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Chapter

Terfenol-D Layer in a Functionally
Graded Pipe Transporting Fluid for
Free Vibration
Mukund A. Patil and Ravikiran Kadoli

Abstract

Knowledge of natural frequency of pipeline conveying fluid has relevance to
designer to avoid failure of pipeline due to resonance. The damping characteristics
of pipe material can be increased by using smart materials like magnetostrictive
namely, TERFENOL-D. The objective of the present chapter is to investigate vibra-
tion and instability characteristics of functionally graded Terfenol-D layered fluid
conveying pipe utilizing Terfenol-D layer as an actuator. First, the divergence of
fluid conveying pipe is investigated without feedback control gain and thermal
loading. Subsequently, the eigenvalue diagrams are studied to examine methodically
the vibrational characteristics and possible flutter and bifurcation instabilities even-
tuate in different vibrational modes. Actuation of Terfenol-D layer shows improved
stability condition of fluid conveying pipe with variation in feedback control gain
and thermal loading. Differential quadrature and differential transform procedures
are used to solve equation of motion of the problem derived based on Euler-
Bernoulli beam theory. Finally, the effects of important parameters including the
feedback control gain, thermal loading, inner radius of pipe and density of fluid on
vibration behavior of fluid conveying pipe, are explored and presented in numerical
results.

Keywords: control gain, isothermal load, flutter, bifurcation instability, differential
quadrature and differential transform method

1. Introduction

Composite fluid-conveying pipes have become a practicable substitute to metallic
pipes in several engineering applications such as oil and gas transport lines, hydraulic
and pneumatic systems, thermal power plants, heat transfer equipment, petroleum
and chemical process industries, underground refueling pipelines in airports, hospi-
tals, medical devices, municipal sewage and drainage, corporation water supply and
many more. Divergence and flutter instabilities are illustrious in fluid-conveying pipe
due to fluid–structure interaction. One type of instability encountered in cantilever
fluid-conveying pipes is called bifurcation, when the imaginary portion of the
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complex frequency disappears and the real portion splits into two branches. Funda-
mental concepts and early development in fluid structure interaction of fluid convey-
ing pipes have been complied and studied by [1] systematically. A few more
specialized topics are briefly discussed and well documented in Ref. [2–4]. Remark-
able contributions in the area of fluid-conveying pipe vibrations also include the
works of Chen [5].

In the meantime, performing a review on literature, it can be seen that a few
studies have been carried out in the several field of vibrations such as in-depth
nonlinear dynamics [6–10], vibration control [11–18], microtubes or nanotubes in
microfluidic devices [19–22], and pipes using functionally graded materials [23–26].

The pseudo excitation method in conjunction with the complex mode superposi-
tion method was deduced to solve dynamic equation of Timoshenko pipeline convey-
ing fluid [6]. The post-buckling and closed-form solutions to nonlinear frequency and
response [8] of a FG fluid-conveying pipe have been investigated using analytical
homotopy analysis method. Natural frequencies and critical flow velocities has been
obtained for free vibration problem of pipes conveying fluid with several typical
boundary conditions using DTM [11]. Dynamics and pull-in instability of pipes con-
veying fuid with nonlinear magnetic force have been investigated by [13], for
clamped-clamped and clamped-free boundary conditions. The conclusion of investi-
gation is that, location of magnets has a great impact on the static deflection and
stability of the pipe. Wavelet based FEM has been used to examine the effect of
internal surface damage [14] on free vibration behavior of fluid-conveying pipe. The
natural frequencies of pipe conveying fluid has been determined by [15], using
Muller’s bisection method.

Failure due to filament wound with consideration of production process inconsis-
tencies have been assessed by Rafiee et al. [16]. Vibration and instability response of
magnetostrictive sandwich cantilever fluid-conveying micro-pipes is investigated uti-
lizing smart magnetostrictive layers as actuators by [18].

