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Chapter

Moving Node Method for
Detferential Equations

Dalabaev Umurdin and Ikramova Malika

Abstract

The chapter contains information about new approaches to solving boundary value
problems for differential equations. It introduces a new method of moving nodes.
Based on the approximation of differential equations (by the finite difference method
or the control volume method), introducing the concept of a moving node, approxi-
mately analytical solutions are obtained. To increase the accuracy of the obtained
analytical solutions, multipoint moving nodes are used. The moving node method is
used to construct compact circuits. The moving node method allows you to investigate
the diskette equation for monotonicity, as well as the approximation error of the
differential equation. Various test problems are considered.

Keywords: finite difference, boundary value problem, moving node, approximation

1. Introduction

Methods for solving problems of mathematical physics can be divided into the
following four classes [1-7].

Analytical methods (the method of separation of variables, the method of charac-
teristics, the method of Green’s functions [8], etc.) have a relatively low degree of
universality, i.e. focused on solving rather narrow classes of problems. As a result of
applying these methods, a solution is obtained in the form of analytical formulas. The
use of these formulas for the implementation of the calculation may require the
solution of auxiliary computational problems (solution of nonlinear equations, calcu-
lation of special functions, numerical integration, summation of an infinite series).
Nevertheless, in a number of cases, the application of these methods makes it possible
to quickly and with high accuracy calculate the desired solution.

Approximate analytical methods (projection, variational methods, small parameter
methods, operational methods, and various iterative methods [4, 9]) are more uni-
versal than analytical ones. The use of such methods involves modifying the original
problem or changing the problem statement in such a way that the new problem can
be solved by the analytical method, and its solution itself differs little enough from the
solution of the original problem.

Numerical methods (finite difference method, method of lines, control volume
method, finite element method, etc. [1, 2, 5-7, 10-34]) are very universal methods.
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Often used to solve nonlinear problems of mathematical physics, as well as linear
problems with variable operator coefficients.

Probabilistic methods (Monte Carlo methods) are highly versatile. It can be used to
calculate discontinuous solutions. However, they require large amounts of calculations
and, as a rule, lose with the computational complexity of the above methods when
solving such problems to which these methods are applicable.

Comparing methods for solving problems of mathematical physics, it is impossible
to give unconditional superiority to any of them. Any of them may be the best for
solving problems of a certain class. At the same time, when characterizing a specific
method, it is advisable to highlight those features that often determine its advantages
or disadvantages in practical application compared to an alternative method.

The advantages of the finite difference method include its high universality, for
example, much higher than that of analytical methods. The application of this method is
often characterized by the relative simplicity of constructing a decision algorithm and its
software implementation. Often it is possible to parallelize the decision algorithm.

The shortcomings of the method include: the problematic nature of its use on
irregular grids; a very rapid increase in computational complexity with an increase in
the dimension of the problem (an increase in the number of unknown variables); the
complexity of the analytical study of the properties of the difference scheme.

The proposed method of moving nodes combines numerical and analytical
methods [7, 8, 13, 35-38]. In this case, we can obtain, on the one hand, an approximate
analytical solution to the problem, which is not related to the methods listed above.
On the other hand, this method allows one to obtain compact discrete approximations
of the original problem. Note that obtaining an approximate analytical solution to
differential equations is based on numerical methods. The nature of numerical
methods also makes it possible to obtain an approximate analytical expression for
solving differential equations. For this, a so-called “movable node” is introduced.

The aim of the study is to develop a computing technology based on the proposed
method of moving nodes, develop a two-point convective-diffusion problem an ana-
lytical method generated by numerical methods based on the method of moving
nodes, and give test examples.

2. Chapter 1. Derivation of approximate analytical solutions of
differential equations by the moving nodes method

Abstract. This chapter introduces the concept of a roaming node and provides
approximate solutions to simple problems using a moving node. We also studied the
derivation algorithm for nonstationary and two-dimensional problems.

Note that the concept of a movable node in this context is considered for the first
time.

Keywords: Difference equation, differential equation, approximation error, mov-
ing node, several moving nodes, boundary value problems

2.1 The concept of a moving node

The solution of differential equations (DE) (ordinary or partial derivatives) by the
method of finite differences is based on a finite-difference approximation of deriva-
tives. When applying the finite difference method to the solution of DE, there is a
transition from a continuous region to a finite difference one. A grid of “nodal points

»
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One moving node.
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Figure 2.
Three moving node.

is introduced into the solution area. Representing the derivatives in a finite difference
form, they bring it to the form of a difference equation. The difference equation is
written for all grid nodes and results in a system of algebraic equations [4, 36].

Most of the DEs found in the equations of mathematical physics contain only partial
derivatives of the first and second orders, while for the approximation of the derivatives
they try to use no more than three nodes of the difference grid (in the case of ordinary
DEs) (Figure 1). Let the node W and E be considered fixed, and the node x changes into
segments (W, E). Then the approximation of the derivatives (first or second order) also
changes based on the location of the node. The node x is said to be movable.

You can increase the number of moved nodes. Let us select additional moving
nodes as follows: x; = (W +x)/2, x, = (W + x)/2. When node x changes its position, x;
and x; automatically change their positions (Figure 2). In this way, you can increase
the number of moved nodes. The increase in the number of moved nodes is related to
the accuracy of the difference equations.

The displacement of nodal points is not only related to finite-difference equations,
this approach can be successfully applied when discretizing differential equations
using the control volume method.

2.2 Obtaining an approximate analytical solution with one moving node

Let, it is necessary to find @(x) a solution to the DE in the region W <x <E with
the corresponding boundary conditions. Let us take an arbitrary point x € (W, E). We
have three nodes: W, E boundary nodes and an internal node x. The position of a point
inside the region is determined by the node being moved x. The difference equation is
usually written for an arbitrary node, x. When approximating differential operators,
the first derivatives on the moving node are approximated by different relations:

do(x) Ulx)— UW)

dx« =~ x-W M
do(x) U(E) - Ulx)

dx =~ E—-x (2)
do(x) _U(E) - UW) .

dx = E-W

The approximation of the derivative by (1) and (2) is called the approximation of
this derivative using a one-sided difference, and (3) is the approximation using the
central difference.
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The second derivative on the moving node is approximated as follows [4] (simi-
larly to the approximation of the second derivative in a non-uniform grid):

A’d(x) 2 (U(E) ~Ulx) Ulx)— U(W)> @)

b2 E-W\ E—x x—W

Let us consider some model problems of applying the moving nodes method
(MNM) to obtain an analytical solution.

2.2.1 Flow in a flat pipe

The flow of a viscous fluid in a flat pipe in a one-dimensional formulation is
described by the equation

A’U Ap

= 5)

dy2 -

where U is the fluid velocity, is the vertical coordinate perpendicular to the flow,
Ap/l is the pressure drop (const), u is the viscosity. Let y = 0 and y = & motionless
walls.

We average (5) over the liquid volume: [y/2, (h — y)/2], here “y” is a moving node
(Figure 3). Then we have

(h+y)/2d2 (h+y)/2 A
o | ()
/2 y/2
From here
= 200 = (-22)2 ®)
dy W2 gy v2 ul) 2

We replace the derivatives in (6) with the difference relation:

)

3
$
)

e

=

-
N

Figure 3
Control volume.
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Here u(y) is an approximate value U(y). Thus, approximation (5) with respect to
the moving node has the form:

u(h) —u(y) uly) —u(0) _ (_A_P>h (8)

h—y ) pl

>

Hence, taking into account the no-slip condition (# (%) = u(0) = 0)

uly) = —%y(k ).

Here u(y) is the average solution. For this problem, the averaged solution coincides
with the exact solution.

This means that the approximation (7) for this problem is exact. The reason for the
coincidence of the solution obtained with the help of the MNM with one node and the
exact solution is explained by the following fact.

Lagrange’s mean value theorem states that if a function f (x) is continuous on an
interval [a, b] and differentiable on an interval (a,b), then in this interval there is at
least one x = £ point such that

f(b) —f(a)
b—a

It is easy to check that if f (x) represents a parabola, then in (9){ = (a + b)/2. The

exact solution (5) is a parabola. Integrating (5) over the control volume
[x/2, (h+ x)/2], we obtain

=f'(9). 9)

(htn)/2 (h+y)/2
du , du du, 1 Apd
W ) = @|(h+y)/z - @‘yﬁ = ,1; 7 Y-
¥/2 /2

Since u(y) there is a parabola, therefore

du u(h) —u(y) du u(y) —u(0)

u
@|(h+y)/2 - h —y > @|y/2 - y— 0 >

and (8) is the exact difference analog of (5).

2.2.2 Heat distribution in the plate

Heat propagation in the plate is described by the equation

d°T ¢

—+-=0, =0, T(1)=1 10

ik dx @ (10
where k is the thermal conductivity and g is the heat release per unit volume

(k and g = const). It is assumed that the source does not depend on temperature.

Replacing (10) with a difference equation with a moving node, we have

2 [T(1)
1-0| 1

—T(x) Tkx)-TO)] q_
—Xx B x—0 +% =0 (11)
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Solving Eq. (11), we obtain

T(x) = 1435 (1-x?) (12)
Solution (12) coincides with the exact solution. Note that the exact solution is

obtained not only for the Dirichlet problem but as for the problem of flow in a flat
pipe. Here the boundary conditions are of mixed type.

2.2.3 Magnetohydrodynamic Couette flow

Consider the Couette flow, when a conducting fluid flows in a uniform magnetic
field between two plates, one of which is stationary, and the other moves in its own
plane at a constant speed. Based on the Navier-Stokes equation, taking into account
the magnetic field and taking into account the one-dimensionality of the flow, it can
be written in a dimensionless form as follows:

2
U ppy—p (13)
dy

Boundary conditions

u(0)=0, u(1)=1 (14)

Here, u is the dimensionless flow velocity and y is the dimensionless coordinate.
Dimensionless quantities M — Hartmann number, P- pressure coefficient (M and
P = const).

Replacing the second-order derivative in (13) with a difference relation similar to
(7), and considering the boundary condition (14), we can obtain an approximate
solution

u1(y) _r 2y _Py(l _y) (15)

2+ sz(l —9)

This solution comes close to the exact solution (Figure 4).

2.2.4 The method of moving nodes for the convection-diffusion equation
Consider the transport equation

Ao 1 d°¢
Tx e 42 + S(x), (16)

Here, @ the unknown function, S(x) the source, Pe is the Peclet number. The
equation is considered under appropriate boundary conditions.

The convective term of Eq. (16) is approximated by (1), and the diffusion term by
(4). Consider (16) into segments with boundary conditions @(0) = 0, (1) = 1 and
S(x) = 0. Then, using the upwind scheme, we replace Eq. (16) with a difference
equation that looks like this:
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Figure 4.
Comparison of exact and approximate solutions (M = 2, P = 4). The solid line is the exact solution, the dotted line
is according to (5).

