2 are free matrices over  with allowable dimensions.
Proof. Our proof contains three parts. At the first step, we show that the matrices

X1 and X2 have the forms of

X1 ¼ ϕ0 þH1V1RB1 þ LA1V2RBRB1 þH2UH3, (20)

X2 ¼ ψ0 þH4W1RB2 þ LA2W2RDRB2 þH5UH6, (21)

where ϕ0 and ψ0 are any pair of particular solution to the system (7), V1, V2, W1,
W2, and U are free matrices of able shapes over , are solutions to the system (7).
In the second step, we display that any couple of solutions μ0 and ν0 to the system (7)
can be established as (20) and (21), respectively. In the end, we confirm that

μ ¼ A†
1C1 þ LA1C2B

†
1 þ A†EB† � A†CM†EB† � A†SC†EN†DB†,

ν ¼ A†
2C3 þ LA2C4B

†
2 þ LA2M

†RAED
† þ LA2LMS

†SC†EN†RB2

are a couple of particular solutions to the system (7).
Now we prove that a couple of matrices X1 and X2 having the shape of (20) and

(21), respectively, are solutions to the system (7). Observe that

A†
1C1B1 þ LA1C2B

†
1B1 ¼ A†

1A1C2 þ LA1C2 ¼ C2,

A†
2C3B2 þ LA2C4B

†
2B2 ¼ A†

2A2C4 þ LA2C4 ¼ C4:
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It is evident that X1 having the form (20) is a solution of A1X1 ¼ C1, and X1B1 ¼
C2 and X2 having the form (21) is a solution to A2X2 ¼ C3,X2B2 ¼ C4. Now we are
left to show that A3X1B3 þ A4X2B4 ¼ Cc is satisfied by X1 and X2 given in (20) and
(21). By Lemma 1.4, we have

AS1LG ¼ A Ip1 0
� � LA �A†CLM

0 LM

" #

¼ A LA �A†CLM

� �

¼ 0 �AA†CLM

� �

¼ 0 � C�Mð ÞLM½ � ¼ 0 �CLM½ �

¼ � 0 S½ � ¼ �CS2LG,

(22)

and

RHT1B ¼
RB 0

RNDB† RN

" #

Iq1

0

" #

B ¼
RB

RNDB†

" #

B

¼
0

RNDB†B

" #

¼
0

RND I � LBð Þ

" #

¼
0

RND

" #

¼ RHT2D:

(23)

Observe that ALA ¼ 0 and by using (22) and (23), we arrive that

A3X1B3 þ A4X2B4 ¼ Cc:

Conversely, assume that μ0 and ν0 are any couple of solutions to our system (7). By
Lemma 1.7, we have

A1A
†
1C1 ¼ C1,C2B

†
1B1 ¼ C2,A2A

†
2C3 ¼ C3,

C4B
†
2B2 ¼ C4,A1C2 ¼ C1B1,A2C4 ¼ C3B2:

Observe that

LA1μ0RB1 ¼ I � A†
1A1

� �

μ0 I � B1B
†
1

� �

¼ μ0 � μ0B1B
†
1 � A†

1A1μ0 þ A†
1A1μ0B1B

†
1

¼ μ0 � C2B
†
1 � A†

1C1 þ A†
1A1C2B

†
1

¼ μ0 � LA1C2B
†
1 � A†

1C1

produces

μ0 ¼ LA1C2B
†
1 þ A†

1C1 þ LA1μ0RB1 : (24)

On the same lines, we can get

ν0 ¼ LA2C4B
†
2 þ A†

2C3 þ LA2ν0RB2 : (25)