Nonlinear vibration of a carbon nanotube conveying fluid with piezoelectric layer
lying on Winkler-Pasternak foundation under the influence of thermal effect [21] and
magnetic field [22] have been investigated using Galerkin and multiple scale method.
The in-plane free vibration frequency of a zirconia-aluminum functionally graded
curved pipe conveying fluid have been explored by the complex mode method [23].
The effect of axial variations of elastic modulus and density on dynamical behavior of
an axially functionally graded cantilevered pipe conveying fluid has been analyzed by
[24]. Dai et al. [25] studied the thermo-elastic vibration of axially functionally graded
pipe conveying fluid considering temperature changes. Heshmati [26] studied the sta-
bility and vibration behaviors of functionally graded pipes conveying fluid considering
the the effect of eccentricity imperfection induced by improper manufacturing pro-
cesses. Xu Liang et al. [27] have used differential quadrature method (DQM) and the
Laplace transform and its inverse, to analyze the dynamic behavior of a fluid-conveying
pipe with different pipe boundary conditions. Huang Yi-min et al. [28] used the sepa-
ration of variables method and the derived method from Ferrari’s method to decouple
the the natural frequency and the critical flow velocity equations of fluid-conveying
pipe with both ends supported. Planar and spatial curved fluid-conveying pipe [29]
have been investigated for their free vibration behavior with Timoshenko beam model
and B-spline function used as the shape function in Galerkin method.

There are few investigations in the literature on fluid-conveying pipes containing
Terfenol-D layers. Certainly, a study on the mechanical behavior of functionally
graded Terfenol-D layered fluid conveying pipe will contribute to the understanding
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for future design engineers, hence an attempt on the vibration and stability of func-
tionally graded Terfenol-D layered fluid conveying pipe. Inherent features of the
Terfenol-D layer to regulate the vibration instabilities and critical flow velocity of a
FGMT pipe are attempted numerically. Terfenol-D is a popular magnetostrictive
material exhibiting force output for a corresponding magnetic field input and pro-
duces magnetic field for mechanical force as an input. Every term in Terfenol-D has a
meaning (see Figure 1), for example, Ter means Terbium, Fe signifies chemical
symbol for iron, Nol stands for Naval Ordnance Laboratory, and D stands for Dys-
prosium [30]. Terfenol-D has numerous distinguish characteristics, including a high
electromechanical coupling coefficient (0.73), a high magnetostrictive strain (800–
1600 ppm), a fast response, a high energy density, and a large output force. The total
stiffness of the pipe is affected by actuation of the Terfenol-D layer due to the creation
of tensile forces with a change in feedback control gain and temperature change in the
fluid-conveying pipe. The governing equation of motion for FGMT fluid-conveying
pipe is derived based on Euler-Bernoulli’s theory. Differential quadrature and differ-
ential transform approaches are used to obtain the frequency of boundary value
problem. Critical velocities of the FGMT pipe are also determined for various bound-
ary conditions, feedback control gain, and thermal loading. Validation of frequencies
and critical velocities is accomplished using accessible analytical relations.

2. Functionally graded fluid conveying pipe

Powder metallurgy is considered as manufacturing process for present functionally
graded Terfenol-D layered fluid-conveying pipe. The functioanlly graded pipe is
assumed to compose of aluminum (as metallic) and aluminum oxide (as ceramic). In
between the graded composition of aluminum and aluminum oxide Terfenol-D layer
is included. The material properties, volume fraction and expression for calculation of
properties is given in [31]. Figure 2 shows the layout of FGMT fluid-conveying pipe.

2.1 Derivation of governing equation

Considering the FGMT fluid-conveying pipe as an Euler-Bernoulli beam, the
equation for the motion of the pipe can be derived using Hamilton’s principle. The

Figure 1.
Schematic for meaning of Terfenol-D.
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kinetic energy of the internal fluid is appended to the kinetic energy of the pipe to
obtain total kinetic energy of FGMT pipe, and is described by the equation

J ¼ Jp þ Jf (1)

Where, Jp and Jf signify the kinetic energy of the composite FGMT fluid-

conveying pipe and the kinetic energy of the fluid flowing through the pipe, respec-
tively. The elements of kinetic energy (J) as defined in Eq.(1) can be expressed as:

Jp ¼
1

2

ðl

0
mp

∂w

∂t

� �2

dx (2)

Jf ¼
1

2

ðl

0
mf v

∂w

∂x
þ

∂w

∂t

� �2

þ v2

 !

dx (3)