Ux) 2 (1-Ux) U(x)
x  Pe ( 1-x x (17)
From here, we can easily determine U(x):
2x
V) = het—w) 1e)

Figure 5 shows a comparison of the exact and approximate solutions. The solid line
corresponds to the exact solution, and the dotted line corresponds to the solution (8).
It can be seen from the graph that numerical diffusion takes place.

For @(0) = 0, ®(1) = 1 and S(x) = 5cos 4xPe = 5, the results of the exact and
approximate solutions are shown in Figure 6. It can be seen from the graph that there
are large errors. Here the Peclet number plays an important role. Indeed, for @(0) =
0, (1) =1and S(x) = 5cos 4xPe = 0, 1, we obtain solutions shown in Figure 7,
which shows that the approximate and exact solutions are close.

2.2.5 Equation with variable coefficient

Consider the equation
eu” (x) + 2xu'(x) = 0, (19)

into segments (—1,1) with boundary «(—1) = —1, (1) = 2 conditions u(—1) =
—1, u(1) = 2. The exact solution is determined through the error functions:

i) — T AVE) + 3erf /)
2 (1)
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Figure 5.
Comparison of exact and approximate solutions. Pe = 10.
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Figure 6.

Comparison of exact and approximate solutions. Pe = 5.
The difference scheme with a moving node for (19) has the form (upwind scheme):

. 2-U(x) Ux)+1 +1(2x—|2x|)U§xl:1+%(2x+|2x|)21_|[_]3(cx)

= 0.
1—x x+1 2
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Figure 7.
Comparison of exact and approximate solutions. Pe = 0.1.
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Figure 8.
Solution comparisons.

Solving this equation with respect to U(x), we obtain an approximate analytical
solution. Figure 8 compares the solutions of the exact and approximate analytical
solution; the solid line corresponds to the exact solution, and the dotted line corre-
sponds to the approximate one.
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Remark 1. In the given examples, the convective term is approximated by the
upwind scheme. Other approximations can be used to improve.

Remark 2. In the above examples, the approximation of the term with the source is
carried out constant in the considered moving segment. For improvement, other
approximations can be used to obtain an improved solution.

2.3 Obtaining an analytical solution with several moving nodes
2.3.1 Moving nodes method for a one-dimensional convective-diffusion problem

Due to the importance of convective-diffusion problems, we will apply multipoint
MNM to such problems [14]:

do 1 d’®
LS. 20
dx  Pe Jx? +S(x) (20)

Let us take an arbitrary one node inside the segment x € (W, E).

Let us consider a difference analog of Eq. (20), in which the convective term is
approximated by a one-sided difference relation.

Then the upwind scheme has the form:

1 1 1 1 1 1
PeUx:‘(jVW:(E—ZW) (Ugig _Ux:gzw)“’eﬂ(x)- (21)
This schema can be rewritten like this:
abU' = alUL +al, U, + F'(x), 22)
Here
ag = 2 ay, = g T 2 AL —al gl
E-WE-x)"" x-W) E-W)x—w) P “ETW

F'(x) = Pe - S(x)
Hence, we have

2(x — W)Uz + (E — x)(2+ Pe(E— W)Uy, (x — W)(E —x)

(E— W)(2+ Pe(E —x)) 2+ Pe(E —x) Pe-S(x) (23)

U' =

When x € (W, E) changes its position (let us make it moveable within the interval
(W,E)), based on (23) we obtain the values of the unknown function in each position.
In other words, U obtained with the help of (23), will give us an approximate solution
to the problem. Note that in this case, Uy, = ®(W), Uy = ®(E). The superscript
corresponds to the number of nodes being moved.

Adding additional moving nodes x; = *W x, = <£

Now we have three moving nodes x,x1,x,. Note that if x changes its position, then
x1 and x; also changes its position.

10
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A scheme of type (21) for a segment [W, x| has the form:

U: - U 2 U-uU: Ul-U3
Pe——— — L——L W) 4 Pe-S(x1). 24
e(x—W)/Z (x—W)(x—x1 x1— W +Pe-S(a) (24)

Here U3 = U3(xy).
A scheme of type (21) for a segment [x, E] has the form

Pe

Us - U3 2 (Up-U3 U3-U°
E—x; X7 — X

T2 Er )—I—Pe~S(x2). (25)

Scheme upstream for a segment [x1,x;] :

Pe

uUl-u; 2 (U%—U3_U3—U§
X — X1 (22 — x1)

) + Pe - S(x). (26)

Xy — X X — X1

Here U3 = U?(x,).
In (26) we exclude Ui’, U% using (24) and (25). Then we get the following diagram:

U - U3, 4 U - U? U - U3
) (

— w 3
Pe(x W) (14 11) (E—W E_;x 1+7,) x—zw,(1+11)>+F(x) (27)

Here we have introduced the notation.

711=2/2+0),y1,=24+6)/2, c =Pe(x — W),0 = Pe(E —x),
44Pe-(E-W) 11 4 -1

300\ — Dy . :
F°(x) = Pe - S(x) + W 1o S(x1) +

And U3, = ®(W),U; = ®(E).
(25) can be rewritten as follows:

a3U? = a3 Us + a3, Uy, + FP(x), (28)

where
3 _ 3 e 3 _ .3 3
g = EWE T AW = oW T EWE W) % = dw T i

Increase the number of moved nodes:

_x1+W _ x43W .+ xtx x4 W

X1 =73 S 5 >
— XX __ 3x+FE _ x+E __ x+3E
Xy =73 2 ,x2 =7 4

In the difference scheme (28), the unknown function appears at three nodes: W, x,
E. The function S is calculated at points x1, x, x,. Let us write a scheme of type (28) for
each of the segments [W,x] and [x1,x>)..

The scheme of type (28) for a segment has the form:

ay Us =a Ul +aqy, Ugy + F° (x1), (29)
where
23— 8 - 20 8
X W) a—x) (14 )W T =W (1) (W) (= W) (147, )

3 _ .3 3
ﬂxl —le—i—ﬂwf,

4+Pe-(x—W) 1-17 — 11
F3_(x1) = Pe - S(xl) + +x£W ) : 1+11* : S(xl ) +x—4 ’ ;}jtl ’ S(xir)’

11
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77 =2/224+0 ),y =2+607)/2, 6 =Pe(x; — W),0” =Pe(x —x1).

Similarly, we write a scheme of type (29) for the segments [x, W] and [x1, x5].
Excluding the obtained three systems of equations Ufcl and Uiz obtain a scheme with
seven movable nodes:

where
7 _ 2(1-p,) 7 _ _ 4Pe(1-1)) P(1-n) 7 _ 7 7
g = (E—W)(E—x)z(1—yg) Aw = (x—W)(1-7%) T (E-W)(x—W)(1-1) »dp = Ay +ag.

= 4/(4+0), 72 = (4+6)/4

8+ Pe-(x—W) (1—12)2 3. - x—W
7 1 i—1
F/(x) =Pe-S(x) + ' = . E g 75 S| W+j —

8 (1-7)" ; g E—x
W ZZ)/ x+ (4 —j) ek

1- 72 j=1 i=1

Continuing in this way, we can get a scheme with 2* — 1 moving nodes

- e e e e
al(,z 1)U(2k_1) = a]gz ) Uﬁf ) + a% 1) U‘(; ) +F(@) (x), (30)
where
G N e/ M Ca) B cou) I ) Pn)
E E-W)E-x) (1) W w-w) (1) T E-w)e-w) (1)’

az(azd’l) = a%ﬂ ! +a1(t32 . T = Zk/(zk + G)a?’k - (zk + 9)/2k’

1 4 Pe. (E— W) )P e
FE ) () = Pe () 4 7T ZZ# S<x+J )
21—y A3 ( ko aE—x
e S(x+ (2 =) )
E-W 1y ].1; 2

Figures 9 and 10 show graphs of approximate solutions to the problem (18),
obtained by (30) for W = 0, E = 1, with different moving nodes.

1_
0,81
0,61

0,41

0,21

0O !
0 0,2 0,4 0,6 08 1

X

Figure 9.
Pe = 20, @y = 0, Py = 1,S(x) = o. Approximate solutions of the problem. Dotted—at k = 1, dotted—Fk = 2,

dotted-dotted—Fk = 3, long dotted—Fk = 4, ravely dotted—Fk = 5. The solid line is the exact solution.
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Figure 10.
Pe = 20, @y = 0, Py = 0,S(x) = x,. Approximate solutions of the problem. Dotted—at k = 1, dotted—k = 2,
dotted-dotted—Fk = 3, long dotted—Fk = 4, ravely dotted—Fk = 5. The solid line is the exact solution.

It can be seen from the graphs that the approximate solutions give good results.
Remark. When obtaining many point-moving nodes, we proceeded from the
upwind scheme. It was possible to proceed from the other three-point schemes.

2.3.2 Analytical control volume method for a one-dimensional convective-diffusion problem

It is known that differential equations are obtained on the basis of the
integral conservation law. Therefore, discretization of the equations can be
carried out using the approximation of integral conservation laws. This method
is called the Finite Volume Method. Another name for the method is integro-
interpolation.

Consider a one-dimensional convective-diffusion equation on a finite interval with
boundary conditions in the form:

d d [ _do
O(W) =y, OE)=dg (32)

where u is the flow velocity in the x direction, p is the flow density, I is the
diffusion coefficient, S(x) is a given function (source), @ an unknown function. It
follows from the continuity equation that F = pu = const.

Consider Eq. (31) into segments [W, E]. To obtain an approximate analytical
solution to the problem using the control volume method, we take an arbitrary
point x € [W, E] and control volume [w, ¢] (Figure 11). Let us assume that the face
w is located in the middle between the points W and x, and the face ¢ is in the
middle between the points x and E. Integrating Eq. (31) over the control
volume and replacing the derivatives with the upwind scheme, we obtain the zero
approximation.

13
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Figure 11.
Control volume [w, €].

E-W
2

(CIE + aw)d)O = aEng —+ awéw + . S(x) (33)

Here ar = Erjx + max(—F,,0); aw = x?w"/v + max(F,,0). Sincex € [W,E|an
arbitrary point from (33), we can determine @° and obtain an approximate analytical
solution to problem (31).

Note that, from (33) it follows that, in the absence of a source ( S(x) = 0) on the
segments [W, E|, the function is monotone.

To improve the approximate solution, we take additional nodes:
x1 =W x, =*2E Let us write an upwind scheme of type (33) for the segment
(W, x], [x1,%2], and [x, E]. We get a system of three equations. We exclude the resulting

system ®*(x1), @'(x7) and as a result, we get an improved scheme:

! . ; . E-W
o el e s

1+71 149y 14171 1+y, 4 (34)
1 x—WSW+x—W n 1 E—xS +E—x
. . . . x .
1+ 171 2 2 14y, 2 2
where

n=1 =2, pr = 2Dw +F,ff =Dy +F, @y = 2D+ F -
af =2Dg +F", D =T/(E —x),Dw =T/(x — W), F~ = max(—F,0), -
F* = max(F, 0).
In (34), @' is the improved value of the unknown function at the nodal point
x(Pyy = Py, D = Dp).
where in (34), the improved value of the unknown function at the nodal point is x.
Solving (34) with respect to, we obtain an improved analytical solution. Again, to
improve the solution, we proceed in a similar way: we write the scheme (34) for the
segment [W,x], [x1,x2] and [x, E], and eliminate the unknowns at the points x; and x>,
and so on. Continuing this process, we get.