It is manifest that μ0 and ν0 defined in (24)–(25) are also solution pair of

AX1Bþ CX2D ¼ E: (26)
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Since

AX1Bþ CX2D ¼ A3LA1μ0RB1B3 þ A4LA2ν0RB2B4

¼ A3 μ0 � LA1C2B
†
1 � A†

1C1

� �

B3 þ A4 ν0 � LA2C4B
†
2 � A†

2C3

� �

B4

¼ A3μ0B3 � A3LA1C2B
†
1B3 � A†

1C1B3 þ A4ν0B4

�A4LA2C4B
†
2B4 � A4A

†
2C3B4

¼ A3μ0B3 þ A4ν0B4 � AC2B
†
1B3 � A†

1C1B3 � CC4B
†
2B4 � A4A

†
2C3B4

¼ Cc � AC2B
†
1B3 � A†

1C1B3 � CC4B
†
2B4 � A4A

†
2C3B4

¼ E:

Hence by Lemma 1.6, μ0 and ν0 can be written as

μ0 ¼ X01 þ S1LGURHT1 þ LAV1 þ V2RB, (27)

ν0 ¼ X02 þ S2LGURHT2 þ LCW1 þW2RD, (28)

where X01 and X02 are a couple of special solutions to (26) and U,V1,V2,W1 and
W2 are free matrices with agreeable dimensions. Using (27) and (28) in (24) and (25),
respectively, we get

μ0 ¼ X10 þH2UH3 þH1V1RB1 þ LA1V2RBRB1 ,

ν0 ¼ X20 þH5UH6 þH4W1RB2 þ LA2W2RDRB2 ,

where X10 ¼ A†
1C1 þ LA1C2B

†
1 þ LA1X01RB1 and X20 ¼ A†

2C3 þ LA2C4B
†
2 þ

LA2X02RB2 : It is evident that X10 and X20 are a couple of solutions to the system (7).
It is clear that μ0 and ν0 can be represented by (20) and (21), respectively.
Lastly, by putting U1,V1,W1, and Z1 equal to zero in (15) and (16), we conclude
that μ and ν are special solutions to the system (7). Hence the expressions (18)
and (19) represent the general solution to the system (7) and the theorem is
completed.

Remark 2.2. Due to Lemma 1.3 and taking into account LA2LM ¼ LMLA2 , we have
the following simplification of the solution pair to the system (7) that is identical for
(15)–(16) and (18)–(19) when U,U1,V1,V2,Z1,W1, and W2 disappear,

X1 ¼ A†
1C1 þ LA1C2B

†
1 þ A†EB† � A†A4M

†EB† � A†SC†EN†B4B
†,

X2 ¼ A†
2C3 þ LA2C4B

†
2 þM†ED† þ S†SC†EN†

:

Comment 2.3. We have established a novel expression of the general solution to the
system (7) in Theorem 2.1 which is different from one created in [25]. With the help
of this novel expression, we can explore the least-norm of the general solution which
can not be studied with the help of the expression given in [25], which is one of the
advantage of our new expression.

Now we discuss some special cases of our system.
If B1,B2,C2 and C4 disappear in Theorem 2.1, then we gain the following conclusion.

Corollary 2.4. Denote S1 ¼ Ip1 0
� �

, S2 ¼ 0 Ip2
� �

, T1 ¼
Iq1
0

� �

, T2 ¼
Iq2
0

� �

,

G ¼ A C½ �,H ¼
B3

�B4

� �

, H1 ¼ LA1LA,H2 ¼ LA1S1LG,H3 ¼ RHT1,H4 ¼ LA2LC,H5 ¼

9
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LA2S2LG,H6 ¼ RHT2 and the system (6) is solvable, then the general solution to (6) can be
formed as

X1 ¼ A†
1C1 þ A†EB†

3 � A†A4M
†EB†

3 � A†SC†EN†B4B
†
3 �H1Y1þ

þH2VH3 þ LA1Y2RB3 ,

X2 ¼ A†
2C3 þM†EB†

4 þ S†SC†EN† þH4Z1 þH5VH6 þ LA2Z2RB4 ,

where A,C,N,M, S are the same as in Lemma 1.6, E ¼ Cc � A3A
†
1C1B3 � A4A

†
2C3B4,

V,Y1,Y2,Z1, and Z2 are free matrices over  obeying agreeable dimensions.
Comment 2.5. The above consequence is a chief result of [32].
If A2,B2,C3,A4,B4 and C4 vanish in our system (7), then we get the following