Where, w symbolize for the displacement in the vertical direction, v symbolize for
the fluid velocity, The flow of liquid, water, oil, and similar liquid flowing through the
pipe are assumed to have a flat velocity profile at every section of the flow (i.e. popularly
called as plug flow).mp andmf respectively denote the mass per unit length of the pipe

and the internal fluid. The strain energyU of the fluid-conveying pipe can be defined as:

U ¼
1

2

ðl

0
EpIp

∂
2w

∂x2

� �2

dx (4)

Where EpIp is the flexural rigidity of the FGMT fluid-conveying pipe. Constitutive
relation for a magnetostrictive beam type structure [32] could be written as:

σTxx ¼ C11ϵxx � e31Hz (5)

where σTxx, ϵxx signifies axial stress and strain of the Terfenol-D layer. In addition,
C11 and e31 are elastic stiffness coefficient and magnetostrictive constant, respectively.
The subscript 31 indicates that, the magnetic field is applied in the 3(z) direction and
mechanical response obtained in the 1(x) direction. The strength of the magnetic field
Hz may now be stated as follows.

Hz ¼ kcC tð Þ
∂w

∂t
(6)

Figure 2.
Physical model of simply supported FGMT fluid-conveying pipe.
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Where, kc, C tð Þ and ∂w
∂t denotes the coil constant, feedback control gain and trans-

verse displacement of fluid conveying pipe with respect to time, respectively. The
strain energy of the Terfenol-D layer is given as:

UT ¼

ðl

0

ð

A

σTxxϵxxdAdx (7)

Also, the axial moment produced by Terfenol-D layer is,

Mxx ¼

ð

A
σTxxzdA (8)

Applying the Hamilton’s principle, one can write the functional of FGMT pipe as,

ðt2

t1

δ J �U � UTð Þdtþ

ðt2

t1

δW forcedt ¼ 0 (9)

Where, J is the total kinetic energy of the system; U is the deformation energy of
the system; W force denotes the work of the non-conservative force. Therefore, the

equation of motion for the free vibration of FGMT composite pipe conveying fluid can
be written as:

EpIp
∂
4w

∂x4
|fflfflfflfflffl{zfflfflfflfflffl}

Elastic

þmf v
2 ∂

2w

∂x2
|fflfflfflfflffl{zfflfflfflfflffl}

Centrifugal

þ 2mf v
∂
2w

∂x∂t
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Coriolis

þ ε
∂
2w

∂x∂t
|fflffl{zfflffl}

Magnetostrictive Moment

þ mp þmf

� � ∂
2w

∂t2
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Inertia

¼ 0 (10)

The governing equation for FGMT fluid-conveying pipe with thermal loading
making use of Ref. [33] can be obtained as:

EpIp
∂
4w

∂x4
þ mf v

2 þ Aγ ΔTð Þ
� � ∂

2w

∂x2
þ 2mf v

∂
2w

∂x∂t
þ ε

∂
2w

∂x∂t
þ mp þmf

� � ∂
2w

∂t2
¼ 0 (11)

Where,

mp ¼
Xn

j¼1

πρj r2jþ1 � r2j

� �

(12)

EpIp ¼ A11r
3 �D11r r ¼

do þ di
4

(13)

A11 ¼
Xn

j¼1

Q11 rjþ1 � rj
� �

(14)

D11 ¼
1

3

Xn

j¼1

Q11 r3jþ1 � r3j

� �

(15)

ε ¼ e31kcC tð Þ r2jþ1 � r2j

� �

(16)

γ ΔTð Þ ¼ EαΔT (17)
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Where, α indicates the thermal expansion coefficient of the fluid conveying pipe
material,ΔT is the temperature change in the layers, E is the Young’s modulus of the fluid
conveying pipe and γ ΔTð Þ symbolize the linear elastic stress–temperature coefficient.