(1 yk)ak @k E W

1-0)pf  (1—n)ey 1-n)fy
[( Tk;,eﬁk n ( }’kzkak] & — %@kw + e
1—1, 11—y, T 1_]/’6 2
1— Tk X — J 1 -Ww 1-— 7k 1Y -1
S(x) + : ZZ% s(w+5= )T ' ZZ
1 k 2 1 k =1 l:1
E —
S<x+ 2 ) x) (35)
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Here

7, = %,yk — % p =Dy +F ,f =2Dw +F*t, af =2*Dg +F,-
af =2"Dp +F".
In (35), & is the improved value of the unknown function at the nodal point
x (D%, = Oy, DL = D). Solving Eq. (35) with respect to @*, we obtain an approxi-
mate analytical solution of the original problem.
Examples.
Figure 12 shows solutions to the problem (31) I" = const,R = pu /I = 20,S(x) =0
for segments [0; 1] with boundary conditions @y = 0, &g = 1.Figure 13 shows

a

a~||a~+

+

1_
0,81

0,61

0,44

0 02 04 06 08 1
X
Figure 12.

Comparison of the approximate solutions for S(x) = 0. Continuous line is exact, point—*k = o, dotted line—k = 1,
dot-dotted line—k = 2, long dotted line—k = 4, rare dotted line—k = 6.

-2
Figure 13.
Comparison of the approximate solutions for S(x) = 5cos4x. Continuous line is exact, point—k = o, dotted line—

k = 1, dot-dotted line—k = 2, long dotted line—k = 4, vave dotted line—k = 6.
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Figure 14.
Approximate solution for k = o. Solid curves are exact solutions, point curves are the finite difference method;
dotted lines—control volume method.

solutions to the problem (31)R = 50, S(x) = 5cos4x for segments [0; 1] with bound-
ary conditions @y = 0, @ = 1. The graph shows that, as k increases, the approxi-
mate solutions approach the exact one.

It can be seen from the graphs that, starting from k = 6, the exact and approximate
solutions visually coincide.

It is interesting to compare the analytical solution obtained by the finitely different
method (30) and the control volume method (R = 10, S(x) = 0).

From Figures 14 and 15, it can be seen that the solution obtained by the control
volume method is preferable.

1-
0,8
0,6
0,4

=

0,21

=

() e T e .
0 02 04 06 08 1
X

Figure 15.
Approximate solution for k = 1. Solid curves are exact solutions, point curves ave the finite difference method;
dotted lines—control volume method.
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2.3.3 Improving accuracy with Richardson extrapolation

Using the method described, we can improve the accuracy of approximate solu-
tions to the problem [39]. Linear combination Q?(x) = — 1UY(x) + 4U°(x) is more
accurately approximates the solution. With a linear combination of U (x), U?(x) and
U’(x) in the form Q (x) = 2 U"(x) — £ U?(x) + $¢ U’ (x), we obtain a more refined
solution to the problem [39].

Figure 16 shows graphs of approximate solutions to the problem (31) obtained by
Richardson’s extrapolation for W = 0, E = 1. The solid line in Figure 16-19 is the
exact solution.

Figures 16-19 allow us to state that Richardson’s extrapolation makes it possible to
obtain a more refined solution to the problem.

1_
0,8
0,6

0,41

0,2+

o 02 04 06 08 1
X

Figure 16.
@y =0, g = 1,S(x) = 0, Pe = 20. Comparisons of solutions. Dotted line is U3 (x), point line—Q3(x), dot-
dotted line—U" (x), long dotted line—Q7 (x).
0,41
0,31
0,21

0,11

0 - . . . ; i : . : .
0 02 04 06 08 1

X

Figure 17.
@y =0, g =0,S(x) = x, Pe = 20. Comparisons of solutions. Dotted line is U3 (x), point line—Q3(x), dot-
dotted line—U" (x), long dotted line—Q7 (x).
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Figure 18.
Dy =0, g = 1,S(x) = 0, Pe = 20. Comparisons of solutions. Dotted line—U" (x), dotted line—Q™ (x).

0,3- / '\
0,2 4

0,14

>

0 02 04 06 08 1
A

Figure 19.
@y =0, P = 0,S(x) = x, Pe = 20. Comparisons of solutions. Dotted line—U"> (x), dotted line—Q*> (x).

2.4 Moved node method for non-stationary problems

In the previous paragraphs, the application of the MNM for ordinary differential
equations has been considered. Here we consider the application of the MNM for
parabolic equations.

An example of a problem that leads to a parabolic partial differential equation is
the problem of heat transfer along a long rod, described by the heat transfer (or
diffusion) equation.

The problem is to find a function U(x,t) in the region Q = {(x,t) | W <x <E,

0 <t < T} satisfying the equation.

oU U
—=A— sb)s A
> P +f(x, 1) >0 (36)
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S—

Figure 20.
The region of solution

initial condition
U(x,0) = U%x)
and boundary conditions of the first kind
UW,t) =Uw(t); U(E,t) = Ug(t).

Let us take an arbitrary point Q in the area (x,¢) € Q (Figure 20). We will accept
this point as moving. We approximate (36) by the implicit scheme

Y(x,t) — U°(t) 2 (UE(t) —Y(x,t) Y(x,t) — Uw(2)
E—

t “Ar_w x  x-W )+f(x’t)’ (37)

In (37), Y(x,t) is an approximate analytical solution. When the point runs through
Q, we get a solution in the area under consideration. From (37), we get

_ (E—x)(x—W)
24t + (E —x)(x — W)

(E—x)(x— W)t

At + E—x)x—wy &b

2At[UE(t)(x — W) + Uw(t)(E — x)]

Y(x,1) 24t + (B — x)(x — W)

U°(t) +

(38)

Consider examples.

2.4.1 Test problems

Let us consider Eq. (36) 0 <x <1 with conditions
U°(x) =x, Uw(t) = 0, Ug(t) = e~*, f(x,t) = —xe*. Exact solution of problem is
U(x,t) = xe"". Figure 21 presents a comparison of the exact and approximate solu-
tions for the cross-section x = 0,5 and x = 0, 2. The solid lines are the exact solution.
Figure 21 shows the closeness of the exact and approximate solutions.

Let us consider Eq. (36)0 <x <1 with conditions U°(x) = sinzx +x?, Uy (t) =
0,Ug(t) =1, f(x,t) = —sinzxe ™ + z* sinzxe™’ — 2. Exact solution of problem
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L2

1,01

0,81

0,6 1

0,41

0,2+

Figure 21.
Solution comparison of the exact and approximate solutions for the sections X = 0, 5 and x = 0.2.

presents a comparison of the exact and approximate solutions for the sections
x=0,1, x=0,5, and x = 0, 8. Figure 22 shows the closeness of the exact and
approximate solutions.

Figure 22.
Solution comparison of the exact and approximate solutions for the sections x = 0, 1, x = 0.5 and x = 0.8.
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Figure 23.
Comparison of (39) and (41) (ved light approx. solution).

2.4.2 Unsteady flow of a viscous fluid between parallel walls

As a practical example, consider an unsteady flow of a viscous fluid between
parallel walls. Let a viscous fluid fill the entire space between horizontal planes located
at a certain distance from each other. Let the lower plane be stationary all the time,
and the upper one starts to move to the right at a constant speed. We neglect the
action of gravity and assume that the pressure is constant everywhere. The flow is
assumed to be directed parallel to the x-axis. Then the equation of motion of a viscous

fluid in dimensionless variables has the form.

P
o oy

The exact solution of the equation under the conditions:
u(0,y) =0, u(t,0) =0, ut,1) =1

looks like:

sin(kzy) exp(—k*z’t)

Let us replace (39) with the difference relation:

ui(t,y) —u1(0,y) ui1(t,y)

(39)

(40)

2 lul(t, 1) —u(t,y)

t—0 1-0 1—y

y

21
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From here, considering the boundary conditions, we obtain an approximate
solution in the form [15]:

2ty

y(1—y)+2t (41)

ur(t,y) =
Note that, tlimu(t,y) = tlim us(t,y) =y..

There is another approach to obtaining an approximate solution to Eq. (39). We
replace (39) with the following equation:

(42)

duy 2 [uwa(t,1) —ua(t,y)  ua(ty) —ua(t, 0)
d  1-0 1—y y—0

Considering Eq. (42) y as a parameter, and solving it, we get

w(t,y) = (1 ~ exp (mi—y)» (43)

This shows that partial approximation gives the best result (Figures 23 and 24)

2.4.3 Non-stationary convection-diffusion differential equation.
Consider the equation

ob 0P 1 0P

e = fx,t), 44
6t+6x Peax2+f(x) (44)

Under appropriate boundary and initial conditions. We approximate Eq. (44) as
follows

U(x,t) — U(x,0) Ulx,t) — UW,t)
t + x—W

(45) is an implicit difference scheme with a moving node. In this case, the
convective term was approximated by the scheme against the flow, and the diffusion
term, as usual, with the second order of accuracy.

The comparison obtained with the help of (45) of the approximate solution with
the exact solution (44) under the conditions
U%x) =x? +x,Uw(t) = 0, Ug(t) = 1+ e T, f(x,t) = (1 + Pex)e " + 2x — 2/Pe is
shown in Figure 25. Exact solution (W = 0,E = 1) ®(x,t) = x*> + ¢ 'x. In Figure 25,
the solid curves are the exact solution, the dotted curves are the approximate solution,
and the graphs correspond to the sections x = 0,1; x = 0,5; x = 0, 8. Figure 26
same results corresponding to¢z =1; ¢ =5; ¢t = 10.

Figures 25 and 26 show the acceptability of the approximate solution for the MNM.

It should be noted that with increasing Pe the discrepancy between the exact and
approximate solutions increases. On Figures 27 and 28 compare the same problem
with Pe = 2.

(45)

Pe(E— W)
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0 02 04 06 08 1
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Figure 24.
Comparison of (39), (41), and (43) on the section y = 0.8. Blue line on (41) black on (43), red fine.

Figure 25.
Comparison solution Pe = o, 5.

Thus, the MMN makes it possible to obtain an approximate analytical solution.

2.5 MNM for two-dimensional boundary value problems

Now let us consider the application of MMN to two-dimensional boundary value
problems to obtain rough approximate solutions of DE.
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1,6
1,4-_
1,2—-
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0,8:
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Figure 26.
Comparison solution Pe = o, 5.

Figure 27.
Comparison solution. Pe = 2.

Consider a convex closed two-dimensional region (Figure 29). P point inside area.
If P changes position inside the region, the boundary points E, N, W, S change their
positions while being on the border of the region.
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When studying stationary processes of various physical natures
(oscillations, heat conduction, diffusion, hydrodynamics, etc.), one usually leads
to equations of the elliptic type. The most common equation of this type is the
Poisson equation.