outcome.
Corollary 2.6. Suppose that A1,B1,C1,C2,A3,B3 and Cc are given. Then the general

solution to system (5) is established by

X1 ¼ A†
1C1 þ LA1C2B

†
1 þ A3LA1ð Þ† Cc � A3A

†
1C1B3 � A3LA1C2B

†
1B3

� �

RB1B3ð Þ†þ

þ LA1LA3LA1
W1RB1 þ LA1W2RRB1

B3RB1 ,

where W1 and W2 are arbitrary matrices over  with appropriate sizes.
We experience the least-norm to the system (7) in this section. By the definition

and [55], we can get the following result easily.
Lemma 2.7. Let A∈

m�n,B∈
n�m. Then we have.

(1) ∥Aþ B∥2 ¼ ∥A∥2 þ ∥B∥2 þ 2Re tr B ∗Að Þ½ �.
(2) Re tr ABð Þ½ � ¼ Re tr BAð Þ½ �:
Theorem 2.8. Assume that system (7) is solvable, then the least-norm of the solution

pair X1 and X2 to system (7) can be extracted as follows:

∥X1∥min ¼ A†
1C1 þ LA1C2B

†
1 þ A†EB† � A†A4M

†EB†�

�A†SC†EN†B4B
†,

(29)

∥X2∥min ¼ A†
2C3 þ LA2C4B

†
2 þM†ED† þ S†SC†EN†

: (30)

Proof. By Theorem 2.1 and Remark 2.2, the general solution to (7) can be formed as

X1 ¼ A†
1C1 þ LA1C2B

†
1 þ A†EB† � A†A4M

†EB† � A†SC†EN†B4B
†

�H1V1RB1 þH2UH3 þ LA1V2RBRB1 ,

X2 ¼ A†
2C3 þ LA2C4B

†
2 þM†ED† þ S†SC†EN†

þH4W1RB2 þH5UH6 þ LA2W2RDRB2 ,

where U,V1,V2,W1, and W2 are free matrices over  having executable dimen-
sions. By Lemma 2.7, the norm of X1 can be established as

∥X1∥
2 ¼ ∥A†

1C1 þ LA1C2B
†
1 þ A†EB† � A†A4M

†EB†�

�A†SC†EN†B4B
† �H1V1RB1 þH2UH3 þ LA1V2RBRB1∥

2

¼ ∥A†
1C1 þ LA1C2B

†
1 þ A†EB† � A†A4M

†EB† � A†SC†EN†B4B
†∥2

þ∥H1V1RB1 þH2UH3 þ LA1V2RBRB1∥
2 þ J,

(31)
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where

J ¼ 2Re tr H1V1RB1 þH2UH3 þ LA1V2RBRB1ð Þ ∗ð½

A†
1C1 þ LA1C2B

†
1 þ A†EB† � A†A4M

†EB† � A†SC†EN†B4B
†

� ���

:

(32)

Now we want to show that J ¼ 0. Applying Lemmas 1.3, 1.4 and 2.7, we have

Re tr H1V1RB1ð Þ ∗ A†
1C1 þ LA1C2B

†
1 þ A†EB† � A†A4M

†EB†
���

�A†SC†EN†B4B
†ÞÞ� ¼ Re tr RB1V

∗
1 H

∗
1 A†

1C1 þ LA1C2B
†
1 þ A†EB†

���

�A†A4M
†EB† � A†SC†EN†B4B

†ÞÞ� ¼ Re tr RB1V
∗
1 LALA1 A†

1C1

���

þLA1C2B
†
1 þ A†EB† � A†A4M

†EB† � A†SC†EN†B4B
†ÞÞ�

¼ Re tr RB1V
∗
1 LALA1 LA1C2B

†
1

� �� �� �

¼ Re tr V ∗
1 LALA1 LA1C2B

†
1

� �

RB1

� �� �

¼ 0, (33)