3. Transformation of PDE into a sets of ODEs

Authors used the differential quadrature method to solve the free vibration equa-
tion of FGMT fluid-conveying pipe as given in Eq. (9). Here, the Eq. (9) is
transformed into sets of ordinary differential equations. The standard eigenvalue form
[34, 35] of the Eq. (9) can be obtained by assuming:

w0 ¼ W0e
Λt (18)

W0 is the mode shape of transverse motion and Λ is the frequency of the FGMT
fluid-conveying pipe. Substitute the Eq. (12) in Eq. (9), accordingly Eq. (9) re-reads
as follows:

EpIp
∂
4

∂x4
W0e

Λt
� �

þmf v
2 ∂

2

∂x2
W0e

Λt
� �

þ 2mf v
∂

∂x

∂

∂t
W0e

Λt

� �

þ ϵ
∂

∂x

∂

∂t
W0e

Λt

� �

þ mp þmf

� � ∂
2

∂t2
W0e

Λt
� �

¼ 0

(19)

EpIp
d4W0

dx4
eΛt

 !

þ mf v
2 d

2W0

dx2
eΛt

 !

þ 2mf v
dW0

dx
eΛt

� �

Λþ ϵ
dW0

dx
eΛt

� �

Λ

þ mp þmf

� �
W0e

Λt
� �

Λ
2 ¼ 0

(20)

EpIp
d4W0

dx4

 !

þ mf v
2 d

2W0

dx2

 !

þ 2mf v
2 þ ϵ

� � dW0

dx

� �

Λþ mp þmf

� �
W0

� �
Λ

2 ¼ 0

(21)

Now, substitute the analog form of differential quadrature for respective deriva-
tive (first, second, third and fourth) such as:

d4W0

dx4
¼
XN

j¼1

A
4ð Þ
ij W j,

d2W0

dx2
¼
XN

j¼1

A
2ð Þ
ij W j,

dW0

dx
¼
XN

j¼1

A
1ð Þ
ij W j (22)

Now, Eq.15 becomes,

EpIp
XN

j¼1

A
4ð Þ
ij W j þmf v

2
XN

j¼1

A
2ð Þ
ij W j þ 2mf v

2 þ ε
� �X

N

j¼1

A
1ð Þ
ij W j

 !

Λþ mp þmf

� �
W i

� �
Λ

2

¼ 0

(23)

Now separate the terms associated with Λ and Λ
2 to prepare the damping and mass

matrices, respectively as shown in Eq. 18.
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� M½ �Λ2
	 


df g þ Γ½ �Λf g df g þ K½ � df g ¼ 0 (24)

Where,

Γ½ � ¼ Cdd½ � � Cdb½ � Sbb½ ��1 Sbd½ � (25)

K½ � ¼ Sdd½ � � Sdb½ � Sbb½ ��1 Sbd½ � (26)

Where, Cdd and Cdb are the damping sub matrices which includes the domain-
domain and domain-boundary elements of damping. Similarly, Sbb, Sbd, Sdb and Sdd
are the stiffness sub matrices which includes the boundary-boundary, boundary-
domain, domain-boundary and domain-domain elements, respectively. The standard
form of eigenvalue can be obtained from Eq. (18) as:

0 I

Γ K

� �

�
I 0

0 M

� �

Λ

 �
d

Λd

 �

¼ 0 (27)

Where I, [K], [Γ] and [M] denote the identity, structural stiffness, damping and
mass matrix, respectively. One can obtain the two sets of eigenvalues. The eigenvalue
obtained can be written as Λ ¼ �α� iωd.

4. Application of differential transform method to FGMT fluid-conveying
pipe

Differential transform technique (DTM) may be used to solve integral equations,
ordinary partial differential equations, and differential equation systems. Using this
approach, a polynomial solution to differential equations may be derived analytically.
For large orders, the Taylor series approach is computationally time-consuming. This
method is appropriate for linear and nonlinear ODEs since it does not need lineariza-
tion, discretization, or perturbation. It is also possible to significantly reduce the
amount of computing labour required while still precisely delivering the series solu-
tion and rapidly converging. The DTM has several disadvantages, though. Using the
DTM, a truncated series solution may be obtained. This truncated solution does not
display the actual behavior of the problem, but in the vast majority of situations it
offers a good approximation of the actual solution in a relatively limited area. Solu-
tions are expressed as convergent series with components that may be readily com-
puted using the differential transform technique. The linear equation of motion for
free vibration of FGMT fluid-conveying pipe is given by,

EpIp
d4W0

dx4

 !