There are various approximate-analytical and numerical methods for the equation
of mathematical physics.

Consider the two-dimensional Poisson equation in a rectangle
(x,9) € [W,E] x [S,N]

AU(x,y) =f(x,9), (46)
with boundary conditions.
UW,y) =Uw(),U(E,y) = Ug(y),U(x,S) = Us(x), U(x,N) = Un(x). (47)

Take an arbitrary point in the rectangle approximation of second-order partial
derivatives:

U 2 [Ue(y) —ulx,y)  ulxy)—Uw(y)
aszE—W{ E-x | x-W 1 %)
02UN 2 Un(x) —u(x,y)  u(x,y) — Us(x)
@;ZNN—S{ N-y | y-s ] )

Substituting (46) and (49) into (46), and solving, the resulting equation with
respect to #(x,y), we have

- 1 (N—y)(y—S)
”(x’y)_(E—X)(x—W)+(N—y)(y_s)' [ T ((x = W)Ug + (E—x)Uw)+
W) (E—x)(x = W)(N —y)(y = S)

2(E—x)(x— W)+ (N —y)y —S))f(x’y)

(50)

(y —S)Un + (N —y)Us)} +

This is the approximate analytical solution of the Poisson equation in a rectangle.
(49) satisfies the boundary conditions. Due to the fact that (48) and (49) is an
approximate relation for the approximation of the second derivatives (50) is an
approximate solution. Nevertheless, (50) gives an acceptable solution to many
practical problems.

Consider examples.

2.5.1 Test problems

1. Consider the Laplace equation in a rectangle [0, 1] x [0, 1] with boundary
conditions U(0,y) = 0,U(1,y) =y,U(x,0) = 0, U(x,1) = x. The exact solution
to this problem is U(x,y) = xy. If we use the approximate solution (50), we
obtain. In this case, the approximate solution coincides with the exact solution.

2.The function U(x,y) = x* + y?, with boundary conditions
U(0,y) = =%, U(L,y) =1 -9 U(x,0) = x2, U(x, 1) = x> — 1 satisfies the
Laplace equation. Relation (50) gives us an identical result.
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3.The function U(x,y) = In(x* + y?), with boundary conditions
U(L,y) = In(1—-»%), U2,y) = In(4 +»?),U(x,0) = In(x?),
U(x,1) = In(x? + 1) in the region [1,2] x [0, 1], satisfies the Laplace equation. An

approximate solution based on (50) gives u(x,y) = 2—x)(x—1)+y(1—y)

(1 —y)((x—1)In(4+y*)+2—x)In(1+y?)) + (2 —x)(x — 1)(y In(1 + x?)+
+(1 — y) In(x?))]If we compare the exact and approximate solutions in the

area under consideration at pointsx; = 1+ ih,yj =jh, i,j =1,2, ...n with a step
h = 0,1 for the maximum difference, we obtain 0, 0011.

4.The function U(x,y) = x> — y®, with boundary conditions,
U(0,y) = =%, U(L,y) =1-%U(x,0) =x>,U(x,1) = x> — 1 satisfies Eq. (46)
for f(x,y) = 6x — 6y. Based on (50), the approximate solution has the form:

u(x y) :xy@ _x) +y4(1 _y) +x4(x B 1)
’ Yy —1) +x(x—1)

The maximum absolute difference between the exact and approximate solutions
calculated by points x; =1 + ih,yj =jh, i,j =1,2, ..n,h = 0,11is 0.048.

If we approximate the right side based on the control volume [35], the approxi-
mate solution has the form:

u(ayy) = LE=NA =30 +) + 3y) + 31 —y) + 20w — 1)
, 2p(y — 1) +x(x — 1)]

and the maximum absolute difference between the exact and approximate
solutions calculated by points x; =1+ ih,yj =jh, i,j =1,2, ..n,h = 0,11s 0.024.

2.5.2 Flow in an ellipsoidal pipe

The equation describing the one-dimensional flow in an ellipsoidal tube of a
viscous fluid has the form:

*U U Ap
ERr ] oD

Here u is the flow rate, p is the flow viscosity, Ap/l (Ap/I = const) is the pressure
drop. Eq. (51) is considered in the areaft—z +Z—§ <1 (section of an ellipsoidal pipe,

Figure 30), and the boundary condition is the no-slip condition (U = 0).
Eq. (51) is replaced by the difference

2 <UE—M_1,¢—UW>+ 2 (UN—u_u—US)__A_p
Je = Iw \JVe—YV JVJJw ZN —&S \Z&N —% Z—2Z§ ul

Hence, given that

zy = b\/1—92/a?, zs=—b\/1—9y?/a?, yEza\/l—zz/bz, yW:—a\/l—zz/bz.
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X

Figure 28.
Comparison solution. Pe = 2.

N

H% F

hy
Figure 29.
The convex closed two-dimensional vegion.

A

Figure 30.
Ellipsoidal pipe section.
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we get
21,2 2 2
u:Lz(l_y__z_>A_P
2(a? +b?)

coinciding with the exact solution.

2.5.3 Two-dimensional temperature field in a solid

This problem is reduced to solving an equation AT = 0, with boundary conditions
T(0,y) =0,T(1,y) =0,T(x,0) =Ty, T(x,1) = 0.

Exact solution to the problem

T(x,y) = iA,, sin(nzx)shinz(y —1)]

n=1

where A, = % 7[(;();,51].

Approximate solution
(1 —x)x(1 —y)To
x(1-x) +y(1-y)
The maximum absolute difference between the exact and approximate solutions
calculated by points x; = ih,yj =jh, i,j =1,2, ..n,h = 0,011is 0.015.
Thus, the method presented here allows for obtaining solutions to Dirichlet prob-
lems. To improve the solution, the mesh refinement technique can be used.

To increase the accuracy, increase the number of moved nodes. When the number
of nodes to be moved is four, we get.

PO PR S V- 1-x | A y 1-y
) {1 A+B[8 ((1;6>Z+B+(;>2+B>+ : (( 2+A+<¥>2+A)H

T(x,y) =
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The maximum absolute difference between the exact and approximate solutions,
calculated by points x; = z'h,y]. =jh, i,j =1,2, ..n,h = 0,1, is 0.14 according to the
formula with one moving node, and when calculating with five moving nodes, it is 0.07.

2.5.4 Flow in a rectangular pipe

Eq. (51) also describes the flow of an incompressible viscous fluid in a rectangular
pipe. Let us denote the height of the rectangle parallel to the axis Oz as 24, and the
base parallel to the axis Oy as — 20/, where ¢ is any positive constant. We draw the axis
through the center of the rectangle and direct it downstream.

Let us transform Eq. (51) into a dimensionless form. For the scale of lengths, we
take the height, %, and for the scale of speeds—the value 2*/u - Ap/l. We introduce the
following dimensionless quantities:

Y=y/h, Z=z/h, V="Uul/(K*Ap)

Substituting into (51), we obtain

o’V PV
—+t—=- 52
o2 o (52)
Boundary conditions for (52)
V(Y,~-1) =0, V(Y,1) =0, V(-6,Z) =0, V(6,Z) =0 (53)

Eq. (52) is replaced by a difference equation and taking into account the boundary
condition (53) we have

2(-Vv Vv +2 -V VN
26\c—-Y Y+o 1+1\1-2Z Z+1)

From here we determine the approximate analytical solution:

1 (P-r)a-2)
2 1-Z2 402 —y?

(54)

The exact solution of the problem has the form:

1662 A (—1)"
u =
]7:3 n=0 (21’1 + 1)3

ch (2 £¥)

2n+l n
Ch( 2 o

1

2
cos( 7 +1 EZ)
2 c

Figure 31 shows a comparison of the exact and approximate solutions on the cross-
section x = 0 for 6 = 1. The maximum absolute difference between the exact and
approximate solutions is 0.045.

To increase the accuracy of the approximate solution in Eq. (52), we approximate
only one of the terms. For example, we approximate Eq. (52) as follows:

2 ([ -V 1% 0’V
- — = -1
20 (0 ~-Y Y+ 0) oz (55)
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Figure 31.
Comparison of the solution on the section according to (54).

We got an ordinary differential equation, we consider the variable Y in Eq. (55) as
a parameter. We solve Eq. (55) with constant coefficients, considering the boundary
conditions, we find an approximate solution

V =Cjexp <\/1;Z) + C, exp(—\/ng) +]%. (56)

Here
1 exp(Vk)—exp(—vk
=20 = V)Y +0)),Co =~} SRR

C1=—-C;— exp <2\/l€> -1 exp(—\/@.

Figure 31 shows a comparison of the exact approximate solution obtained based on
(56) on the cross-section x = 0 at ¢ = 1. A comparison of Figures 31 and 32 shows that
the calculation by formula (56) gives a more accurate result. The maximum absolute
difference between the exact and approximate solutions is equal to that obtained by
(56) and equals 0.024. In Figures 31 and 32 solid curves are the exact solution.

..........

Figure 32.
Comparison of the solution on the section according to (56).
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Figure 33.
Coordinate systems and the region of solution.

2.5.5 Flow at the inlet section of the pipe

With appropriate simplifications, the flow of a viscous incompressible fluid in a
dimensionless form is described by the following differential equation:

ou 1 1 [Pu du
“as%“%(@*%} 7)

Here, N = —12 is the pressure drop, Re is the Reynolds number. The equations are
considered in the area D : —0,5<x<0.5, 0<y<L. (Figure 33). Boundary condi-
tions for (57):

u(0,y) =1; u(L,y) =1,5(1— 4°);
u(x,—0,5) = 0; u(x,0.5)=0.

The convective term is linearizable

Jdu _ou
U N
Approximating in (57) by the liquid volume (y + 0,5)/2<y<(y — 0,5)/2, we
obtain an ordinary equation, solving which we obtain an approximate solution:

1— 47

u = Cy exp(kix) + Cy exp(kax) — N, (58)

Wherekl’ZZ%(I:I:,/l—f—ﬁz_‘B}z)).

For comparison, solutions (57) were also made with the numerical method.

Figure 34 shows the velocity profiles obtained on the basis of an approximate
solution. The solid curve to the section x = 0,1, and the pointed curve tox = 0,5, the
dotted one corresponds to the section x = 3. Figure 35 shows a comparison of the
approximate and numerical solution of Eq. (57). The solid lines correspond to the
solution (58), and the dotted lines correspond to the numerical solution (velocity
profiles are given for the cross-section x = 0,1and x = 0, 5).

2.6 Solution of the flow problem in the combined region

Exact solution. Let a liquid flow in a flat pipe partially filled with a porous medium.
The lower part of the horizontal pipe is filled with a porous medium of height h
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Figure 34.
Approximate solution based on (58). Velocity profiles corresponding to sections x = 0,1;0,5;3. Re =1, L = 5.