Re ½tr LA1V2RBRB1ð Þ ∗ A†
1C1 þ LA1C2B

†
1 þ A†EB† � A†A4M

†EB†
��

�A†SC†EN†B4B
†ÞÞ� ¼ Re ½trðRB1RBV

∗
2 L

∗
A1

A†
1C1 þ LA1C2B

†
1

�

þA†EB† � A†A4M
†EB† � A†SC†EN†B4B

†ÞÞ�

¼ Re tr RB1RBV
∗
2 LA1 LA1C2B

†
1 þ A†EB† � A†A4M

†EB†
���

�A†SC†EN†B4B
†ÞÞ� ¼ Re tr V ∗

2 LA1 LA1C2B
†
1

���

þA†EB† � A†A4M
†EB† � A†SC†EN†B4B

†ÞRB1RBÞ�

¼ Re tr V ∗
2 LA1 A†EB† � A†A4M

†EB† � A†SC†EN†B4B
†

� �

RB

� �� �

¼ 0,

(34)

Re tr H2UH3ð Þ ∗ A†
1C1 þ LA1C2B

†
1 þ A†EB† � A†A4M

†EB†
���

�A†SC†EN†B4B
†ÞÞ� ¼ Re tr H ∗

3 U
∗H ∗

2 A†
1C1 þ LA1C2B

†
1 þ A†EB†

���

�A†A4M
†EB† � A†SC†EN†B4B

†ÞÞ� ¼ Re tr H ∗
3 U

∗LGS
∗
1 LA1 LA1C2B

†
1

���

þA†EB† � A†A4M
†EB† � A†SC†EN†B4B

†ÞÞ�

¼ Re tr H ∗
3 U

∗ LA �A†CLM

0 LM

" #

I

0

� �

LA1C2B
†
1 þ A†EB†

�

 "

�A†A4M
†EB† � A†SC†EN†B4B

†Þ

!#

¼ Re tr H ∗
3 U

∗LA A†EB†
���

�A†A4M
†EB† � A†SC†EN†B4B

†ÞÞ� ¼ Re tr H ∗
3 U

∗LALA1C2B
†
1

� �� �

¼ Re tr RB1T
∗
1 RHU

∗LALA1C2B
†
1

� �� �

(35)

By using (33)–(35) in (32) produces J ¼ 0. Since X1 is arbitrary, we get (29) from
(31). In the same way, we can prove that (30) hold. □
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A special case of our system (7) is given below.
If B1,B2,C2, and C4 become zero matrices in Theorem 2.8, then again we get the

principal result of [20].
Corollary 2.9. Assume that system (6) is solvable, then the least-norm of the solution

pair X1 and X2 to system (6) can be furnished as

∥X1∥min ¼ A†
1C1 þ A†EB†

3 � A†A4M
†EB†

3 � A†SC†EN†B4B
†
3,

∥X2∥min ¼ A†
2C3 þM†EB†

4 þ S†SC†EN†
:

If A2,B2,C3,A4,B4 and C4 vanish in our system, then we get the next consequence.
Corollary 2.10. Suppose that A1,B1,C1,C2,A3,B3 and Cc are given. Then the least-

norm of the least square solution to system (5) is launched by

∥X1∥min ¼ A†
1C1 þ LA1C2B

†
1

þ A3LA1ð Þ† Cc � A3A
†
1C1B3 � A3LA1C2B

†
1B3

� �

RB1B3ð Þ†:

Comment 2.11. Corollary 2.10 is the key result of [22].

3. Algorithm with example

In this section, we construct the algorithm for finding the least-norm of the solu-
tion to (7) that is inducted by Theorem 2.8.

Algorithm 1.

1.By Lemma 1.10 find the matrices A†
i , B

†
i for i ¼ 1, … , 4, and RAi

¼ I � AiA
†
i ,

LAi
¼ I � A†

iAi, RBi
¼ I � BiB

†
i , and LBi

¼ I � B†
i Bi for i ¼ 1, 2.

2.By Lemma 1.9 calculate the matrices A,B,C,D,M, S, and E, and by Lemma 1.10
find their MP-inverses and orthogonal projectors when it is needed.