þ mf v
2 d

2W0

dx2

 !

þ 2mf v
2 þ ε

� � dW0

dx

� �

Λþ mp þmf

� �
W0

� �
Λ

2 ¼ 0

(28)

The differential transformation form of Eq. (22) can be written as

EpIp iþ 1ð Þ iþ 2ð Þ iþ 3ð Þ iþ 4ð ÞW iþ 4ð Þð Þ þmf v
2 iþ 1ð Þ iþ 2ð ÞW iþ 2ð Þð Þ

þ 2mf v
2 þ ε

� �
iþ 1ð ÞW iþ 1ð Þð Þ þ mp þmf

� �
W ið Þ ¼ 0

(29)
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Rearranging Eq. (23), one will get a simple recurrence relation as:

W iþ 4ð Þ ¼ �
mf v

2 iþ 1ð Þ iþ 2ð ÞW iþ 2ð Þ þ 2mf v
2 þ ε

� �
iþ 1ð ÞW iþ 1ð Þ þ mp þmf

� �
W ið Þ

� �

EpIp iþ 1ð Þ iþ 2ð Þ iþ 3ð Þ iþ 4ð Þ

(30)

Similarly, analogous form of original boundary conditions for the differential
transformation can be done using Table 1, where x ¼ 0 and x ¼ 1 represents the
boundary points. It can be seen that W ið Þ, (i ¼ 4,5,… ,N) is a linear function of W 2ð Þ
and W 3ð Þ. Thus, W 2ð Þ and W 3ð Þ are considered as unknown parameters and taken as
W 2ð Þ ¼ b1, W 3ð Þ ¼ b2 for clamped-clamped boundary conditions. With Eq. (23),
W ið Þ can be calculated via an iterative procedure. Substituting W ið Þ into boundary
conditions at other end of FGMT pipe, the two equations (Substituting all W ið Þ terms
into boundary condition expressions) can be written as matrix form,

R11 R12

R21 R22

� �
b1

b2

� �

¼ 0 (31)

Where Rij are associated with the eigenvalues ω, b1 and b2 are the constants and
other parameters of the FGMT pipe system, corresponding to N. To obtain a non-
trivial solution of Eq. (25), it is required that the determinant of the coefficient matrix
vanishes, namely

R11 R12

R21 R22

�
�
�
�

�
�
�
�
¼ 0 (32)

Therefore, the eigenvalues ω can be computed numerically from Eq. (26).
Generally, ω is a complex number.

5. Results and discussion

In the following section, the numerical results are proposed to investigate the free
vibration behavior of FGMT fluid-conveying pipe subjected to control gain and ther-
mal loading. Since there is no published research on the subject of free vibration of
FGMT fluid-conveying pipes in the open literature, a differential quadrature and

x = 0 x = 1

Original Form DTM Form Original Form DTM Form

w 0ð Þ=0 W 0ð Þ=0 w 1ð Þ=0
PN

i¼0W ið Þ=0

dw
dx 0ð Þ=0 W 1ð Þ=0 dw

dx 1ð Þ=0
PN

i¼0iW ið Þ=0

d2w
dx2

0ð Þ=0 W 2ð Þ=0 d2w
dx2

1ð Þ=0
PN

i¼0i i� 1ð ÞW ið Þ=0

d3w
dx3

0ð Þ=0 W 3ð Þ=0 d3w
dx3

1ð Þ=0
PN

i¼0i i� 1ð Þ i� 2ð ÞW ið Þ=0

Table 1.
Transformed form of boundary condition for differential transform method.
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differential transform approach is used to conduct a condensed analysis of the current
study. The imaginary component (ℑm) of the complex frequency
[Ω ¼ ℜe Ωð Þ �ℑm Ωð Þ] denotes the energy stored in either mass or strain energy in the
fluid conveying pipe. The accumulated strain energy is linked to the failure behavior
of the fluid conveying pipe. Furthermore, the real element (ℜe) of the complex
frequency represents damping and the energy that will be transformed to heat or
other energy by friction or other molecular actions.