(pipe height H). Considering the flow to be one-dimensional and stationary, we
obtain from the Rakhmatulin equation [16, 17], we obtain

du ( .du _ dp

In (59) for the parameter K, we use the Kozeny-Karman relation as adopted in
porous media:

_uf
K= P (60)

where the k = permeability, d is the characteristic size of the porous

&f
150(1—f)*”
medium.

Let us pass to dimensionless variables assuming v = #U, y =yH,x =XH, p =

pR%zp. Then Eq. (59) in dimensionless form for f = const, has the form:
— —Au=—. (61)

Here A = 180(H/d)*(1 —f)* /f*.
In the free zone, the one-dimensional flow satisfies the equation
d’u _dp

In the future, in Egs. (61) and (62), we release the dash above the variables.
Eq. (61) is considered when 0 <y <k, and Eq. (62) ko <y <1. Equations are
solved under the following boundary conditions.
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No-slip conditions for Eq. (61) to the lower walls, and for Eq. (62) to the upper
walls:

u(0) = 0, u(1) = 0. (63)

In the inner boundary region, we set the conditions for the continuity of the flow
and the equality of the shear stress:

du(ho — 0) A du(ho + 0)

u(ho — 0) = u(ho + 0), dy dy

. (64)

It is easy to obtain an analytical solution of (61) and (62) under the given boundary
conditions. Figure 36 shows an analytical solution. The dimensionless pressure

difference is adopted Z—ﬁfc = —12, so that it corresponds to the flow without a porous
layer. The dotted line corresponds to the solution obtained with a porosity of 0.3, and
the dotted-dotted line is 0.5.
Numerical solution. Consider eq. (61) for the entire region and set
f:{enpu0<y<h0. (65)
1npuho<y<1

In this case, Eq. (61) in the pure region takes the form (62). Thus, Eq. (61) can be
used in the entire area, with porosity (65), while the interboundary conditions are
satisfied automatically (in the porous layer, the porosity is taken equal to €). For this
purpose, a finite-difference approximation of Eq. (61) was compiled and calculated
using the sweep method in the combined region. Figure 37 presents the results of
numerical calculations (solid curves are the analytical solution, and point data are the
numerical results). This shows that it is possible to perform a thorough calculation
without highlighting the interboundary condition.

Approximate analytical solution using a moving node. Using the moving node
method, one can find an approximate analytical solution to the problem.

0,2 04
Y

Figure 35.
Comparison of approximate and numerical solution. Re = 1, L = 5.
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Figure 36.
Exact solution: velocity distributions for different porosity values.
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Figure 37.
Comparison of exact and numerical vesults for different porosity values.

Egs. (61) and (62) is approximated by difference relations:

2 (ug—u u _dp
o (ho Y —y) —Au—dx. (66)
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2 —u  u—ug\ dp
1—ho(1—y_y—h0>_dx' (67)

In the difference Egs. (66) and (67) no-slip boundary conditions are used. In Egs. (66)
and (67)ug— the value of the unknown function on the inner boundary. To find ug, we
use the second interboundary condition (64). We put in (66) y — ko — 0, then we have

2 (du u dp
h—O (@'hoo — h—0> — AMG = E ' (68)
If in (67) y — ho + O then we have:
2 —uc du _dp
1—hg (1 —ho @'hﬁ(’) T dx’ (69)
Using (64), we obtain
ho(1—ho) dp

(70)

YT T R (1 —ho) dx

Using (70) from (66) and (67) we determine the distribution of velocities in the
porous

u= J (ho—y+ 201 — ho) )Z—i. (71)

24+ (1 — ho)

0.9
0.8
0.7
0.6
u 0.5]
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Figure 38.
Solution comparison.
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and free zone

u —

1y (A-ho)y —ho) . hol—ho) \dp
1—ho< 2 +2+Ahg(1—ho)> dx’ 7

Figure 38 compares the exact and approximate solutions (the solid line is the exact
solution, and the dotted line is the approximate one obtained using (71) and (72) at
A =40000,ko = 0,2).

3. Conclusions

The method of moving nodes allows one to obtain approximate analytical solutions
for boundary value problems of mathematical physics.

This is especially true in engineering applications, to obtain a rough analytical
representation of the solution. The analytical method has its advantages over the
numerical ones for its subsequent use and analysis of the structure of the solution.

To refine the solution of differential equations, you can achieve this by adding the
number of nodes to be moved.

The examples given show the possibilities of applying and using the method of
moving nodes for applied problems.

Using the method of moving nodes based on the upwind scheme, compact
schemes with high resolution for convective-diffusion problems are constructed.

4. Chapter 2. Application of the moving node method

Abstract. In the first chapter, we considered MNM for some boundary value
problems in order to obtain an approximate analytical solution. This chapter
focuses on some uses of moved nodes. With the help of multipoint moving
nodes, improved schemes are built for the convective-diffusion problem. It is
proposed to improve the accuracy of schemes using the Richardson extrapolation
method. Some properties of schemes are also presented for research with the
help of MNM

Keywords: Difference equation, compact schemes, convective-diffusion,
approximation error, moving node, boundary value problems, finite volume

4.1 Obtaining discrete compact schemes for the convective-diffusion problem of
MNN

Of great interest is the construction and analysis of the discretization of a singu-
larly perturbed ordinary differential equation of the second order. The equation of
convection-diffusion is basic in modeling fluid flow at high Reynolds numbers and in
convective mass exchange at high Peclet numbers. Many works are devoted to this
subject [25, 40-45].

Numerical solutions of the convection-diffusion equation often show numerical
fluctuations. In practical calculations, many authors have observed parasitic oscilla-
tions at high Peclet numbers when the central approximation for the convective term
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is used. On the other hand, the upwind scheme usually leads to unpleasant artificial
numerical diffusion.

This dilemma is central to the numerical solutions of convection-diffusion
problems.

In order to compute approximate solutions to a partial differential equation, some
form of local approximation must be used. This means that the decision values at each
node are used to generate an approximate decision value. With finite differences, one
usually tries to make the local area as compact as possible, for example, using only
neighboring nodes when updating on a node.

If we consider the approximation of the convection-diffusion problem on a uni-
form grid, we can observe that most of the literature deals with the choice between
schemes in a three-point pattern: (W,P,E). To obtain an approximation of a high order
of accuracy, it is necessary to increase the number of points of the computational
pattern.

Here we use the structure described in the first chapter to derive a new finite
difference scheme [14]. Although such a procedure cannot be easily generalized to
partial differential equations with variable coefficients.

Consider the DE of convection-diffusion

do 1 d’®

& e g TS 7
with boundary conditions.

D(0) = P, P(1) = P4 (74)

where Pe is the Peclet number (Pe = pvL/I') , (v is the velocity, p — density, L is
the length scale, I' is the diffusion coefficient, x is the dimensionless coordinate, S(x)
is the source.

On [0,1] we introduce a non-uniform grid

Q= {xi,i =0,1,2, ....,N,0 =x0<x1< ... <Xj_1 <X <Xjip1 < ... <XN = 1}

In the first chapter, with the help of moving nodes, an analytical solution
to problem (73), (74) was constructed. When constructing compact circuits,
we rely on a circuit against the flow, which is monotonic for any Peclet
numbers.

Let us rewrite the scheme against the flow (21) for the segment (W,E)

ut-u, 2 <U}E—U1_U1—U},\,

P —
oW T E-WUE-x  x-W

> + Pe - S(x). (75)
In (75), the equation relates the unknown function at three points: W, x, E,
i.e. Eq. (75) is written in a three-point pattern. Now let us write Eq. (75) for

an arbitrary internal node x;, which is connected with neighboring nodes x;_1, x; 1.
Then

Pe

Ui-Ups_ 2 (U3+1 -U; _Ui-Ui,

Xi—Xi—1 (Xiy1 — Xi—1)

) + Pe - S(x;). (76)

Xit1 — Xi Xi —Xi-1
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Here,i =1,2, ...,i, ...,N —1and Ui1 means the approximate value of the unknown
function at the node x;.
This schema can be rewritten like this:

abUb = apUg + aj, Uk, + F7, (77)
But now
Sl 2 —\ | Pe n 2
B (i — xi) (i — %) W (o —xi1) (i1 — 1) (i1 — %) (78)

ap = ag + ayy, Fi = Pe - S(x;)
To increase accuracy, based on three moving nodes (28),
a3U3 = a3Us + al, Uy, + F3, (79)
8 23— 2Pe I 8
(i —oi1) (i1 =) (14r1) > W 7 (ei—io1)(1471) (i —o6i1) (i —xi-1) (1471) 2
ay=ad, + a3}, 0="Pe(xi1—x;),0=Pe(x;—xi1),1=2/2+0),y,=(2+0)/2
F} = Pe - S(x;) + A58l 2t S, g ) + A B S(xi10)0)

Xif1—Xi-1 1+7; Xi1—%i1 y1+1

3 _
here a3 =

xi1/2 = 0,5(xi-1 +x:), X%i1172 = 0, 5(x; + xi41).

Based on with 2¥ — 1 moving nodes (31), we have

(1) @) _ (#0000 @F) 0 o

ap P = 4dg E +ay w o TF J (80)
where
L) 2%11(1 —y) L) 2%t1pe(1 — 1)
E - »YTW -
(i1 = xi1) (i1 — x0) (1 7F) CEESICEEY

22k+1(1 . Tk)
(%31 — xi-1) (o0 — i 1)(1—Tik>

k1 k1 2k _1q
“1(> ) :as,v ) +a§ ).rk :zk/(zk —|—0),yk = (2k +9)/2k,
WAL L P (xiin — 1) (1 — )22 S e
Fl_(Zkfl) :PeS(xl)-i- + Pe (xz—i-l Xi 1) ( Tkk) T -1 S(xz +] - 1>_
Xip1 — Xi1 1_113 == ok
2k+1

(1- Yk 22k_1j 1 k N Xjp1 — Xi

Xit1 = X1 11—y, 599 i

Let us consider numerical experiments.

Figures 39 and 40 show graphs for solving problem (73), (74) for Pe = 50 on
segments [0; 1] with boundary conditions @y = 0, ®; = 1.Figure 39 corresponds to
S(x) = 5cos4x, and the graphs in Figure 40 are obtained with
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Figure 39.
Comparison of various schemes with source term S(x) = 5 cos 4x.
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Figure 4o0.
Comparison of various schemes with source term (81).

10 — 50x if x<0,3
S(x) = { 50x —20 if 0,3<x<0,4 (81)
0if 0,4<x

The numerical results are obtained for 2 = 0,1 and the grid Peclet number is equal
to 5. The solid lines are plots of the exact solutions of the problem. Circle symbols are
obtained for the upwind scheme, rectangles according to the Patankar scheme, aster-
isks according to (79), diamonds according to (80) at k£ = 2, and circles according to
(80) atk =7.

Table 1 shows the root-mean-square errors ¢ = \/ lev (@(x;) — U;)*/N for the

considered schemes. @7 is exact solution at nodal points, Ui is numerical solution
obtained by the considered schemes, N number of nodes.