3.Verify the consistence equalities (11) and (14). If these equalities are hold, then
we find solutions by the next steps.

4.Finally, by (29) and (30), compute the least-norm of the solution pair X1 and X2.

The following example will be considered by using Algorithm 1. Note that our goal is
both to confirm correctness of main results from Theorems 2.1 and 2.8, and to demon-
strate the technique of applying the determinantal representations of the MP-inverse
from Lemma 1.10 by using a not too complicated and understandable example.

Example 1. Given the matrices:

A1 ¼

1þ i 1� i �1þ i �1� i

�1þ i 1þ i �1� i 1� i

2i 2 �2 �2i

2

6

6

4

3

7

7

5

,B1 ¼

2i �1 iþ 3

�i 1 �3� i

�1 i 1� 3i

1 �i �1þ 3i

2

6

6

6

6

6

4

3

7

7

7

7

7

5

,A2 ¼

i 1 �1

1 �i i

�1 i �i

�i �1 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

,
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B2 ¼

2� i 2i� 1 iþ 1

2iþ 1 �i� 2 i� 1

�2iþ 1 i� 2 �i� 1

iþ 2 �2i� 1 �iþ 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

,C1 ¼

8i �8 �8i 8

4 4i �4 �4i

2þ 4i �4þ 2i 2� 4i 4� 2i

2

6

6

4

3

7

7

5

,

C2 ¼

11i 44i� 11 �44

22 22iþ 88 88i

�11i 44iþ 11 44

�22 �22i� 88 �88i

2

6

6

6

6

6

4

3

7

7

7

7

7

5

,A3 ¼

5iþ 2 5� 2i �2þ 5i 2iþ 5

2i� 5 5iþ 2 �2i� 5 �2þ 5i

4i 4 �4i �4

2

6

6

4

3

7

7

5

,

B3 ¼

�i �iþ 2 �1

�2 �2� 4i 2i

�2i 4� 2i �2

1 1þ 2i �i

2

6

6

6

6

6

4

3

7

7

7

7

7

5

,A4 ¼

�2i� 3 �3iþ 2 2iþ 3

�i 1 i

�3 �3i 3

2

6

6

4

3

7

7

5

,

C3 ¼

3i 3 �3 �3i

3 �3i 3i �3

�3 3i �3i 3

�3i �3 3 3i

2

6

6

6

6

6

4

3

7

7

7

7

7

5

,

B4 ¼

7i �i �2

�7 �3 2i

�7i i 2

7 3 �2i

2

6

6

6

6

6

4

3

7

7

7

7

7

5

,C4 ¼

4� 2i �2þ 4i 2þ 2i

2þ 4i �4� 2i �2þ 2i

�2� 4i 4þ 2i 2� 2i

2

6

6

4

3

7

7

5

,

Cc ¼
1

21

�1130� 502i �1344þ 612i �2798� 1250i

�1808� 688 �1398þ 834i �2942� 1538i

�1154� 946i �1488þ 624i �2654� 1394i

2

6

6

4

3

7

7

5

: (36)

Let us find a solution to the system (7) with the given above matrices by
Algorithm 1.