5.1 Validation of present study

The current MATLAB code for the differential quadrature and transform tech-
nique is validated using Ref. [28], as shown in Table 2. The validation for FGMT fluid
conveying pipe is also given by the author in Ref. [36]. Furthermore, the solution
obtained using the differential quadrature approach corresponds well with the solu-
tion acquired using the differential transform method.

It has been identified that, the differential transform method requires the 58
number of terms to get the converged solution whereas 19 grid points used to obtain
the convergence solutions shown. The natural frequencies of pipes conveying fluid
depend on the fluid velocity v: The physical parameters of FGMT fluid-conveying
pipe are calculated as: mp ¼ 1:0670 kg�m, mf ¼ 0:23562 kg�m,

EpIp ¼ 5:1620 N�m2, L ¼ 1 m. In order to calculate these physical parameters,
authors have used Eq. 2.1. MATLAB software is used to create a package that
performed the foregoing computations. The correctness of the results are shown by
the comparison of the results of differential transform method in Table 3 under
different boundary conditions for v ¼ 0:5 m=s. The number of grid points was modi-
fied from 7 to 19 to reach the converged solution. From the Table 3, it can be
concluded that the imaginary component of the damped frequency calculated using
DQM and DTM coincides rather well.

One of the key concerns for fluid conveyance pipes to be of significant importance
is stability. The natural frequencies decrease with higher flow rates for pipelines with
supported ends. The system destabilizes by diverging (buckling) when the natural
frequencies fall to zero, and the resulting flow velocity is known as the critical flow
velocity. In the case of v 6¼ 0, Figures 3–10 represent the natural frequencies of fluid-
conveying FGMT pipe with different boundary conditions. The first three natural

Velocity (m/s) Method Mode

λ1 λ2

DQM 15.7213 31.4327

v=0 DTM 15.2765 31.3274

Ref. [28] 15.71 31.42

DQM 13.9650 30.8266

v=10 DTM 13.5669 30.6656

Ref. [28] 13.97 30.83

Table 2.
Validation of simply-supported natural frequencies (rad/sec) of fluid conveying pipe (Parameters used:
EI ¼ 100 Nm2, mf ¼ 2 kg=m, mp ¼ 2 kg=m and L = 1 m).
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frequencies of the C-F fluid-conveying FGMT pipe with 0≤ v≤ 50 are depicted in
Figures 3 and 4. The critical velocity of the pipe is v ¼ 42 m=s, and the third mode
appears flutter instability. The findings of the differential quadrature method were
utilized to plot the results presented in the Figures 3–10.

The first four natural frequencies of the simply supported fluid-conveying FGMT
pipe with 0≤ v≤ 50 are plotted in Figures 5 and 6. The first mode appears divergence
instability when the critical velocity of the FGMT pipe is v ¼ 15 m=s, and Paidoussis
coupled mode flutter instability appears when the critical velocity is v ¼ 31. Real
component (ℜe) of the complex frequency is almost zero during the first mode
divergence instability. By increasing the flow velocity 30 m/s, the imaginary part of
combination of first and second modes becomes zero, while the real part is non-zero,
and the non-zero frequency and damping of first and second mode at the same values
are coupled, then the system will be unstable again. This sort of instability, caused by

Boundary Nodes Mode

Im(Λ1) Im(Λ2) Im(Λ3) Im(Λ4)

7 18.4437 58.7726 111.9680 —

11 18.4530 76.9717 166.6046 255.9565

S-S 15 18.4529 77.4675 175.6156 331.6998

17 18.4529 77.4688 175.7221 313.2417

19 18.4529 77.4688 175.7221 313.2417

DTM 18.4765 77.4445 175.6849 313.2167

7 44.6652 94.0809 149.5829 —

11 43.8719 120.7255 224.0424 324.0114

C-C 15 43.8700 121.9308 239.5009 435.8037

17 43.8700 121.9365 239.7773 396.9056

19 43.8700 121.9365 239.7780 396.9056

DTM 43.9087 122.1424 240.0518 397.2302

7 29.5136 75.3884 133.9371 —

11 29.8002 97.5593 196.8662 272.6251

S-C 15 29.8007 98.5000 206.4495 391.9600

17 29.8006 98.5037 206.5287 353.8381

19 29.8006 98.5037 206.5287 353.8381

DTM 29.8321 98.6121 206.6739 354.0290

7 5.1817 41.1890 112.4169 —

11 7.1259 43.1741 128.5438 207.9994

C-F 15 7.1260 43.1894 122.0607 241.8281

17 7.1260 43.1894 121.9887 239.7690

19 7.1260 43.1894 121.9887 239.7690

DTM 7.1487 43.5897 122.3256 240.9832

Table 3.
Convergence of imaginary component of damped frequency for different boundary conditions when v ¼ 5 m=s.
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the interaction of two modes, is known as flutter instability, and its amplitude
develops exponentially as a function of time.