39



Numerical Simulation

Scheme Upwind Patankar 79) (80), k=2 (80), k=7

S(x) = 5cos 4x 0.361 0.300 0.192 0.096 0.004

S(x) with (81) 0.282 0.199 0.154 0.077 0.003
Table 1.

The VOOt—WL@ﬂTl—X@MﬂV@ errors.

From Figures 39 and 40, and from the Table 1, it is clear that the proposed
schemes give good results.

4.2 Construction of compact schemes of the convective-diffusion problem based
on the finite volume method

The finite volume method is one of the methods that can give a good approximate
solution to the problem. Here we explore the application of the finite volume method
to solve the convection-diffusion equation for constructing compact schemes.

The basic strategy of all finite volume methods is to write the differential equation
in a conservative form, integrate it over small domains (called “cells” or “finite
volumes”), and transform each such integral over the cell boundary.

Our goal is to construct a qualitative scheme for the problem (82)

d d d
S loue) = 5 (7 +5(x) (52)
®(0) =Py, P(1) =Py (83)

based on the control volume method. The procedure for obtaining a scheme is
similar to that described in paragraph 4.1.
On [0,1] we introduce a non-uniform grid

Q={x;,1=0,1,2, ...,N,0 =x9 <x1 < ... <xj_1<X;<Xj;1< ... <xy = 1}.

In the first chapter, with the help of moving nodes, an analytical solution to
problem (82), (83) was constructed using the control volume method in the form.

(I—m)p  (A—r)a, (1—w)py (1=, E-W
; o k + 2k k Uk — k Uk + Zk k Uk 2k+1 S(X)+
— T 1—yk 1—rk 1—yk
i ‘
-7 x—W 3 ( ,x—W)
- - 7, S(W+ +
1_ T]%k Zk ]Zl ; k ] 2Ie
(84)
1— Vi E X
- ]/Zk i-1g <x + (2° —j) )
k

Here 7}, = ,ﬁ,yk f, By = 2Dy +F ,Bf = 2*Dyw + F*, af =2*Dp + F,
af =2Dg+F', F~ = max(~F,0), F" = max(F,0), Dg=1I/(E —x),
Dw =T/(x —W).
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Now let us write Eq. (84) for an arbitrary internal node x;, which is connected with
neighboring nodes x;_1, x;1.

Then
(1- Tle)ﬂl;F (1- Vk)a; k (1- Tk)ﬁ]j k (1- yk)a; ko Xivl — Xi-1
+ Up* =—=2U5, + Uy + - S(x;)+
1— Tik 1— Yik 1— T,%k w 1— }’]%k E 21e+1 ( )
Y .
1—1p X —Xiq x= _ X — Xi—
1- Ty j=1 m=1
%*-1 j (85)
11—y, Xip1 —Xi m—1 ke A\ Xitl — Xi
L T y S(xi+(2 _])—).
1—-77 2 = mzl 2

What does it have to do with Dg =T"/(x;11 — x;),Dw =T'/(xi — xi-1), .

4.3 Improving the accuracy of circuits using the Richardson extrapolation method

The Richardson extrapolation method is used to solve grid problems on a sequence
of grids. The method consists in carrying out calculations for the same circuit, with
different steps. Then we have several grid solutions. On the basis of the grid solutions,
some linear combination is compiled. The resulting linear combination has a higher
order of accuracy.

Creation of new schemes using Richardson extrapolation based on the schemes
given in paragraph 4.1.

The accuracy of scheme (76), with a uniform arrangement of grid nodes, is O(h).
Scheme (79) has order O(%/2). For a linear combination
Q3(x;) = — 3 U (x;) + 3 U?(x;), we get an approximation error for a uniform grid
O(hz). A linear combination of U (x;), U>(x;) and U’ (x;) in the form Q’ (x;) =
= UNxi) — $UP(x;) + §2 U7 (x;) has an approximation order of O(h4). Consider
N = 10, S(x) = x2, Pe = 30. Table 2 shows the absolute difference between the exact
and approximate solutions according to the schemes.

Table 3 shows the root-mean-square error o = \/ S V(@(x;) — U;)?/N for the

considered schemes. @(x;) the exact solution at the nodal points, U; is the numerical
solution obtained by the considered schemes.

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

U (x;) 0.001 0.004 0.007 0.011 0.017 0.025 0.039 0.073 0.160

U3(x;) 0.001 0.002 0.004 0.006 0.008 0.012 0.018 0.034 0.089

U7 (x;) 0.000 0.001 0.002 0.003 0.005 0.007 0.010 0.019 0.046

x;) 0.000 0.001 0.002 0.004 0.006 0.007 0.010 0.021 0.065

x;) 0.000 0.001 0.001 0.002 0.003 0.005 0.007 0.014 0.030

Table 2.
The absolute difference between the exact and approximate solutions.
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Schemes U'(x) U3(x) U’ (x) Q3(x) Q’(x)

S = x?, Pe = 50, Oy =0,Pp=1 0.047 0.023 0.011 0.015 0.006

S=10,Pe =50, Py =0, D =1 0.033 0.017 0.008 0.011 0.005

S=x? Pe =100, Oy = 0, Dg =1 0.034 0.014 0.006 0.008 0.003

S = 5cos(4nx), Pe = 50, Oy = 0, Dg =1 0.213 0.120 0.061 0.090 0.038
Table 3.

Comparison by the root-mean-square ervoys.
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Figure 41.
Pe = 100, S = 5c0s4mx Solid curve exact solution, circle obtained by scheme U?, circle by UP, solid rectangle by U7,
diamond by Q, star by Q.

Figures 41 and 42 show numerical solutions for ®y = 0, ®g = 0.
From the graphs in Figures 41 and 42, and from Tables 2 and 3, it is clear that the
Richardson linear combination allows you to get a more improved circuit.

4.4 Influence of the choice of profile on the face of the control volume on the
quality of difference schemes

When obtaining discrete analogs of the convective-diffusion problems given
above, on the basis of multipoint PUs, it was possible to construct better compact
circuits in a three-point template. However, there is another approach to improve the
quality of the scheme based on the choice of the decision profile.

Since the work of Leonard, in order to improve the results of the numerical
solution, attempts have been made to improve the algorithm, which is built in a five-
point pattern.

In all the above schemes (except for the scheme against the flow), the conditions of
boundedness and non-negativity of the coefficients are violated.

Here it is proposed to improve the scheme based on the choice of the solution
profile on the edge of the control volume in the three-point template of the
convective-diffusion problem. The upwind scheme with one-sided differences is
taken as the initial scheme. The QUICK scheme uses quadratic upwind interpolation

42



Moving Node Method for Deferential Equations
DOI: http://dx.doi.org/10.5772/intechopen.107340

_—
0 02 04 006 08 1
X

Figure 42.
Pe = 100, S = exp.(—4x). Solid curve exact solution, circle obtained by scheme U”, circle by UP, solid rectangle by
U7, diamond by Q°, star by Q’.

to determine the convective flow. Here we use the solution obtained by the upwind
scheme based on the method of moving nodes.

MNM for simple cases allows one to obtain an analytical representation of the
solution between the nodal points of the boundary value problem. Based on this
representation, it is possible to construct a better discrete scheme.

We integrate (73) over the control volume [w, €]

1 (do\ 1 [dd\ |
dje — @w :ITe <E)e _ITe (E)w + JS(.’XJ)d.’X?

Replacing the derivatives with difference relations, we have

b, — Dy T =5 7 7 N\ (xe _xw)fp- (86)

Heref, = - [ S(x)dx. Depending on the type of function profile & on the

control volume, different schemes are obtained.
Let the profile @ be piecewise constant in each control volume. Then, assuming
&, = ¢Op, P, = Dy, we have an upwind scheme:

1 &g —Pp 1 Op— Dy
op—Ppyy=— —— — — ——— e — Xuw)f p- 87
P W Pe xg —xp Pe xp—xw e = )fp (87)

If the profile @ is linear between the nodes and the edges of the control volume
are located in the middle between the node points, we have a scheme with central
differences:

Pp+Pp Pp+dy 1 Pp—Pp 1 Pp— Dy
2 2 "~ Pe xg—xp Pe xp—xw

+ (%0 — X )f p- (88)
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To improve the accuracy of circuits, many authors recommended various circuits.
All these schemes are multipoint (more than three). Here is a way to improve three-
point circuits.

From (87) we get

Xp — Xw (xE—xp)(1+Pe(xp —xw))
bp = b + D+
P Pe(xg — xp)(xp — xw) + XE — xXw E Pe(xg — xp)(xp — xw) + XE — Xw w

N (xp —xw)Pg + (xg — xp)(1 + Pe(xp — xw)) Pw (89)
Pe(xg — xp)(xp —xw) + XE — Xw

If the nodes xg and x are fixed, and the node xp is movable, we get a profile ®p
between the nodes xg and xy . This profile is used in (86) to determine @, and @,,.

To improve scheme (87), we proceed as follows. Eq. (89) connects at three nodes
(xw,xp, xg), if we apply Eq. (89) for nodes ( xw,x., xp), we have

24+ Ry 2 Ry, h

AR, P T A R T AR, 1 9) s (90)
Similarly, for nodes ( xp,x., xg), we have
2+ Ry 2 Ryh
= Dp + Dy + . 91
P RN STy L 1)
Substituting (90) and (91) into (86) we have
R yolp— 142 R0 g, 1 [1- ®p + h Ryf Ry (f —f.)-
4 1R, P 4+R,| Y 4+R E WP T4 4R,
(92)

The condition R, < 4 is ensured by the positivity of the coefficients and the
stability of the scheme (92).

Proceeding similarly as in the derivation of (92), but using (92) for the profile, for
a uniform step we obtain

(4+R,)* —16 1 16 (4+Ry)° 1

2 Pp = |-~ 2 2 o | Pwt
(4+Ry)"+16 Rp (44 Ry) " +16 (4+Ry)"+16 Ry

h(8R), + 8R;

ps(p) + R ) ) (Stra) — S(x)

2[(4+Rh) +16}

(93)
Test problems

1. Consider the equation

du 1 d*u

% Pe 12 + sin zx.

with boundary conditions #(0) = #(1) = 0. Table 4 shows the maximum absolute
differences of the schemes calculated at the nodal points ( # is the exact solution of the
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Pe Ry, max|u — u| max|u — u;| max|u — us| max|u — uy| max|u — us|

100 10 0.0526 0.03770 0.1801 0.03701 0.00077

1000 100 0.0470 0.0464 0.2732 0.01607 0.00927
Table 4.

The maximum absolute differences.

problem, u, is the solution obtained according to the upwind scheme, u; is according
to the power law, 3 according to the Leonard scheme, #4 according to (92) and us-
according to the scheme (93).

2. Consider the equation

dx  Pe Jx? ’
with boundary conditions #(0) = 0, #(1) = 1, with source
10 — 50x, 0<x<0.3,

s(x) =< 50x —20, 03<x<0.4,
(OR 04<x<1

Figure 43 shows that scheme (93) gives the best results. Leonard’s scheme gives an
incorrect solution near the right boundary. Scheme (92) also exhibits a slight
non-monotonicity. This is due to the fact that scheme (92) is stable for R, <4.