1.Thanks to Lemma 1.10, we calculate the Moore-Penrose inverses. So,

A†
1 ¼

1

32

1� i �1� i �2i

1þ i 1� i 2

�1� i �1þ i �2

�1þ i 1þ i 2i

2

6

6

6

6

6

4

3

7

7

7

7

7

5

,B†
1 ¼

1

44

�11i 11i �11 11

39 41 20� i 20þ i

7 � i 1þ i 5þ 3i 3� 3i

2

6

6

4

3

7

7

5

,

A†
2 ¼

1

12

�i 1 �1 i

1 i �i �1

�1 �i i 1

2

6

6

4

3

7

7

5

,B†
2 ¼

1

12

1 �i i 1

�i �1 �1 i

1� i �1� i �1þ i 1þ i

2

6

6

4

3

7

7

5

,

A†
3 ¼

1

80

�2i �2 2� 5i

2 �2i 5þ 2i

�2i �2 2þ 5i

2 �2i �5þ 2i

2

6

6

6

6

6

4

3

7

7

7

7

7

5

,B†
3 ¼

1

70

i �2 2i 1

2þ i �2þ 4i 4þ 2i 1� 2i

�1 �2i �2 i

2

6

6

4

3

7

7

5

,
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A†
4 ¼

1

69

�3þ 2i i �3

2þ 3i 1 3i

3� 2i �i 1

2

6

6

4

3

7

7

5

,B†
4 ¼

1

792

�35i �21 35i 21

47i �51 �47i 51

�52 �48i 52 48i

2

6

6

4

3

7

7

5

:

Then,

A ¼
1

2

2þ 5i 5� 2i 1þ 8i 12þ 9i

�5þ 2i 2þ 5i �8þ i �9þ 12i

4i 4 4� 8i �8þ 4i

2

6

6

4

3

7

7

5

,

B ¼
1

22

�52� 31i 10� 135i �31þ 52i

8þ 9i �10þ 25i 9� 8i

�9þ 8i �25� 10i 8þ 9i

31� 52i 135þ 10i �52� 31i

2

6

6

6

6

6

4

3

7

7

7

7

7

5

,

C ¼
1

3

�11� 3i 9� 7i 6þ 4i

�1� 3i 3þ i 2i

�9þ 3 3� 9i 6

2

6

6

4

3

7

7

5

,D ¼

0 �2i �2

0 �2 2i

0 2i 2

0 2 �2i

2

6

6

6

6

6

4

3

7

7

7

7

7

5

,

N ¼
1

7

4þ 4i �4� 2i �10� 4i

4� 4i �2þ 4i �4þ 10i

�4� 4i 4þ 2i 10þ 4i

�4þ 4i 2� 4i 4� 10i

2

6

6

6

6

6

4

3

7

7

7

7

7

5

,M ¼
1

3

�4� 2i 4� 2i 2þ 2i

�2þ 4i �2� 4i 2� 2i

0 0 0

2

6

6

4

3

7

7

5

, S ¼ 0

E ¼
1

84

19931� 108289i 236509� 68427i �108289� 19931i

110417 þ 16211i 77995þ 79015i 16211� 110417i

74624þ 106424i �138224þ 255672i 106424� 74624i

2

6

6

4

3

7

7

5

:

2.Confirm that (11) and (14) are true for given matrices.

3.Finally, by (29) and (30), we find that the least-norm of the solution pair X1 and
X2 to the system (7) is following

X1 ¼
1

365760

�11103239þ 18670545i �9851419þ 14002307i �5154373þ 3862099i �4697553þ 10234559i

26688873þ 4258681i 29888893 þ 5510501i 12048461þ 4721147i 17746081þ 5177967i

6556168þ 9656066i 5321848þ 2196342i 4452786þ 10360112i �6757414þ 7845632i

�17049264� 2930378i �26304464� 11113378i �10244698� 3367816i �7362609� 13720296i

2

6

6

6

6

6

4

3

7

7

7

7

7

5

,

X2 ¼
1

1344

2052� 963i 233� 1985i �2159þ 3481i �1465� 367i

�792þ 2565i 1901� 205i 317 þ 445i �221þ 317i

171þ 585i �146þ 28i 868� 1714i 146þ 2884i

2

6

6

4

3

7

7

5

:

Note that Maple 2021 was used to perform the numerical experiment.
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4. Conclusion

We have constructed a novel expression of the general solution to system (7) over
 and used this result to explore the least-norm of the general solution to this system
when it is solvable. Some particular cases of our system are also discussed. Our results
carry the principal results of [22, 32]. To give an algorithm finding the explicit
numerical expression of the least-norm of the general solution, it is used the determi-
nantal representations of the MP-inverse recently obtained by one of the authors. The
novelty of the conducted research is obtaining necessary and sufficient conditions to
exist a solution, its formal representation of by closed formula in terms of generalized
inverses, and the construction of an algorithm to find its explicit expression. A
numerical example is also given to interpret the results established in this paper.
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