Figures 7 and 8 shows the first four natural frequencies of the C-C fluid-conveying
pipe with 0≤ v≤ 50. The critical velocity of the FGMT pipe is v ¼ 30 m=s and 43, and
corresponds to divergence instability in the first mode and couple-mode flutter insta-
bility. Bifurcation critical flow velocity is the term used to describe the flow velocity at
which the bifurcation instability occurs. It should be noted that the system enters an

Figure 3.
Effect of fluid velocity v on imaginary component of clamped-free damped frequency.

Figure 4.
Effect of fluid velocity v on real compoent of clamped-free damped frequency.
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over-damping mode, which prevents the FGMT pipe from vibrating, when the work-
ing fluid velocity surpasses its critical value.

Figures 9 and 10 presents the first four natural frequency of the S-C fluid-
conveying FGMT pipe with 0≤ v≤ 50. It is obvious that the first mode appears diver-
gence instability when fluid velocity v ¼ 22 m=s, and coupled-mode flutter instability
appears when fluid velocity reaches to v ¼ 37 m=s. The specific critical velocities
under different boundary conditions are listed in Table 4. The critical velocity for the

Figure 5.
Effect of fluid velocity v on imaginary component of simply supported damped frequency.

Figure 6.
Effect of fluid velocity v on real component of simply supported damped frequency.
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simply supported-simply supported and clamped-clamped boundary conditions are
validated using Navier solution given by [37].

The relationships between the imaginary component of frequency of the FGMT
pipe and the fluid density for different boundary conditions are plotted in Figure 11.
Because the inertial and Coriolis forces were stronger with increasing fluid density, it
was more simpler for the pipe to lose its stability. This led to a lower natural fre-
quency. The changes of imaginary component of frequency with inner radius of the

Figure 7.
Effect of fluid velocity v on imaginary component of clamped-clamped damped frequency.

Figure 8.
Effect of fluid velocity v on real component of clamped-clamped damped frequency.
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FGMT pipe for different boundary conditions are shown in Figure 12. For very small
values of the inner radius, an increase in the inner radius has a considerable impact on
frequency; nevertheless, when the inner radius value is near to the outer radius, the
frequency increases. In the boundary conditions clamped-clamped, simply supported-
simply supported, and simply supported-clamped, the imaginary component of fre-
quency drops as the feedback control gain rises. Imaginary component of the eigen-
value for a clamped-free frequency becomes zero for 3000 feedback control gain,
r ¼ 0:005 m and v ¼ 5 m=s shown in Figure 13.

Figure 9.
Effect of fluid velocity v on imaginary component of simply supported-clamped damped frequency.

Figure 10.
Effect of fluid velocity v on real component of simply supported-clamped damped frequency.
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It is worth pointing out that the important aspect of present research work is
maneuvering the use of Terfenol-D layers attached on the top FGMT fluid-conveying
pipe to control the critical flow velocity and also improve the stability region. When
Terfenol-D layer actuates tensile forces are generated in FGMT fluid-conveying pipe
which affects the stiffness of fluid-conveying pipe. In order to evaluate this objective,
Figure 14 shows the real part (ℜe) of clamped-free first mode frequency with flow
velocity for 0, 1000 and 1500 feedback control gain. It is observed that, 30, 28 and
9 m/s are the critical flutter velocity for 0, 1000 and 1500 feedback control gain,
respectively. Therefore, one can make fluid-conveying pipe more stable by varying
the feedback control gain. Figure 15 shows the variation of analytical nonlinear

BC Mode Velocity (v) Instability Form

S-S 1st Mode 15 Divergence

Navier Solution [37] 15 —

2nd Mode 30 Divergence

1st & 2nd Combined 31 Paidoussis coupled mode flutter

C-C 1st Mode 30 Divergence

Navier Solution [37] 30 —

1st & 2nd Combined 43 Coupled mode flutter

C-F 3rd Mode 42 Flutter

S-C 1st Mode 22 Divergence

1st & 2nd Combined 37 Coupled mode flutter

Table 4.
Critical velocities for FGMT pipe with different boundary conditions.