) I
_ PN
0,8 / ;
?Lh: ] “f’é.,\
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1 ™ .
0}6 "Jl:.:l Qél |
| fll - *'h'\ JI
ﬂﬂ‘g 0°F33555555953 7
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ﬂ,z _) D000 OO 000 'y *
0% -
o 02 04 06 08 1
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Figure 43.
Comparison of various schemes. Pe = 100, Rj, = 5. The solid line is the exact solution, the circle is the upwind
scheme, the circle is the Patankar scheme, the asterisk is the Leonard scheme, + is the scheme (92), the diamond is

according to (93).
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Figure 44.

Comparison of various schemes. Re = 500, Rj, = 25. The solid line is the exact solution, the circle is the upwind
scheme, the circle is the Patankar scheme, the asterisk is the Leonard scheme, + is the scheme (92), the diamond is
according to (93).

Figure 44 Shows that for large grid Peclet numbers, the upstream and Patankar
schemes give close results. Scheme (93) gives the best results. This can also be seen in
Table 5, which compares the considered schemes (SDS—central scheme).

3. Two-dimensional case. Consider the equation

d 1 (g dg
o —(ax2+ay2 sbey).

Exact solution g = 6y'°(1 — y19)(1 — x3) + 6x%)(1 — y). The equations are solved in
the area [0, 1] x [0, 1]. The source term is defined so that the given function is a
solution to the equation. The boundary conditions were determined based on the
exact solution. Table 6 shows the results of calculations according to the schemes.

From Table 6, it is clear that the proposed schemes show the best results.

4.5 Schema improvement with flow equality

MNM can improve the quality of the scheme. We demonstrate this method based
on the upwind scheme (87) written in the form:

®p — Dy 2 Gy — Pp D — Dy
xp—xw  Pe(xg —xw)

>+3@@. (94)

XE — Xp Xp —Xw

In (94) we pass to the limit at xg — xp and, assuming the existence of the limit, we
have
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Scheme Re h Ry, max|u — u,| D i~y )|
u;
Upwind 100 1/40 2.5 0.1627 0.2116
100 1/20 5 0.3258 0.4224
500 1/20 25 0.3650 0.4101
Power 100 1/40 2.5 0.0833 0.1057
100 1/20 5 0.2385 0.3025
500 1/20 25 0.3454 0.3868
(8) 100 1/40 2.5 0.0164 0.0169
100 1/20 5 0.0460 0.0401
500 1/20 25 0.0531 0.0398
(12) 100 1/40 2.5 0.0129 0.00840
100 1/20 5 0.0452 0.0358
500 1/20 25 0.0571 0.0404
QUICK 100 1/40 2.5 0.0700 0.0701
100 1/20 5 0.2231 0.1931
500 1/20 25 0.3653 0.2055
CDS 100 1/40 2.5 0.1237 0.0062
100 1/20 5 0.3033 0.0467
500 1/20 25 0.5136 0.1355
Table 5.

Comparison of civcuits with respect to grid Peclet number.

Dp— Dy 2 dd, @p— Dy
xp—xw  Pe(xp —xw)

)+ Stan)

d.X'p Xp —Xw

Here, d®, /dxp is the left-hand derivative of the unknown function at the point xp.
From here

Scheme Re =100,z =5, =0,1 Re =500,7» =5,h =0,1 Re =1000,7» =10,2 = 0,1

max|g — g | 2 kgl maxlg — g | 2 kgl max|g — g | 2 g8,
> kel > el >l

Upwind 0.150 0.074 0.169 0.074 0.186 0.129
CDS 0.074 0.023 0.035 0.018 0.470 0.382
Power 0.130 0.061 0.165 0.071 0.184 0.127
QUICK 0.063 0.017 0.020 0.0051 0.097 0.016
(8) 0.035 0.019 0.013 0.008 0.057 0.023
(12) 0.033 0.016 0.008 0.005 0.060 0.015
VONOS 0.055 0.016 0.019 0.005 0.073 0.015

Table 6.
Results of calculations of errors according to the schemes.
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d@; o 2 —|—P€(xp — xw) bp — Dy Pe(xp —xw)
dxp N 2 Xp —Xw 2

Similarly, taking an arbitrary point x € (xp,xg) and passing to the limit x — xp, we
find

d@; 2 @E — @p PE(XE — xp)
- : + 'S(xP)’
d.X‘p 2+Pe(xE—xp) XE — Xp 2+P€(.’X‘E—xp)

By equating d®" /dx = d®~ /dx the flows, we get an improved scheme:
Cp@p = ﬂp(pw + hp@E + dpS(.X‘p) (96)

where

2+Pe(xp—xw) _ 2 —
(xp—iicw)w » bp = [2+Pe(xg—xp)|(xg—xp) »cp = ap + bp, .

Figure 45 shows a comparison of the exact solution and the schemes according to
(87) and (96) for Pe = 5, with one moving node (S(x) = 0). It can be seen from the
graph that the solution is improving. Numerical diffusion decreases.

ap =

4.6 Investigation of the scheme by the MNM

At this point, we are dealing with monotonicity and MMN approximation of the
circuit. On the basis of the analytical form of the approximate solution of the problem
between the nodes, which is obtained on the basis of the MMN, it is possible to
investigate monotonicity and the type of approximation of the scheme.
4.6.1 Investagation of monotonicity

Scheme with central-difference approximation of the convective term. Consider

Eq. (73). Take a segment [x;_1,x;11] C[0, 1] and any point x = x; € (x;_1,Xi+1).
Consider the grid analog (73)

11
0,81
0,6

0.4 1

0,2 1

Figure 45.
Comparison of schemes. The solid curve is the exact solution, the dotted line according to (87), the dotted line
according to (96).
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Uip1 — Ui 2 Uj1— U U — U
i+1 i—1 _ < i+1 . i 1) +S(x) (97)
Xip1 —Xic1 Pe(xip1 —xio1) \Xigy1 —X X —Xi1q

If we set x = (xj+1 +xi-1)/2, we have a central-difference approximation. Here,
ui+1 is the approximate value of the solution at the point x4, # is the approximate
value of the solution at the point x. To obtain a physically plausible solution in simple
cases, we set S(x) = 0.

From (97) we find

(¢ —xi-1)(2 — Pe(xiy1 — X))thit1 + (Xit1 — x)(2 + Pe(x — xi—1))ui—1 .

U= (98)
2(%xi41 — %xi-1)
By changing x the values on the interval (x;_1,xi11), we can determine the
behavior of the solution. For given values x;1,%;_1, %;_1,%;11(98) is a parabola.
From (98) one can get
u—tia (x —xi-1)(2 — Pe(xi11 — x)) . (99)
Uit1 — Ui 1 2(xi41 — Xi-1)
A physically plausible solution is obtained if 0 < ﬁ < 1. This condition

imposes a restriction 2 — Pe(x;;1 — x) > 0. This condition is the condition of monoto-
nicity of the central-difference scheme for a non-uniform grid. In the case of a
uniform grid, we have 2 > Pe - k. This condition is the well-known monotonicity
condition [46]. For a coarse grid (N = 2, one movable node) at Pe = 5, the solution of
exact and approximate solutions are shown in Figure 46.

In Figure 46, the solid curve represents the exact solution, while the dotted one
represents the approximate solution obtained on the basis of (99). It can be seen from
the graph that scheme (99) does not give a physically plausible analytical solution.
That is why scheme (99) for large Peclet numbers gives an oscillatory numerical
solution. A plausible solution should have the same qualitative character as the exact

1,0
0,81
0,61
0,41

?

0,2

-0,2 -
Figure 46.
Comparison of solutions in a coarse grid. The dotted curve is approximate, the solid curve is exact, Pe = 5 (®, = o,

D, = 1).
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solution. When solving numerically, scheme (97) is implemented using a sweep, and
for the stability of the sweep, the nodes are selected so that 2 — Pe(x;;1 — x;) > 0. For
example, for a coarse grid (one nodal point), the credibility condition gives x; > 0, 6.
Indeed, for Pe = 5, it 2 — Pe(1 — x) > 0 follows that x; > 0, 6 (see Figure 46).

For Pe = 2, comparisons of the solutions are shown in Figure 47, which gives a
physically plausible solution.

Upwind scheme. Let us consider a difference analog of Eq. (73), in which the
convective term is approximated by a one-sided difference relation (without a source)

U—uiq 2 <ui+1 —u U-— uz‘1>
X —xi-1  Pe(Xiy1 —Xi—1) \Wig1 —% X — X1

From here we get

2(x — x; 1)uiy1 + (i1 — %) (24 Pe(oi1 — xi1))ui 1

U= (xi41 —xi—1)(2 + Pe(xj1 — x))

or

u—tiq 2(x —x;_1) (100)
U1 — i1 (Xip1 —xi1)(2 + Pe(xiy1 — x)) .

Since, the right side of relation (100) into segments is a hyperbola and therefore
we have 0 < *~*~1- <1. Those the upstream circuit is always monotonic. Figure 48

i1~ Ui—1
shows a comparison of the exact and approximate analytical solutions (Pe = 5).
However, numerical diffusion occurs.

4.7 An explicit expression of the approximation error of ordinary differential
equations based on the moved node method

Here discusses the issue of the possibility of calculating the approximation error.
When replacing differential equations with discrete ones, one of the key issues is the
1 -
0,81
0,6 /
0.4

B

0,2 4 4

Figure 47.
Comparison of the solution in a coarse grid. The dotted curve is approximate, the solid curve is exact, Pe = 2
((DO =0, D, = 1).
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11
0,84
0,6
0,44

?

0,2

Figure 48.
Comparison of the solution in a coarse grid. The dotted curve is approximate, and the solid curve is exact (®, = o,
(Dl =1 )

closeness of the discrete solution to the exact solution. For the difference solution to
the problem, a grid area is formed. The discrete solution is determined at the nodal
points. Traditionally, in questions of replacing a differential equation with a descrip-
tive one, one usually indicates the degree of approximation of the O(hP) type. Here h
is the grid step.

However, it is possible to calculate the approximation error at nodal points based
on the method of moving nodes. The method of moving nodes allows for obtaining an
approximate analytical expression. On the basis of the approximate form, it is possible
to calculate the approximation error. On the other hand, at each node one can con-
struct a differential analog of the difference equation. Using simple examples, the
calculation of approximation errors is demonstrated and schemes of the collocation
type are constructed.

4.7.1 Introduction

Here describes the application of the moving nodes method to the calculation
of the approximation error. When a two-point boundary value problem is solved by
different methods, the question of the degree of approximation usually appears. The
closeness of the exact and approximation of the solution, and the quality of the
difference scheme are evaluated based on the degree of this parameter. With such an
analysis, other parameters (the coefficients of the differential equation) are not
explicitly involved in the approximation error expression. Obtaining an explicit
expression for the approximation error makes it possible to analyze it.

Consider the simplest ordinary differential equation with boundary conditions

= =0C, u(0)=0, u(1) =1 (101)

where C—const.
Create a uniform grid on segments [0,1] with step h. A uniform grid on a segment
x € [0, 1] with step h has the form:

51



Numerical Simulation

Wy, = {xk =hk, k=0,1,...,N,h -N = 1}
Let us replace the second-order derivative with the difference relation:

Uiy1 —2U; + U4
h2

=C, 1<i<N-1,Up=0, Uy=1 (102)

Difference scheme (102) traditionally has order O(h?). However, if we solve sys-
tem (102) by the Tomas algorithm, we obtain a numerical solution that coincides with
the exact analytical solution for any grid steps h at the grid nodes. Those. scheme
(102) approximates (101) exactly.

4.7.2 Methodology

Let us have a differential equation
Lu =f, (103)

where L is a differential operator, f is a known function, and # is an unknown
function. (103) the equation is considered in some domain D with appropriate
boundary conditions. The differential Eq. (103) is replaced by the difference equation:

Lyuy =f£),, (104)

where L;, is the difference operator, u, is the unknown grid function, and fj, is the
approximation of the function f at the grid nodes.
Usually, the approximation error is given as [2, 3]:

Qj, = Lu[ul, — £ (105)

where [u]}, is the exact solution of (103) at the grid nodes. Using the Taylor series,
from (105) one obtains that, Q;, = O(h™), where h is the grid step and m is the degree
of approximation.

You can determine an explicit approximation error if you use the method of a
moving node, which allows you to extend the definition to the entire area D. This
allows you to introduce an approximation error like this:

Rh = Lh {u}h _fh' (106)

Here {u}, is a predefined continuous function by means of a moveable node. The
approximate calculation of the approximation error of type (106) is demonstrated
using simple examples.

4.7.3 Results and discussion

As an application of the above approach, consider examples.
1. Consider a simple boundary value problem:

2
;%: (x), u(0)=wu, u(l) =u, (107)
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Let us build a non-uniform grid on segments [0; 1]:
Wy, = {0 =X0, <X1< ... <XN_1<XN = 1,]€ =0,1, ,N}

In the non-uniform grid, we replace (107) with the difference problem:

2 U —U; U;,—U,_ .
( = - 1) =f(x;), i=1,2, ..,N—1. (108)
Xit1 — Xi—1 \ Xi+1 — X; Xi —Xi—1

Here U; is the grid solution of the problem. From here

Ui1(xi — xi-1) + Ui—1(Xiy1 — x3)

Xit1 — Xi-1

- %f(xz)(xl —x,'_l)(xiﬂ —xi), i= 1, 2, ,N —1.
(109)

U; =

We redefine the value of the function at non-nodal points as follows. To do this,
we consider in (109) x;,1,x;_1, U;i_1, U;41, to be fixed, and x; to be moved, and the
function f(x) to be smooth. Thus, we will complete the grid function on each segment
(xi_1,%i+1). From (109) we get

Uy (xi) = —%f”(xi)(xm — %) (o — xi-1) — f (%) (i1 + Xic1 — 2x;) +f (%) (110)

Then the approximation error for the nodal points looks like this:

Rilx) = —5f ()i — )31 = 5-0) —F ()gs + -1~ 2) (D)

If the grid is uniform for the approximation error, we obtain the expression
Ry(xi) = —=f"(i)h®, i=1,2, ...,N — 1. (112)

If on the segments (x;_1, ;1) the function constant approximation error is identi-
cally equal to zero and we get the exact solution.

Based on expression (110), the following conclusion can be drawn.

Given a two-point boundary value problem

d*u )
SR ) w(0) =y u(1) =
and f* (x) can be represented as

f* (x;) = —%f”(xi)(xm —x;)(x;i —xi-1) —fl(xi)(xm + i1 — 2x;) +f (%;)

then the difference scheme

2 (Ui+1 -U Ui- Uz'—1)

Xit1 — Xi—1 \ Xi+1 — X; Xi —Xi—1
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gives a grid solution coinciding with the exact solution at the nodal points.

If there is only one internal node point (the node being moved is one), then an
approximate analytical solution can be obtained. Indeed, if we rewrite scheme (108)
for one moving node, we have

From here we obtain an approximate analytical solution:

_ Upx + Us(1 —x) _ %f(xz)(l — x)x. (114)

U(x
( ) Xit1 — Xi—1

In this case, (114) represents the exact solution to the problem (107).
if we put

£70) = = 5f" )1~ e — £ )1~ 20) + £ )

The form of the approximation error (111) allows the construction of new schemes
of the collocation type. Indeed, if in problem (108) we replace the right side with the
expression

floi) + Al — xi-1) (i1 — %),

Here A is still an unknown constant. Parameter A is determined so that the
approximation error (111) for a uniform step at node x; is equal to zero, i.e. collocation
type scheme. Then we have

1 /!
A=f (i)

2. Consider a stationary equation in which only convection and diffusion are
present without a source.

e’ +v' =0, (115)

with boundary conditions v(0) = 0,v(1) = 1..

There are various schemes for the difference solution (115). Based on the moving
node technique, it is possible to explicitly express local errors in the approximation of
differential equations. Using the moving node method, we will show the efficient
calculation of local approximation errors for the model problem (115).

Scheme with central-difference approximation of the convective term. Take a
segment (x;_1,%;+1) and any point x € (x;_1,x;+1). Consider the different analog (115).

2¢e <Mi+1 —u u-— uil) IS Bk W (116)

Xi1 —Xi—1 \Xi+1 —X X —Xj 1 Xit1 — Xi1

Atx = (x;_1 +xi+1)/2, we have a central difference approximation. Here, # is the
approximate value of the solution at point x.
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From (116) we find.

y— (¢ —xi-1)(2e + xi41 — x)uip1 + (Xip1 — x) (28 — % +x-1)ui1 ' (117)
2¢e(xip1 — xi-1)

From here we get,

,: 26 + X1+ Xic1 — 2X Ui — Ui (118)

u >
2¢e Xit1 — Xi-1

g~ Uit1 — i1 (119)

€ Xit1 —Xi1 .
If the difference solution at nodal points is known, then formula (117) makes it
possible to determine the unknown at points that are not nodal.

Using formulas (118) and (119), the derivatives are restored at any point of the
segment. Multiplying (119) by and adding with (118), we obtain.

e +u =W¥q,. (120)
where

Xit1+Xi1— 2% Ui1 — Ui 1
Y, =

2e Xif1 — Xio1
Eq. (120) can be called a differential analog of the difference Eq. (16); difference
Eq. (116) is a collocation-type scheme.

Using (119), the approximation error can be written as.

XX — qu//

Wy, = .
Then Eq. (120) takes the form
X — 2x
(g \ xz’ ! )u” +u =0. (121)

Thus, difference Eq. (116) exactly approximates differential Eq. (121) on the
segment [x;_1,Xi11].

Comparison of Egs. (115) and (121) shows that when Eq. (115) is approximated
by scheme (116), scheme diffusion appears with a variable coefficient
(xit1 +xi-1 — 2x) /2.

Upwind Scheme. Let us consider the difference analog of Eq. (115), in which the
convective term is approximated by the one-sided difference relation.

2e U1 — U U — Ui Uil — U

— + =0. (122)
Xit1 —Xi-1 \Xi+1 —X X —Xj1 Xit1 — X
From here we get
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" — (x = xi-1) (26 + xi41 — xi—1) Uit + 2e(Xip1 — X)ui1 (123)
(xip1 —xi—1)(2e +x — xi_1)

Determine the first and second derivatives:

;o 28(28 + X1 — Xi_1> Uir1 — Ui—1

s (124)
(28 +x — x,-_1)2 Xit1 — Xi1
A = —4e(2e +xi11 — Xi—1) Uity — U1 (125)
(26 +x —x;1)° X1 —%Xia
Let us calculate the approximation error.
¥, — 2e(x —xi-1) (26 + i1 — Xi—1) Uit1 — Ui1
(2 +x — x;_1)° Xit1 — Xi-1
The differential analog of scheme (122) has the form.
(8 +x —2x1>1)u// +u =0, (126)

those with a scheme against the flow, we have a scheme diffusion with a coeffi-
cient (x;11 — x)/2. Based on (123)—is a hyperbola, which is monotone on the
segment, i.e. scheme (122) is monotonic.

Based on the form of the differential analog (126), we can conclude that the
differential equation

(e + %C) W+ =0 (127)

is exactly approximated by the scheme

2e<”h_“+”_““>+”b_”:0 (128)
1—x X 1—x

Thus solving (128) with respect to u, we obtain the exact solution of differential
Eq. (127).

4.8 On convergence of MNM

Let us show the convergence of MNM on model problems.
1. Consider the Cauchy problem

du
o= u(0)=1 (129)

Let us replace the derivative with the forward difference,

du JUilx) ~Ui(0) _ Unw) =1 (130)

dx x—0 x

In (130) U;(x) the approximate value of the unknown function at the moving
point is if there is only one moving node.
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Using (130) we write the difference Eq. (129)

Ul(x) -1

S = ~Us(), (131)

Take, now, two moving x nodes and x/2. For these points, we write difference
equations of the type (131)

Uy(x/2) — 1 B Us(x) — Ua(x/2)
T = —U,(x/2),

= U, (132)

Eliminating these equations U,(x/2), we get

1

V) = e

For three moved nodes x/3, 2x/3 and x we get

1

V) =

If the number of nodes 7, we get

1

(/)" "

U,(x) =

If we strive for the number of nodes to infinity, we get

1
limU,(x) = lim —— =¢~

Thus, we obtain the exact solution to problem (129).
2. Consider the problem
do 1 d*o
o2 ®0)=0, o(1) =1 134
dx  Pe Jx* (0) (M (134)

For this problem, the difference scheme with 2k —1 moving nodes has the form (29):

k_ ke ke ke ke
B (G B I C a0 T (135)
where
(2-1) 2 (1) (2-1) _ %4ipe1—gy) | P(1-g) (2'1) (2'-1) (2'-1)
a — ) a - ) a =a + a -
E (1-x) (l_yik) w P (1_Tik) N (1_Tik) P w E

7. =2/ +0),1, = (2°+0)/2*, 0 =Pe(1—x).
If we find from (135) U(zkfl) and pass to the limit at k — oo, we have

Pe x
(), € —1
k!,l—I»?oU( )(x)— ePe —1°

The obtained limit coincides with the exact solution.
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4.9 Conclusions

Using the method of moving nodes based on the control volume method, compact
schemes with high resolution for convective-diffusion problems are constructed.

Using a combination of moving node methods and Richardson’s extrapolation,
compact, high-resolution schemes for convective-diffusion problems are constructed.

Choices of the influence of the profile on the faces of the control volume are
studied.

The possibilities of using movable nodes for the analysis of schemes are shown.

Based on the method of moving nodes, the possibilities of finding errors in the
approximation of differential equations are shown.

For simple problems, the convergence of the moving nodes method is given.
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