Figure 11.
Variation in fundamental natural frequency of FGMT pipe with changes in fluid density.

15

Terfenol-D Layer in a Functionally Graded Pipe Transporting Fluid for Free Vibration
DOI: http://dx.doi.org/10.5772/intechopen.108227



frequency of FGMT fluid conveying pipe calculated based on relations published by
[38] for simply supported boundary condition. It has been shown that when fluid
velocity rises, the nonlinear frequency falls.

Figure 16 depicts the coupled effect of feedback control gain along with thermal
loading. It is inferred that, there is decreasing effect of critical flow velocity as thermal
loading increases. The reduction in overall stiffness of pipe is the reason for instability
of FGMT pipe at lower flow velocity with thermal loading. Therefore, critical flow

Figure 12.
Variation of fundamental frequency with changes in inner radius of FGMT pipe for different boundary conditions.

Figure 13.
Variation of imaginary component of the frequency with changes in feedback control gain at r ¼ 0:005 m and
v ¼ 5 m=s.
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velocity condition under thermal loading can be amplified through imposing higher
feedback control gain. The control gain varies between 0 and 2000 as the temperature
of the fluid conveying pipe changes. It is inferred that, with a zero control gain and 1∘C
and 0∘C, the instability state of the fluid conveying pipe reduces from a fluid velocity
from 27 to 25.2 m/s. Additionally, with a control gain of 1000, the fluid conveying pipe’s
unstable condition decreases from 29 to 24 m/s. Similar to this, with the control gain of
2000, the fluid conveying pipe’s unstable condition decreases from 30 to 22 m/s.

Figure 14.
Variation of clamped-free fundamental frequency with changes in control gain and fluid velocity.

Figure 15.
Variation of nonlinear simply supported frequency with changes in fluid velocity.
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6. Concluding remarks

In this chapter, the differential quadrature and differential transform method is
applied to analyze the free vibration of FGMT pipes conveying fluid with different
boundary conditions. Boundary value problem of FGMT fluid-conveying pipe is
solved straightforwardly using DQM and DTM. Close agreement is established for
critical velocity and frequencies results generated by DQM, DTM with those of Navier
and Galerkin solution. Eigenvalue diagrams are detailed enough to shows the illustra-
tion about the effects of feedback control gain, density of fluid, inner radius of pipe
and thermal loading on the vibrational and instability characteristics. To attenuate the
amplitude of vibration or displacement, inherent damping property of the material
cannot be sufficient. To dampen out large amplitude vibration during resonance,
special techniques have been explored, like using sandwich pipes namely, viscoelastic
layer placed between two layers of the parent pipe material. This approach is called
passive damping. Viscoelastic materials like, natural rubber, and synthetic rubber like
nitrile butadine rubber and styrene butadine rubber, silicone rubber can be proposed.
Sophisticated technique is the active vibration. This method involves use of materials
like, piezoelectric, magnetostrictive, magnetorehology, electrostricitve and shape
memory alloys. Magnetostrictive material presented in this chapter works on the
ability of the material to respond mechanically to the presence of magnetic field. The
magnetic field is produced using a coil with passage of time dependent current. A
magnetostrictive material responds with a force, hence magnetostrictive actuator. The
force produced should be used to counteract the forces due to vibration. Thus,
damping is introduced. The idea of incorporting Terfenol-D layer facilitates the best
control of the fluid conveying FGMT pipe to avoid the bifurcation and flutter insta-
bilities and achieve more adaptive and efficient system. Additionally increasing or
decreasing effect of feedback control gain and thermal loading on critical flow velocity
and instabilities have been addressed.

Figure 16.
Variation of S-S fundamental frequency with changes in control gain, thermal loading and fluid velocity.
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